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Abstract
We provide a simple sufficient condition for the convergence of the Born series
in the forward problem of optical diffusion tomography. The Born series
considered in this paper is an expansion of Green’s function or the T-matrix
for the diffusion equation in an inhomogeneous medium in a functional power
series in δα(r) or δD(r) which are the deviations of the absorption and diffusion
coefficients of the medium from their respective background values α0 and D0.
The condition we obtain depends only on upper bounds for the inhomogeneity
functions but not on their detailed form or spatial extent.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many inverse scattering problems in imaging are known to be nonlinear. Physically, this is a
manifestation of the fact that the probing waves do not propagate via well-defined trajectories.
When such trajectories do exist, the inverse problem can usually be linearized as is the case,
for example, in single-energy computed x-ray tomography. If the probing waves experience
scattering and trajectories cannot be defined, nonlinearity of the corresponding inverse problem
is practically unavoidable.

Mathematically, the nonlinearity of the inverse problem is understood as the nonlinear
dependence of the measured signal on the quantity of interest. In the case of optical tomography
(OT), the measured signal is the intensity of light exiting from a highly-scattering sample and
the quantities of interest are the absorption and the scattering coefficients. The nonlinear
nature of the dependence of OT measurements on these coefficients is well known [1, 2].

Practical approaches to solving nonlinear inverse problems can be divided into two broadly
defined classes of iterative and analytic methods. Iterative methods, including Newton-type
[1, 3, 4] and Bayesian [5] methods, seek to optimize a cost function according to an iterative
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rule which typically requires solving the forward problem at each iteration step. The advantage
of iterative methods is their generality, since they do not require knowledge of the analytical
structure of the forward operator. Instead, the forward problem is solved at each iteration
step numerically. Methods of the second class rely on some analytical manipulations with the
forward operator. This includes various approximate linearization schemes which, generally,
work only for weak inhomogeneities and methods based on functional series expansions.
Thus, image reconstruction algorithms based on an inverse scattering series were proposed in
geophysics (inverse scattering of seismic waves) [6, 7], in optical near-field imaging [8], and
in OT [9].

While little is presently known about the convergence of the inverse series, a number
of results on convergence of the forward series have been obtained. In quantum-mechanical
scattering theory, Bushell has shown that the Born series converges if the potential is too
shallow to support at least one bound state [10]. Colton and Kress have studied the convergence
of the Born series for the scalar wave equation in an infinite medium [11]. In particular, as part
of the proof of theorem 8.4 of [11], it is shown that the Born series converges if the susceptibility
η(r) = n2(r) − 1 [n(r) being the refractive index] is bounded by |η(r)| < 2/(ka)2, where
k = ω/c is the wavenumber and a is the radius of the smallest sphere that contains the support
of η(r). The direct analogue of this condition for the case of the diffusion equation is given in
equation (3).

Bushell’s convergence condition is indirect and, therefore, difficult to use. The
convergence condition of Colton and Kress is quite useful for functions of relatively small
support such that ka < 1, but not when ka is large. In addition, it is only applicable
to scattering by a potential in free space. In this paper, we show that, in the case of the
diffusion equation used in OT, a simple condition for convergence of the Born series can be
obtained independently of the medium boundaries. A remarkable property of this condition
is that it depends only on the upper bound for the inhomogeneity. Thus, we show that the
forward series expansion for Green’s function of the diffusion equation in powers of absorptive
inhomogeneity δα(r) (the absorption coefficient is decomposed as α(r) = α0 + δα(r) where
α0 is a constant) always converges if

|δα(r)| � α0. (1)

A similar condition is obtained for the diffusion coefficient D(r) = D0 + δD(r). We argue
that the independence of the condition (1) on the spatial extent of the inhomogeneity is a
consequence of the exponential decay of diffuse waves which results in weak long-range
interactions. This argument will be made more precise in section 5 and illustrated numerically
in section 7.

