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Abstract
Broken ray transforms (BRTs) are typically considered to be reciprocal, 
meaning that the transform is independent of the direction in which a photon 
travels along a given broken ray. However, if the photon can change its energy 
(or be absorbed and re-radiated at a different frequency) at the vertex of the 
ray, then reciprocity is lost. In optics, non-reciprocal BRTs are applicable to 
imaging problems with fluorescent contrast agents. In the case of x-ray imaging, 
problems with single Compton scattering also give rise to non-reciprocal 
BRTs. In this paper, we focus on tomographic optical fluorescence imaging 
and show that, by reversing the path of a photon and using the non-reciprocity 
of the data function, we can reconstruct simultaneously and independently 
all optical properties of the medium (the intrinsic attenuation coefficients at 
the excitation and the fluorescence frequency and the concentration of the 
contrast agent). Our results are also applicable to inverting BRTs that arise 
due to single Compton scattering.

Keywords: Broken ray transform, star transform, fluorescence imaging, 
Compton scattering
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1. Introduction

The broken-ray transform (BRT), also referred to as the V-line transform, has attracted signifi-
cant recent attention [1–9]. This transform is a generalization of the classical Radon transform 
to the physical setting in which a photon can change its propagation direction due to scatter-
ing. A related recent development is inversion of the conical Radon transform, which arises 
in tomographic applications of the Compton camera [10–18], although in the latter case the 
vertex of the V-line is located at the detection surface rather than within the medium.

The BRT is defined in terms of integrals of a function (the attenuation coefficient) along 
two rays with a common vertex. The ray directions are fixed and determined by the directions 
of the source and detector. However, the position of the vertex can be scanned over the plane 
that contains both rays. The corresponding data provides sufficient information to reconstruct 
the attenuation coefficient in the plane thus defined, assuming that the scattering coefficient is 
spatially homogeneous. An interesting feature of the BRT is that its inversion does not require 
data from multiple projections; a single scan, analogous to one plane-parallel projection of tra-
ditional x-ray tomography, suffices for reconstruction [19]. In the single-projection geometry, 
inversion of the BRT is a mildly ill-posed problem [20].

If the scattering coefficient of the medium is not spatially homogeneous, more elaborate 
methods can be employed to reconstruct the scattering and the attenuation coefficients sepa-
rately. This is possible in a measurement geometry with several (more than two) rays having 
a common vertex and lying in the same plane [21]. A direct and stable inversion formula for 
a transform involving four such rays has been derived in [22]. The formula is local, that is, it 
involves only first-order derivatives with respect to the vertex position, and therefore it does 
not require a ‘complete’ data set. This property is very useful and, in principle, is unattain-
able in transforms involving only integrals along lines. A generalization of the local inversion 
form ula to the case of an arbitrary number of rays, which defines the star transform, was 
derived in [23]. In particular, it was shown that a local formula can be obtained with only 
three rays. This imaging geometry is considered below. We note that a single ‘star’ consists of 
several distinct broken rays, some of which can share one edge. In a given measurement (uti-
lizing a fixed source-detector pair), a photon always travels along one of the broken rays. We 
can utilize several detector arrays to perform measurements corresponding to different broken 
rays belonging to the same ‘star’ in one scan.

In previously considered applications, the BRT is reciprocal, which means that the trans-
form is independent of the direction in which the photon travels along a given broken ray. 
Consequently, the associated measurements are independent of the interchange of the source 
and detector. However, if the photon is scattered or absorbed and re-emitted at a different 
frequency, the reciprocity of the BRT is lost. In this paper, we consider a non-reciprocal BRT 
applicable to the problem of fluorescence imaging in a weakly-scattering or non-scattering 
medium. In this case, the photon travels along a line until it is absorbed by a fluorophore 
molecule and then is re-emitted in a different direction and at a different (generally lower) 
frequency. We show that the non-reciprocity of the BRT allows us to access additional infor-
mation about the medium by interchanging the source and detector in each pair. In particular, 
this approach allows us to reconstruct the attenuation coefficient of the medium at both the 
excitation and the fluorescence frequencies independently, as well as the concentration of the 
fluorophore. The method described in this paper requires doubling the number of physical 
measurements, but it does not involve any assumptions about the spectral dependence of the 
attenuation coefficient, which can generally differ at different points in the medium.