The convergence condition (1) is obtained independently of restrictions on the spatial
extent of the inhomogeneities or of the nature of the medium boundaries. However, if the
inhomogeneity is contained in a ball of radius a and the system is embedded in an infinite
homogeneous medium, we can repeat the arguments used in the proof of theorem 8.4 of [11]
for the diffusion equation and obtain an even sharper condition on δα(r). Namely, we will
show that, for absorbing inhomogeneities and under the conditions stated above, the Born
series converges if

δα(r) <
α0

1 − (1 + kda) exp(−kda)
, (2)

where kd = √
α0/D0 is the diffuse wavenumber (the analogue of the wavenumber k of the

scalar wave equation). It can be seen that in the limit kda → ∞, we reproduce the condition
δα < α0, while in the limit kda → 0, we reproduce Colton and Kress’ condition

δα < 2α0/(kda)2. (3)
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Here δα/α0 is the direct analogue of the susceptibility η of the scalar wave equation considered
by Colton and Kress. We note that the condition (1) is sharper than (3) if kda >

√
2. The

condition (2) is always sharper than both (1) and (3). However, (2) and (3) are applicable only
to infinite media while (1) is valid in media with arbitrary boundaries.

The paper is organized as follows. In section 2, we define the problem of OT, review
the mathematical formalism that leads to the Born series expansion and introduce the relevant
notation. In sections 3 and 4, we obtain the convergence condition of the type (1) for absorbing
and scattering inhomogeneities, respectively. In section 5, we generalize Colton and Kress’
result for the case of the diffusion equation with an absorbing inhomogeneity embedded in
an infinite homogeneous medium and derive the convergence condition (2). In section 6, we
describe a discretization scheme for representation of operators by matrices which is used
in numerical examples of section 7. Here the analytical results of section 3 are verified
numerically. Finally, section 8 contains a discussion of obtained results.

Before proceeding with the main content of this paper, we wish to clarify the following
point. In the text below, we use the terms ‘multiple scattering of diffuse waves’ and
‘interaction’. We are referring to multiple scattering of scalar solutions to the diffusion equation
from inhomogeneities in its coefficients—not to multiple scattering of electromagnetic waves
from inhomogeneities in the dielectric susceptibility. The first effect can be viewed as
macroscopic, and takes place on much larger scales than the second effect. In particular, a
macroscopically homogeneous medium with constant absorption and diffusion coefficients
exhibits no scattering of diffuse waves, although the very possibility of describing the
electromagnetic energy density by the diffusion equation is based on the assumption of strong
multiple scattering of electromagnetic waves on microscopic physical scales. Similarly, by
‘interaction’ we mean the interaction (interference and multiple scattering) of diffuse waves
scattered from macroscopic inhomogeneities.

2. Derivation of the Born series

The propagation of light in biological tissues is commonly described by the diffusion
approximation to the radiative transport equation [1, 2]. In the case of continuous-wave
illumination, the following steady-state diffusion equation is used:

[−∇ · D(r)∇ + α(r)]u(r) = q(r), (4)

where u is the energy density of the diffuse light inside the medium, q is the source function,
D = c/[3(µa + µ′

s)], α = cµa and c is the average speed of light in the medium. Further, µa

and µ′
s are the absorption and reduced scattering coefficients, respectively. Reconstruction of

the functions µa(r) and µ′
s(r) from a set of boundary measurements is the goal of OT.

Experiments in OT are usually performed with point sources (plane-wave [12] or
structured [13] illumination have also been proposed). A point source can be written as
q(r) = q0δ(r − rs). Here rs is the source location on the boundary of the medium. A point
detector located at rd can be shown [14] to produce a measurement that is proportional to
Green’s function of equation (4), G(rd , rs), which satisfies

[∇ · D(r)∇ − α(r)]G(r, r′) = −δ(r − r′). (5)

We now decompose α(r) and D(r) as constant background values α0,D0 and spatially-
varying functions δα(r), δD(r), according to α(r) = α0 + δα(r) and D(r) = D0 + δD(r).
The background constants are chosen to be equal to the respective values of α and D near
the medium boundary where these coefficients are either directly measurable or known, i.e.,
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by immersing the sample into a matching fluid whose optical properties are known. We then
obtain the Dyson equation for Green’s function [15, 16], namely

G(r, r′) = G0(r, r′) +
∫

G0(r, r′′)V (r′′)G(r′′, r′) d3r, (6)

where the integration is over the spatial region occupied by the scattering medium, G0(r, r′)
is Green’s function for a homogeneous medium with α = α0 and D = D0, i.e., it satisfies

[D0∇2 − α0]G0(r, r′) = −δ(r − r′) (7)

and appropriate boundary conditions on the scattering medium boundary, and V (r) is given
by

V (r) = Vα(r) + VD(r), (8)

Vα(r) = −δα(r), (9)

VD(r) = −p · δD(r)p. (10)

Here we have introduced the momentum operator p = −i∇. Since p is Hermitian (self-
adjoint), so is VD . We note that the Dyson equation (6) is valid for r, r′ being inside the
scattering medium or on its boundary. In the latter case, we can replace r and r′ by rd and rs .