The proposed method is also applicable to x-ray imaging where the photon can change 
its direction due to Compton scattering. As is well known, the latter is accompanied by a 
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reduction of the photon energy. Since the attenuation coefficient can depend on energy, this 
poses an additional challenge. This problem was solved in [24] under the assumption that the 
spectral dependence of the attenuation coefficient is linear. Here we show that accounting for 
the non-reciprocity of the measurements allows one to avoid making assumptions about the 
spectral dependence of the attenuation. However, in this case, we are restricted to using only 
imaging geometries in which the scattering angles (and hence the Compton energy shifts) are 
the same. The three-ray star geometry considered below satisfies this requirement.

The remainder of this paper is organized as follows. In section 2, we consider the coupled 
transport equations and show that, in a non-scattering or a weakly-scattering medium, the spe-
cific intensity of light at the fluorescence frequency due to a collimated incident beam at the 
excitation frequency is mathematically related to a BRT of the medium. In section 3, we define 
the data function to be used in the reconstruction of the functions of interest. In section 4, we 
consider a more general arrangement of sources and detectors in which several broken rays 
with a common vertex form a ‘star’. In this section we show how the BRT non-reciprocity 
can be used to formulate the inverse problem. In section 5, we show how all three functions 
of interest (the background attenuation coefficients at the excitation and fluorescence fre-
quencies and the concentration of fluorophore) can be reconstructed stably and separately by 
accounting for the BRT non-reciprocity. Explicit image reconstruction formulas are derived. 
In this section, we assume that the ‘complete data’ are available. In section 6, we consider 
physical situations in which the complete data are not available and sketch some approaches 
to performing partial or complete reconstructions in this less favorable case. Finally, section 7 
contains a summary of the obtained results.

2. Coupled transport equations

We begin by considering the physical problem of fluorescence imaging in a weakly-scattering 
or non-scattering medium, taken to be a three-dimensional bounded domain Ω. In the absence 
of scattering, the transport equations describing the propagation of light at the excitation and 
fluorescent frequencies (distinguished by the subscripts e and f, respectively) are of the form

[̂s · ∇+ µe(r)] Ie(r, ŝ) = 0, (1a)

[̂s · ∇+ µf (r)] If (r, ŝ) = S(r, ŝ) . (1b)

Here Ie(r, ŝ), If (r, ŝ) are the specific intensities of light at the position r in the direction ŝ, 
and µe, µf  are the attenuation coefficients of the medium at the frequencies indicated by the 
subscripts, and S is the fluorescent source. Equations (1a) and (1b) are also supplemented by 
the half-range boundary conditions

Ie(r, ŝ) = Iinc(r, ŝ) and If (r, ŝ) = 0 for ŝ · n̂(r) < 0, r ∈ ∂Ω, (2)

where n̂ is the outward unit normal to ∂Ω and Iinc is the incident specific intensity at the excita-
tion frequency. Note that no light at the fluorescent frequency enters the medium except due 
to the source S, which is defined below. For a medium containing fluorescent molecules of the 
number density n(r), we can write

µe(r) = µ(0)
e (r) + σen(r), (3a)

µf (r) = µ
(0)
f (r) + σf n(r), (3b)

L Florescu et alInverse Problems 34 (2018) 094002
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where µ(0)
e (r) and µ(0)

f (r) are the intrinsic (background) attenuation coefficients of the medium 
and σe, σf  are the absorption cross sections of the fluorescent molecules at the frequencies 
indicated by the subscripts. The cross sections are assumed to be known from spectroscopic 
measurements and it is expected that σf < σe. The source function at the fluorescence fre-
quency is given by

S(r, ŝ) =
ησe

4π
n(r)ue(r), (4)

where η is the quantum efficiency of the fluorophores and the energy density 
ue(r) =

∫
Ie(r, ŝ)d2s. If the incident light is injected into the medium as a narrow collimated 

beam, then it can be seen that [19]

ue(r) =
W

|r − r1|2
exp

(
−
∫ r

r1

µed�
)
δ

(
ŝ1 −

r − r1

|r − r1|

)
. (5)

Here r1 and s1 are the location and direction of the source, W is the source power, and 
∫ b

a f d� 
is the integral of f along the line connecting the two points a and b.

Let the specific intensity at the fluorescence frequency be measured at the point r2 ∈ ∂Ω 
and in the direction ̂s2. Then it follows from (1b) that

If (r2, ŝ2) =
ησeW

4π

∫
d3r

n(r)ue(r)
|r2 − r|2

exp

(
−
∫ r2

r
µf d�

)
δ

(
ŝ2 −

r − r2

|r − r2|

)

 

(6)

where we have accounted for the isotropy of the source function S. An integral similar to (6) 
has been computed in the appendix of [19]. Here we adduce the final result,

If (r2, ŝ2) =
ησeW

4πr21 sin θ1 sin θ2
exp

(
−
∫ R

r1

µed�−
∫ r2

R
µf d�

)

× n(R)Θ(π − (θ1 + θ2))δ(ϕ2 − π) .

 

(7)

Various geometrical quantities and objects appearing in (7) are illustrated in figure 1. In par-

ticular, r21 = r2 − r1, R = r2 − r21
sin θ1

sin(θ1+θ2)
ŝ2 is the position of the vertex, that is, the point 

where the two rays shown in figure 1 by the dashed blue lines intersect, Θ(·) is the unit step 
function, and we have assumed that the vectors r21 and ̂s1 lie in the XZ plane of the laboratory 
frame. The delta-function δ(ϕ2 − π) ensures that ŝ2 lies in the same plane. Therefore, equa-
tion (7) yields a nonzero result only if the three vectors r21, ŝ1 and ŝ2 lie in the same plane, 

which defines the slice of the medium in which the two-dimensional reconstruction of µ(0)
e (r), 

µ
(0)
f (r) and n(r) is performed. Finally, the function Θ(π − θ1 + θ2) is equal to unity if the 

vertex exists and to zero otherwise. We note that, when experimental data are used, account-
ing for the geometrical factor 1/r21 sin θ1 sin θ2 in (7) is important for correct formulation of 
the inverse problem.

3. Data function

Our goal is to reconstruct the three functions µ(0)
e (r), µ(0)

f (r) and n(r) separately from col-
limated boundary measurements of the fluorescence intensity. In an experiment, the latter 
can be registered with the use of a spectral filter that excludes all radiation at the excita-
tion frequency. To proceed, it is convenient to introduce the dimensionless concentration of 
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fluorophores according to ñ(r) = ησ
3/2
e n(r). We note that ñ ∼ 1 corresponds to a very high 

concentration and, in practice, we expect that ñ � 1 will hold. Let us assume that the condi-
tion θ1 + θ2 < π holds so that the vertex exists. We then have

√
σer21

W
If (r2, ŝ2) =

ñ(R)

4π sin θ1 sin θ2
exp

(
−
∫ R

r1

µed�−
∫ r2

R
µf d�

)
δ(ϕ2 − π) .

 

(8)

Both sides of this equation are dimensionless. However, the expression is still singular and 
not amenable to direct interpretation as a measurable signal. To alleviate this problem, we 
note that the fluorescence intensity at the point of observation r2 depends on the spherical 
coordinates of the unit vector ̂s2, θ2  and φ2. The dependence on θ2  is slow (1/ sin θ2) while the 
dependence on ϕ2 is fast and expressed mathematically by the delta-function δ(ϕ2 − π). On 
the other hand, all physical detectors measure the specific intensity in some finite solid angle. 

We can assume therefore that the measured quantity is 
∫ π+δ

π−δ
If dϕ2, where δ is a small angle.

We can now define the data function φ12(R) as follows:

φ12(R) = − log

[
4π sin θ1 sin θ2

√
σer21

W

∫ π+δ

π−δ

If (r2, ŝ2)dϕ2

]
. (9)

Let ŝ1 and ŝ2 be fixed and such that the vertex exists. Then there is a one-to-one correspon-
dence between the position of the vertex R  and the pair of variables (r1, r2). In what follows, 
we will view R  as the independent variable. Applying the definition (9) to (8), we obtain the 
equation

Ie,1(R) + If ,2(R) + ξ(R) = φ12(R), (10)

where

ξ(R) = − log[ñ(R)], (11a)

Figure 1. Illustrating the geometry relevant to equation (8).