In operator notation, the Dyson equation (6) is written as

G = G0 + G0V G, (11)

where V = Vα + VD is the interaction operator. We note that Vα is diagonal in the position
representation and has the matrix elements

〈r|Vα|r′〉 = −δα(r)δ(r − r′). (12)

However, VD has no position representation3. Its matrix elements can be defined in the basis of
plane waves (in k-space). For example, in an infinite space we can take the basis functions to
be |ψk〉, such that 〈r|ψk〉 = (2π)−3/2 exp(ik · r), Then we have the following matrix elements
(of both Vα and VD):

〈ψk′ |Vα|ψk〉 = −δα̃(k − k′), (13)

〈ψk′ |VD|ψk〉 = −k′ · kδD̃(k − k′), (14)

where the tilde denotes a three-dimensional Fourier transform with respect to the spatial
variable r. The simple mathematical structure of the above matrix elements suggests that
the forward and inverse problems are more naturally formulated in k-space, especially if the
medium boundaries are translationally invariant [14, 17].

The Born series is obtained by iterating (11) starting with G = G0 and has the form

G = G0 + G0V G0 + G0V G0V G0 + · · · = G0

∞∑
k=0

(V G0)
k. (15)

The Born series can also be viewed as the Taylor expansion of the formal solution to (11) into
a power series in V ,

G = (I − G0V )−1G0 = G0(I − V G0)
−1, (16)

I being the identity operator.

3 Of course, the differential operators in equation (4) can be approximated by finite differences. However, all finite
difference schemes are non-local (involve several spatial points) and, strictly speaking, cannot be used to define a
position representation of VD .



On the convergence of the Born series 1449

The derivation of the convergence condition can be obtained directly starting from
equation (16). However, a more mathematically elegant approach can be based on an analogous
formula for the T-matrix. In the T-matrix formalism, one writes the Dyson equation (11) as

G = G0 + G0T G0. (17)

From the identity T G0 = V G, we obtain T = V GG−1
0 or, substituting this into (16),

T = V (I − G0V )−1 = (I − V G0)
−1V. (18)

The Born series for the T-matrix is

T = V + V G0V + V G0V G0V + · · · =
[ ∞∑

k=0

(V G0)
k

]
V. (19)

Note that the series in (15) and (19) are identical and, therefore, the convergence conditions
for the series expansions of G and T are also identical.

3. The convergence condition for absorbing inhomogeneities

The diffusion approximation is valid when µ′
s � µa . If, in addition, µ′

s is constant inside the
sample, then D(r) is also, approximately, constant. This case is of interest when the contrast
mechanism is directly related to absorption, but not to scattering, for instance, in imaging of
blood oxygenation levels [18].

In this section, we specialize to the case δD = 0, δα 	= 0, so that V = Vα . We say that
the function δα(r) is physically allowable if δα(r) � −α0. In the opposite case, the total
absorption coefficient α(r) = α0 + δα(r) can become negative, which physically corresponds
to an amplifying medium.

The derivations presented below are based on the assumption that for any physically
allowable δα, the diffusion equation (4) has a solution. We also use the fact that if δα is
physically allowable and satisfies δα � α0, then −δα is also physically allowable. While we
assume on physical grounds that equation (4) has a solution for every physically allowable δα,
it cannot be stated that if δα is not physically allowable, then (4) has no solutions. In fact, (4)
can have a steady-state solution even if the medium is amplifying in some finite spatial region,
as long as there also exists a sufficiently strong energy sink4. For this reason, the convergence
conditions derived in sections 3 and 4 are sufficient but not necessary.

3.1. Sign-definite δα

We start with the simple case of a sign-definite function δα(r). Namely, we assume that δα(r)
does not change sign within its domain (but can be zero). We also assume that δα(r) has no
singularities. Then we can write

V = −σSS, (20)

where σ = ±1 and S is a non-negative definite operator, diagonal in the position representation.
The values of σ are σ = +1 if δα � 0 and σ = −1 if δα � 0. Then, with a little algebraic
manipulation, we obtain

T = −σS(I + σSG0S)−1S = −σS(I + σW)−1S. (21)

4 If D = D0 = const, the diffusion equation (4) is mathematically equivalent to the Schrödinger equation for a single
particle of mass m in the potential U(r) = (h̄2/2m)α(r)/D0. From the analysis presented below, it will be clear that
the solution to (4) ceases to exist if the potential U(r) is deep enough to support at least one bound state. See [10] for
a similar argument.
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In the above formula, W = SG0S. Note that (21) holds even if S is not invertible, as is shown
in appendix A. The matrix elements of W are given by

〈r|W |r′〉 =
√

|δα(r)|G0(r, r′)
√

|δα(r′)|. (22)

The operator W can be viewed as a functional of δα. We note the following obvious property:
W [γ δα] = |γ |W [|δα|], where γ is a constant.

W is real and symmetric so that all of its eigenvalues wµ are real. The Born series (19)
converges if all eigenvalues satisfy |wµ| < 1 and diverges otherwise. We note that the index µ

that labels the eigenvalues may not be countable, i.e., if the spectrum of W is continuous. Of
course, the eigenvalues wµ are not computable analytically in general and the above condition
is of little practical use. However, we will employ the following lemma to obtain conditions
on δα itself:

Lemma 1. For any physically allowable δα that does not change sign, σwµ[δα] 	= −1 for all
indices µ.

Proof. For any physically allowable δα, there is a solution to the diffusion equation (4) and,
correspondingly, a T-matrix. For the T-matrix to exist, the operator I + σW in (22) must be
invertible. But if σwµ = −1 for at least one eigenvalue, the above operator is not invertible.

�

In particular, for non-negative functions δα (σ = +1), wµ[δα] 	= −1 and for non-positive
and physically allowable functions δα (σ = −1), wµ[δα] 	= +1. If the sign of a physically
allowable δα is reversed and −δα is still physically allowable, then wµ[δα] 	= ±1. This
property holds for all physically allowable functions δα such that δα � α0.

We can now state two simple results that set bounds on the spectrum of W .

Proposition 1. For any physically allowable δα that does not change sign, W [δα] has no
negative eigenvalues.

Proof. Let W [δα] have an eigenvalue w < 0. Choose γ = 1/|w|. Then W [γ |δα|] has an
eigenvalue −1. Since γ |δα| is non-negative, this is not possible by lemma 1. �

Proposition 2. If, in addition to the conditions of proposition 1, δα � α0, then all eigenvalues
of W [δα] are less than unity.

Proof. Let W [δα] have an eigenvalue w > 1. Choose γ = −1/w. Then W [γ |δα|] has an
eigenvalue +1. Since γ |δα| is physically allowable and non-positive, this is not possible by
lemma 1. �

To summarize, we have found that all eigenvalues of the matrix W = SG0S lie in the open
interval [0, 1) for all physically allowable functions δα that satisfy the conditions of proposition
2. Since σ = ±1, we immediately conclude that, under the same conditions, the expansion
of (21) into a power series in W converges. It is further straightforward to see that this
expansion is identical to (19) or (15). Therefore, we have established the following condition
for convergence of the Born series.

Theorem 1. The Born series for the T-matrix or Green’s function converges if (i) δα is
physically allowable, (ii) does not change sign inside its domain, and (iii) satisfies δα(r) � α0.

A remarkable feature of the above condition is that it depends only on the upper bound
for δα. Thus, for example, let δα(r) = A � α0 inside some region 	. The Born series
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will converge independently of the shape or linear dimensions of this region. Physically,
this can be understood by considering the fact that G0(r, r′) decays exponentially with
the distance between r and r′. Therefore, multiple scattering of diffuse waves on large
scales is exponentially suppressed. Instead, scattering is strong at small scales, when
G0(r, r′) ∝ 1/|r − r′|. It is this short-range interaction that may result in a substantially
nonlinear dependence of G(V ) or T (V ) on V . If δα/α0 is sufficiently large, even locally,
the nonlinearity may become so strong that the power series expansion of T (V ) does not
converge. However, we have established that this expansion always converges if δα � α0.

We conclude this subsection with the following remark. Proposition 1 is stronger than
is needed for the derivation of the above convergence condition. The inequality wµ > −1
would be sufficient. In fact, we will see below that proposition 1 holds only for operators W

whose trace is infinite. If we perform a discretization as is explained in section 6, W becomes
a finite-size matrix of zero trace. The scaling property W [γ δα] = |γ |W [|δα|] does not hold
for such matrices. Consequently, some of their eigenvalues are negative. However, they are
all greater than −1. The proof of this statement is very similar to the proof of proposition 2
and is omitted; instead, we will illustrate this fact with numerical examples.