L Florescu et alInverse Problems 34 (2018) 094002
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Ie,1(R) =

∫ ∞

0
µe(R − ŝ1�)d�, (11b)

If ,2(R) =

∫ ∞

0
µf (R + ŝ2�)d� . (11c)

Here we have assumed that µe(r) and µf (r) are supported in Ω so that the ray integrals can be 
extended to infinity.

Note that the data function can be measured only for such positions of the vertex R  that 
ñ(R) �= 0. If ̃n(R) = 0, the measured fluorescence intensity is zero, at least, within the approx-
imation used here, and the logarithm in (9) is undefined.

4. Inverse problem

Above, we have considered one broken ray defined by the locations of the source and detector 
(r1 and r2) and the location of the vertex r (from now on, we denote the vertex position by the 
small letter r). We now allow a more general arrangement of source-detector pairs, assuming 
that all broken rays corresponding to different source-detector pairs have the same vertex and 
that this vertex can be scanned with a reasonable spatial resolution over the sub-region of Ω 
in which ñ(r) > 0. Some of the broken rays in a given ‘star’ can have a common edge. The 
imaging geometry is sketched in figure 2, where ûk are unit vectors pointing from the vertex 
to a source or detector. We note that ûk = ±ŝk, where the plus sign must be chosen if the ray 
points towards a detector and the minus sign is chosen if the ray points towards a source.

The generalization of (10) to the above case is the N-ray star transform equation

Ie,k(r) + If ,l(r) + ξ(r) = φkl(r), k, l = 1, . . . , N, k �= l . (12)

Here

Ie,k(r) =
∫ ∞

0
µe(r + ûk�)d�, (13a)

If ,k(r) =
∫ ∞

0
µf (r + ûk�)d� . (13b)

Notably, the data function φkl(r) is not symmetric with respect to the interchange of the 
indexes k and l. Physically, this means that the measurements do not obey reciprocity under 
the interchange of the source and the detector. The lack of reciprocity follows from the spec-
tral dependence of the attenuation, that is, from µe(r) �= µf (r). This is different from the star 
transform that arises in single-scattering tomography [23]. In the latter case, the data function 
is symmetric. In the case considered here, the lack of symmetry of the data function allows 
one to derive a local reconstruction algorithm, similar to those described in [22, 23], which 
yields all three functions µe(r), µf (r) and ñ(r). Let us consider the symmetric and anti-sym-
metric linear combinations of the data,

φ
(+)
kl (r) =

1
2
[φkl(r) + φlk(r)] , φ

(−)
kl (r) = φkl(r)− φlk(r) . (14)

It should be kept in mind that measuring these linear combinations requires reversing the path 
of the photon, that is, physically interchanging the source and detector for each broken ray 
or, alternatively, performing an additional scan with interchanged source and detector arrays. 
From (12) and (14), we find the following set of linear equations:

L Florescu et alInverse Problems 34 (2018) 094002
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I(+)
k (r) + I(+)

l (r) + ξ(r) = φ
(+)
kl (r), (15a)

I(−)
k (r)− I(−)

l (r) = φ
(−)
kl (r), (15b)

where

I(+)
k (r) =

∫ ∞

0
µ̄(r + ûk�)d�, (16a)

I(−)
k (r) =

∫ ∞

0
∆(r + ûk�)d�, (16b)

and

µ̄(r) =
1
2
[µe(r) + µf (r)] , (17a)

∆(r) = µe(r)− µf (r) . (17b)

5. Inversion with complete data

As mentioned in section 3, the data functions φkl(r) or φ(±)
kl (r) are defined only for positions 

of the vertex r such that ñ(r) > 0. Otherwise, the data function can not be measured. In prac-
tice, the condition that the data is measurable is stronger and reads ñ(r) � ñmin(r) > 0. Here 
ñmin(r) is experimentally determined.