3.2. Sign-indefinite δα

We will now show that the convergence condition formulated in the previous subsection holds
even if δα(r) can change sign.

Before proceeding with the proof, we set the stage for the numerical verification of this
statement in section 7. Since δα is now allowed to change sign, we can no longer write
V = −σSS where σ = ±1 and S is real and non-negative definite. Instead, we can write, for
example, V = −ScSc, where Sc is complex. Analogously to (21), we have

T = −Sc(I + ScG0Sc)
−1Sc = −Sc(I + Wc)

−1Sc, (23)

where Wc = ScG0Sc. The matrix elements of Wc are

〈r|Wc|r′〉 =
√

δα(r)G0(r, r′)
√

δα(r′). (24)

Note that Wc does not depend on the choice of the square root branch in the above formula, as
long as the same branch is chosen in both square roots.

Since Wc is complex symmetric and hence non-Hermitian, its eigenvalues are in general
complex. Therefore, placing bounds on the eigenvalues of Wc is problematic. Indeed, the
analogue of lemma 1 for equation (23) is wµ 	= −1. But this inequality can be satisfied
trivially if wµ has an imaginary part. Therefore, equation (23) is not useful for the derivation
of a convergence condition. Instead, we will study eigenvalues of Wc numerically in section 7.
Here we will use a different representation for the T-matrix. Namely, we can write V = −S
S

where S is still real and non-negative definite but 
 is now an operator rather than a number:

〈r|
|r′〉 = δ(r − r′)
{

+1, if δα(r) � 0,

−1, if δα(r) < 0.
(25)

Thus, we can refer to 
 as the sign operator. Note that 
 and S commute. After straightforward
algebraic manipulation, we obtain

T = −S(
 + SG0S)−1S = −S(
 + W)−1S. (26)

In the above equation, W [δα] is defined by (22) of section 3.1, but its domain has been
generalized to include functions δα that can change sign. Still, since W [δα] = W [|δα|], and
from the results of previous subsection, we know that the eigenvalues wµ of W lie in the
interval [0, 1), as long as |δα| � α0. Therefore, ‖W‖ < 1, where ‖·‖ is the operator norm
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defined here as ‖W‖ = sup[〈ψ |W |ψ〉/〈ψ |ψ〉]. On the other hand, from the obvious relation

2 = I , we find that ‖
‖ = 1. We then write

(
 + W)−1 = [
(I + 
W)]−1 = (I + 
W)−1
. (27)

The Born series is obtained by expanding

(I + 
W)−1 =
∞∑

k=0

(−
W)k. (28)

From the operator norm inequality ‖AB‖ � ‖A‖ · ‖B‖, we immediately obtain ‖
W‖ < 1,
which is a sufficient condition for convergence of the series (28). This completes the proof
that the convergence condition of the previous subsection applies to functions δα(r) that can
change sign.

4. The convergence condition for scattering inhomogeneities

If µa = const while µ′
s varies, the system is characterized by a scattering inhomogeneity.

We then have δα = 0, δD 	= 0. Obviously, the physically allowable values of δD satisfy
δD � −D0. However, the physical interpretation of what happens if we do allow D(r) to
become negative is somewhat different. If the source function of equation (4) is zero in the
spatial region where D is negative, then the interpretation is that the medium in that region is
amplifying, similar to the case of absorbing inhomogeneities. But if D is negative in a region
where the source is nonzero, then, in addition to having amplifying medium, the source of
energy is turned into a sink.

We now restrict consideration to a physically allowable δD and state that the convergence
condition of section 3 applies to scattering inhomogeneities with the substitution α0 → D0

and δα → δD. The proof of this statement is analogous to the proof given in section 3 and
will be only briefly sketched.

For a general physically allowable δD, the interaction operator can be written as
V = VD = −p · S
Sp and the symmetric expression for the T-matrix, analogous to (26), is

T = −p · S[
 + SpG0p · S]−1Sp. (29)

The operator W = SpG0p · S is complex but Hermitian, so that all of its eigenvalues are
strictly real. By considering the special cases of sign-definite δD when 
 = ±I , we obtain
bounds on the eigenvalues of W in complete analogy with section 3.1. More specifically, the
eigenvalues of W all lie in the open interval [0, 1), as long as δD � D0. We then find that
the operator norm of W is less than unity while it is exactly unity for 
, and, consequently,
expansion of (29) into a power series converges.