The above considerations are illustrated in figure  3. Let Σ ⊂ Ω be the region in Ω in 
which the fluorescence signal can be measured. Σ can be defined with or without reference to 
ñmin(r); in an experiment, Σ is the set of all vertex positions for which the fluorescence signal 
is well above the noise level. In figure 3, Σ is shown as a simple connected region but one 
can consider more complex geometries. If Σ = Ω, the fluorescence signal can be measured in 
the whole domain of interest. We say that in this case we have access to complete data. This 
situation occurs when a significant concentration of the fluorescent molecules are present 
everywhere in Ω.

Figure 2. The imaging geometry for the special case of three rays.

L Florescu et alInverse Problems 34 (2018) 094002
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In this section, we discuss inversion of (16) with complete data. Then in section  6 we 
sketch some approaches to reconstruction when complete data are not available. We begin 
by noting that (16a) is equivalent to the star transform [23] of a medium with the attenuation 
coefficient µ̄(r). The dimensionless concentration of fluorophores ñ(r) plays the role of the 
contrast of the scattering coefficient. We can therefore use the methods described in [23] to 
reconstruct simultaneously µ̄(r) and ξ(r); the dimensionless concentration is then trivially 
computed as ñ(r) = exp(−ξ(r)).

Consider the three-ray geometry shown in figure 2. We then define the vector coefficients 
akl  (k, l = 1, 2, 3) as shown in the matrix




0 σ1û1 + σ2û2 σ1û1 + σ3û3

σ1û1 + σ2û2 0 σ2û2 + σ3û2

σ1û1 + σ3û3 σ2û2 + σ3û2 0


 . (18)

Here the scalar coefficients σk satisfy the condition

σ1û1 + σ2û2 + σ3û3 = 0 . (19)

Such coefficients can always be found since three vectors on a plane can not be linearly-inde-

pendent. We then take the following linear combination of the symmetric functions φ(+)
kl (r) 

(by symmetry, we mean here the property φ(+)
kl = φ

(+)
lk ):

Φ(+)(r) =
1
2

3∑
k,l=1

aklφ
(+)
kl (r) . (20)

It is easy to see that the resulting function Φ(+)(r) satisfies

3∑
k=1

σkûkI(+)
k (r) = Φ(+)(r) . (21)

Figure 3. Illustrating the domains in which image reconstruction is performed.

L Florescu et alInverse Problems 34 (2018) 094002



9

We now use the property −∇ · ukI(+)
k (r) = µ̄(r) to find that

µ̄(r) = − 1
σ1 + σ2 + σ3

∇ ·Φ(+)(r) . (22)

Thus, we have a local reconstruction formula for the spectrally-averaged attenuation coef-
ficient µ̄ = (µe + µf )/2. It is not surprising that this formula utilizes the symmetric data 

functions φ(+)
kl (r) or a linear combination thereof Φ(+)(r), as defined in (20). Indeed, the 

symmetric data points are obtained by combining the measurements in which the photon trav-
els through the medium in both possible directions (for a given broken ray). When the photon 
travels in one of these directions, it is attenuated at the rate µe in the first segment of the broken 
ray and µf  in the second segment. When the direction of propagation is reversed, the rate of 
attenuation is µf  in the first segment and µe in the second segment. By adding the two mea-
surements together, we are effectively performing an average of the attenuation coefficient.

Since we have assumed here that complete data are available, we can reconstruct µ̄(r) 
everywhere in Ω. We can then use this result to compute the ray integrals I(+)

k (r) according to 
(16a). Once this is done, we can obtain ξ(r) from any of the equations in (15a). This procedure 
yields a complete reconstruction of ñ(r). However, to obtain the spectrally-resolved intrinsic 

attenuation coefficients µ(0)
e (r) and µ(0)

f (r), we also need to know the spectral difference ∆(r) 
of the attenuation coefficients. We can use the anti-symmetric data functions φ(−)

kl (r) to recon-

struct ∆(r) by inverting (15b). The latter equation is similar to the star transform (15a) but has 
a different sign and also does not contain the term ξ(r). Therefore, inverting (15b) is slightly 
different from inverting (15a).

Recall that in order to derive a local inversion formula for (15a), we need to find a set of 
vector coefficients akl  that satisfy the following four conditions [23]: (i) akl = alk; (ii) akk = 0; 
(iii) 

∑
l akl = σkûk; and (iv) 

∑
kl akl = 0. For the conditions (i) and (iv) to be consistent, the 

scalar coefficients σk must satisfy 
∑

k σkûk = 0. If the above four conditions hold, we have 
1
2

∑
kl akl(xk + xl + y) =

∑
k σkûkxk, where xk and y are arbitrary numbers. This property 

allows us to invert the star transform (15a) locally.
In order to invert (15b), we need to find a set of coefficients bkl such that 

1
2

∑
kl bkl(xk − xl) =

∑
k σkûkxk. It is easy to see that bkl must satisfy only three conditions, 

namely, (i) bkl = −blk; (ii) bkk = 0; and (iii) 
∑

l bkl = σkûk . We note that the condition (iv) ∑
kl bkl = 0 also holds but is a consequence of (i) rather than an independent condition. It also 

follows from (i) and (iii) that σk must still satisfy 
∑

k σkûk = 0. For the three-ray geometry 
considered here, the following matrix of coefficients bkl satisfy all stated conditions:




0 −σ1û1 0
σ1û1 0 σ3û3

0 −σ3û3 0


 . (23)

The coefficients σk in this matrix are the same as in matrix (23) and determined from (19). We 
note that (23) does not contain û2 explicitly but û2 is not linearly independent of û1 and û3. In 
fact, (23) is not a unique choice of coefficients; the conditions stated above for the elements bkl 
can be written equivalently as b12 = b21 + σ2û2  and b13 + b23 = σ3û3. In deriving (23), we 
have made the choice b13 = 0. However, we can also take b23 = 0, which results in the matrix




0 σ2û2 σ3û3

−σ2û2 0 0
−σ3û3 0 0


 . (24)
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There are other possible choices in which all six off-diagonal elements of the matrix are 
non-zero and all three vectors û1, û2 and û3 are explicitly present. Noting this will restore the 
symmetry, which is seemingly lost in (23). Indeed, there is nothing special about the vector û2, 
which is not present explicitly in (23) or û1, which is not present in (24).

We now define a combination of the anti-symmetric data functions according to

Φ(−)(r) =
1
2

3∑
k,l=1

bklφ
(−)
kl (r) . (25)

For the matrix of coefficients defined in (23), or for any other such matrix with any choice for 
the two indices, the right-hand side of (25) is of the form −

∑3
k=1 σkûkIk . Therefore, (25) is 

inverted by taking the divergence. Based on this observation, we find that the reconstruction 
formula for the spectral difference of the attenuation coefficients, which is of the form

∆(r) = − 1
σ1 + σ2 + σ3

∇ ·Φ(−)(r) (26)

in complete analogy with (22). We thus have obtained direct reconstruction formulas for µ̄(r), 
∆(r) and ξ(r). From these results, we can easily obtain µe(r), µf (r) and ̃n(r) by using (17) and 
(11a). If we know the absorption cross section and quantum efficiency of a singe fluorophore, 
we can compute the physical number density of the fluorescent molecules n(r) and, once the 

latter is known, we can find the intrinsic attenuation coefficients of the medium µ(0)
e (r) and 

µ
(0)
f (r) from (19). We thus have obtained direct reconstruction formulas for all optical proper-

ties of the medium.

6. Inversion with incomplete data

If complete data are not available, we can still reconstruct the total attenuation coefficients 
µe(r) and µf (r) for r ∈ Σ. To this end, we simply use equations  (22) and (26), which are 
local and do not require complete data, to find µ̄(r) and ∆(r), and then use µe = µ̄+ 1

2∆, 
µf = µ̄− 1

2∆. In some cases this provides sufficient information and no further image recon-
struction is necessary. However, it is not possible to find ξ(r) from the above result in the 

absence of complete data. The reason is that we can not compute the ray integrals I(+)
k (r) 

according to (16a). Consequently, we can not obtain ξ(r) from (15a). One possible solution 
to this problem is to introduce some assumptions about the spectral dependence of the intrin-

sic attenuation. For example, we may know that µ(0)
e (r)/µ(0)

f (r) = κ, where κ is a position-

independent constant (which depends on the frequencies ωe and ωf ). Indeed, we have from 
(3) and the above assumption

κµ
(0)
f (r) + σen(r) = µe(r), µ

(0)
f (r) + σf n(r) = µf (r), (27)

where the functions µe(r) and µf (r) are known in Σ. From this we find

n(r) =
µe(r)− κµf (r)