5. Generalization of Colton and Kress’ result

Further insight into the convergence properties of the Born series and the strength of
nonlinearity can be gained by considering an argument similar to that used by Colton and
Kress in the proof of theorem 8.4 of [11]. The argument is based on a direct estimation of the
norm ‖V G0‖∞ of the operator V G0 that appears in the series (15) or (19). A necessary and
sufficient convergence condition for the Born series is ‖V G0‖∞ < 1. Of course, estimation
of this norm is possible only if G0 is known analytically. For a medium with boundaries, G0

can only be computed numerically, except for a few simple geometries. Therefore, we will
consider below the simple case of free space, so that

G0(r, r′) = GF (r, r′) = exp(−kd |r − r′|)
4πD0|r − r′| , (30)
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where kd = √
α0/D0 is the diffuse wavenumber. However, note that the influence of

boundaries can be exponentially small, as is discussed in section 6.
Next, we specialize to the case of absorbing inhomogeneities, V = Vα , where Vα is

defined by (9). Assuming that δα(r) = 0 if r is outside of a sphere of radius a, we have

‖V G0‖∞ � sup
|r|�a

(|δα(r)|) sup
|r|�a

(|I (r)|), (31)

where

I (r) =
∫

r ′�a

GF (r, r′) d3r ′. (32)

The above integral can be easily evaluated to yield

I (r) = 1

D0k
2
d

[
1 − (1 + kda) exp(−kda)

exp(kdr) − exp(−kdr)

2kdr

]
. (33)

Obviously, the maximum of the above function is at the centre of the ball, so that

sup
|r|�a

(|I (r)|) = 1

D0k
2
d

f (kda), f (x) = 1 − (1 + x) exp(−x). (34)

We then immediately arrive at the (sufficient) convergence condition (2) for δα.
We now examine the two limiting cases kda → 0 and kda → ∞. In the first case,

we use f (x) ≈ x2/2 for small x and recover Colton and Kress’ convergence condition
δα < 2α0/(kda)2. In the second case, the domain of δα is not restricted and we recover
the result of section 3, namely, δα < α0 with the only difference that we now have a strict
inequality. The independence of the latter result on kda is specific to the diffusion equation and
results from the exponential decay of diffuse waves. Indeed, we have limkda→∞ f (kda) = 1.
However, if we perform the analytic continuation kd → ik, the corresponding limit is
limka→∞|f (ika)| = ka and the convergence condition becomes η < 1/ka (we have replaced
here δα/α0 by its counterpart η). This fact illustrates the crucial difference in convergence
properties of the Born series for propagating and diffuse waves.

6. Discretization

In any numerical simulations, the operators G0, V must be discretized and truncated using
some appropriate basis. Here we restrict our attention to absorptive inhomogeneities so that
V = Vα and use the basis of cubic voxels. We note that the same discretization method cannot
be applied to VD because, as was mentioned in section 2, VD has no position representation.

The discretization method described below is analogous to the so-called discrete-dipole
approximation [19] that has been widely used in electromagnetic scattering by nonspherical
particles [20, 21]. We seek to discretize the integral equation (6) in a basis of cubic voxels.
Instead of working directly with (6), it is more convenient to first write the Lippmann–
Schwinger integral equation for the field u itself. Let u(r) = ∫

G(r, r′)q(r′) d3r ′ and
uinc(r) = ∫

G0(r, r′)q(r′) d3r ′. Here uinc(r) is the incident field, i.e., the field that would
exist in the absence of inhomogeneities. Using V = Vα , we obtain the following integral
equation for u(r):

u(r) = uinc(r) −
∫

G0(r, r′)δα(r′)u(r′) d3r ′. (35)

We then break up the sample into cubes Cn of side h, volume v = h3, and denote the centre
of each cube by rn. The field u(r) is approximated by a set of discrete values un = u(rn).
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Setting r = rn in (35) and representing the volume integral as a sum of integrals over each
voxel, we obtain

un = uinc
n −

∑
m

∫
Cm

G0(rn, r)δα(r)u(r) d3r, (36)

where uinc
n = uinc(rn). The above equation is, so far, exact. We now introduce several

approximations. First, we replace δα(r)u(r) in the integrand of equation (36) by δαmum,
where δαn = δα(rn). Second, in all terms with m 	= n, we replace G0(rn, r) by G0(rn, rm).
We then have

un = uinc
n −

∑
m	=n

G0(rn, rm)vδαmum − Qnδαnun, (37)

Qn =
∫

Cn

G0(rn, r) d3r. (38)

Note that the term with m = n has been treated separately because the homogeneous medium
Green’s function G0(r, r′) has a singularity at r = r′. The singularity is integrable and
the quantity Qn is well defined. However, the computation of Qn is complicated due to
the following two factors. First, G0(r, r′) depends on the shape of boundaries and on the
extrapolation distance � (defined in appendix B after equation (B.1)) in a complicated way
and is not computable analytically in general. Second, the integration in (38) is over a cubic
volume, while the asymptote limr→r′[G0(r, r′)] ∝ 1/|r − r′| has spherical symmetry.