σe − κσf
, µ

(0)
f (r) =

σeµf (r)− σfµe(r)
σe − κσf

. (28)

The above condition on the spectral dependence is equivalent to the assumption that the 
medium contains two chemical species of molecules or macroscopic particles that are respon-
sible for the attenuation (one fluorescent and one not), and that the optical properties of the 
medium are fully described by two mathematically-independent density functions. In samples 
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with complex chemical and structural composition, this might not hold. Since different spe-

cies of absorbers can have different optical spectra, the assumption µ(0)
e (r)/µ(0)

f (r) = κ may 

not be justified. In this case, additional spectral measurements could be employed to access 
the missing information. For instance, we have assumed that the light recorded by the detec-
tors has passed through a spectral filter that eliminates light at the excitation frequency ωe. 
However, we can also employ spectrally-resolved detectors that can measure the light intensi-
ties at the excitation and fluorescence frequencies separately. Then, if the medium is weakly 
scattering, we can use intensity measurements at the excitation frequency to reconstruct µe(r) 
everywhere in Ω. This does not require an additional scan, only a spectrally-resolved measure-
ment of intensity.

Finally, we note that knowledge of µe(r) everywhere in Ω is insufficient to reconstruct n(r). 
We also need to know µf (r) in Ω. It appears that the only feasible approach to recover this 
function is to perform an additional scan using ωf  as the excitation frequency. Fluorescence in 
this case is not excited and the signal at ωf  is due to single scattering. If this additional scan is 

possible, then the ray integrals I(+)
k (r) can be computed according to (16a) and we can further 

solve for ξ(r) just as in the case of complete data.

7. Summary

We have shown that the BRT is non-reciprocal if the photon can change its frequency at the 
vertex of the broken ray. The non-reciprocity provides an opportunity to gain additional infor-
mation about the medium by interchanging the source and detector in each measurement. We 
note that the image reconstruction methods described in this paper are based on the original 
idea of Katsevich and Krylov [22], and are direct and spatially-local.

We have discussed applications of non-reciprocity to tomographic optical imaging of a 
medium containing a fluorescent contrast agent. In this case, the quantities of interest are the 
number density of the fluorophores and the intrinsic attenuation coefficients of the medium at 
the excitation and fluorescence frequencies. All three functions can be reconstructed simulta-
neously and independently by inverting the three-ray star transform of the medium (consisting 
of three broken rays with a common vertex and some common edges, as shown in figure 2), 
assuming that a complete data set is available. Physically, this condition means that there is a 
significant concentration of the fluorescent agent in the region of interest. If this condition is 
not satisfied, reconstructions can still be performed, as can a complete reconstruction with the 
use of additional spectrally-resolved measurements, as is discussed in section 6.

Note that the formalism presented above does not make any assumption about the angles 
of the broken rays (except if applied to Compton scattering of x-rays). As a result, both back-
scattering and transmission measurement geometries can be implemented. The back-scatter-
ing measurement geometry is important for in vivo imaging of mesocopic systems.

The method proposed in this paper is applicable to single scattering x-ray tomography in 
which the photon energy changes due to Compton scattering. In this case, complete data will 
almost always be available. In order to apply the reconstruction methods described in this 
paper to Compton scattering, it is important to use only broken rays with the same angle to 
guarantee that the Compton energy shifts are always the same. The symmetric three-ray star 
geometry satisfies this condition: all scattering angles in this case are equal to 2π/3. We note 
that the formalism presented here enables a new approach to dual-energy x-ray CT that could 
potentially overcome some of the limitations of this technique due to hardware, software, or 
dose constraints [25]. Indeed, for a Compton scattering angle of 2π/3, the energy separation 
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between the primary (excitation) and scattered radiation is helpful for improved tissue dif-
ferentiation based on simultaneous reconstruction of tissue properties at two energies. At the 
same time, this method can be realized with single-energy exposure and single-energy detec-
tion. Moreover, the spectral distribution of the detected scattered radiation can be much nar-
rower than that of the detected lower-energy radiation conventionally used in dual-energy CT. 
This could be useful for ameliorating the artifacts associated with beam hardening.
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