The first difficulty is resolved by noting that G0 is a sum of Green’s function in an infinite
homogeneous space GF and a contribution due to the boundaries GB :

G0(r, r′) = GF (r, r′) + GB(r, r′), (39)

where GF is given by (30). Accordingly, we can write Qn as a sum of two contributions,
QF and QBn. Note that the QF is independent of the index n because Green’s function in
an infinite homogeneous space is translationally invariant. The term QBn can depend on n
because boundaries break translational invariance, so that the integral in (38) can depend on rn.
However, we argue that QBn is a small correction to QF . Indeed, GB(rn, r) is regular at r = rn,
unlike GF (rn, r) which diverges as 1/|rn−r|. Explicit calculation of QBn depends on the shape
of the boundaries and the type of boundary condition and is, in the general case, problematic.
In appendix B, we compute QBn for the case of a planar boundary with either Dirichlet
or Neumann boundary conditions imposed and find that QBn/QF < Req exp(−2kdLn)/Ln,
where Ln is the distance from the point rn to the interface and Req = (3/4π)1/3h. Thus,
the ratio QBn/QF is at least of the order of Req/Ln ∼ h/Ln; if, in addition, kdL � 1, this
ratio is exponentially small. It is reasonable to assume that a different shape of the boundary
surface will not change this estimate dramatically. We also assume that all inhomogeneities
are localized in a spatial region which is sufficiently far from the medium boundaries (the
opposite case requires special consideration). This allows us to neglect the term QBn.

The second difficulty is resolved by replacing the integration over the cube Cn by
integration over a sphere of equivalent volume centred at rn. The radius of this sphere is
Req (defined in the previous paragraph). With these two approximations, and using (32), (33),
we have

Qn = QF = 1

k2
dD0

f (kdReq), (40)

where f (x) is defined in (34). Note that for small x,QF ≈ R2
eq

/
2D0.
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Having computed QF , we can write a self-consistent ‘coupled-dipole equation’ which
is a discrete approximation to the integral equation (36)5. We define ‘dipole moments’
dn = −vunδαn, and, after some rearrangement of (37), obtain

dn = χn


uinc

n +
∑
m	=n

G0(rn, rm)dm


 , (41)

χn = − vδαn

1 + QF δαn

. (42)

In the above equation, χn plays the role of polarizability of the nth dipole. In the absence
of interaction, dn = χnu

inc
n . Note that the polarizability depends on δαn nonlinearly due to

the presence of the term QF δαn in the denominator. A nonzero value of QF can be viewed
as a result of interaction of the nth dipole with itself and therefore can be referred to as the
dipole self-energy. The physical effect of self-interaction is to limit the polarizability. Thus,
the maximum (in absolute value) polarizability obtained in the limit δαn → ∞ is −v/QF .
We note that in the limit kdReq → 0,QF δαn � 1. In practice, the term QF δαn can be small
but not zero and should be accounted for.

We now return to operator notation. Let |d〉 be an N-dimensional vector of dipole
moments dn, n = 1, . . . , N , where N is the total number of voxels. Similarly, we define the
N-dimensional vector |uinc〉. We then have

|d〉 = Vα

[|uinc〉 + GVV
0 |d〉]. (43)

Here Vα and GV V
0 are N × N -matrices with elements

〈n|Vα|m〉 = χnδnm, (44)

〈n|GVV
0 |m〉 = (1 − δnm)G0(rn, rm). (45)

In the above formula, the superscript ‘VV’ is an abbreviation for ‘volume-to-volume’ and is
used to emphasize that rn and rm are inside the discretized region. The formal solution to (43)
is

|d〉 = (
I − VαGVV

0

)−1
Vα. (46)

If there are Ns discrete sources located at the points rsk (k = 1, . . . , Ns) and Nd discrete
detectors at points rdl (l = 1, . . . , Nd), we can write within the same precision as was used to
discretize equation (36):

GDS = GDS
0 + GDV

0

(
I − VαGVV

0

)−1
VαGVS

0 , (47)

where the matrices GDS,GDS
0 ,GDV

0 and GVS
0 have the following elements:

〈l|GDS|k〉 = G(rdl, rsk), (48)

〈l|GDS
0 |k〉 = G0(rdl, rsk), (49)

〈l|GDV
0 |n〉 = G0(rdl, rn), (50)

〈n|GVS
0 |k〉 = G0(rn, rsk). (51)

Thus, GDS and GDS
0 are matrices of size Nd × Ns,G

DV
0 is of size Nd × N and GVS

0 is of the
size N × Ns . The superscripts ‘VS’ and ‘DV’ stand for ‘source-to-volume’ and ‘volume-to-
detector’, respectively.

5 In the case of the scalar field u(r), a more appropriate term is ‘coupled-monopole equation’ since the quantities dn

are, in fact, monopoles. We, however, adhere to the terminology used in electromagnetic scattering theory.
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Equation (47) is a discrete approximation to (17). We can identify

T = (
I − VαGVV

0

)−1
Vα (52)

as the discrete approximation to the T-matrix while Vα and GVV
0 as discrete N-dimensional

approximations to the operators Vα and G0 that were considered in sections 2, 3. We can
further define the square root of Vα . For example, if δαn are sign-definite, we write Vα =
−σSS, where S is a diagonal matrix with the elements |χn|1/2. Then the T-matrix is written
in the symmetric form (21) with W = SGVV

0 S. In the case of sign-indefinite δαn, we write
the T-matrix in the form (23) with Wc = ScG

VV
0 Sc and Vα = −ScSc (see section 3.2).

The T-matrix can be computed by direct inversion of I − VαGVV
0 . This problem is well

posed and has computational complexity O(N3). It should be stressed that computation
of the T-matrix is completely independent of the sources and detectors and only requires
knowledge of δα(r) and the unperturbed Green’s function G0(r, r′). Once the T-matrix
is found, the signal for any source–detector arrangement can be computed using (47)
by direct matrix multiplication, an operation that can be performed with computational
complexity O[N2 min(Nd,Ns) + NNdNs]. In a situation when the number of measurements
is approximately equal to the number of unknowns, e.g., N ∼ NsNd , the complexity of matrix
multiplication is negligible compared to the complexity of computing the T-matrix.

The T-matrix approach to solving the forward problem has several advantages compared
to finite differences or finite elements methods. First, only the spatial regions where
inhomogeneities are supported need to be discretized. In this sense, the method is somewhat
analogous to methods involving adaptive mesh generation. Second, once the T-matrix is
computed, the measurable signal can be easily found for an arbitrary configuration of sources
and detectors. However, unlike the finite difference and finite elements methods, the T-matrix
method requires knowledge of G0(r, r′) which satisfies the proper boundary conditions. We
note that G0 can be found analytically for simple geometries or, in more complex cases, it can
be computed numerically once, e.g., by finite differences or the finite-element method.

We conclude this section by noting that the discretized matrices W and Wc have zero trace,
unlike their continuous counterparts whose traces are infinite. This is due to the renormalization
procedure that was employed to remove the singularity of G0(r, r′). Correspondingly, the sum
of all eigenvalues of W or Wc is zero. Some of the eigenvalues of W are necessarily negative.
In practice, we will see that W has many negative eigenvalues of very small absolute value and
a much smaller number of positive eigenvalues. When δαn � α0, all eigenvalues are located
in the unit circle.

7. Numerical examples

We now illustrate the theoretical results of section 3 with numerical examples using the
discretization scheme of section 6. All simulations have been performed in an infinite space,
so that G0(r, r′) = GF (r, r′), where GF is given by (30). Physically, this corresponds to
sources, detectors and the sample being immersed into an infinite homogeneous scattering
medium. However, even if the sources and detectors are placed on the boundary (a diffuse–
nondiffuse interface), the replacement of G0 by GF can be a reasonably accurate approximation
if the boundaries are sufficiently far from the discretized region. Indeed, as was discussed
in section 6, G0 can be written as a sum of GF and GB , where the boundary contribution
GB has no singularities when both of its argument are inside the medium but not on the
medium boundary. Because GF (r, r′) has a singularity at r = r′, it dominates GB at small
scales. Since the large-scale interaction is suppressed due to the exponential decay of diffuse
waves, the input of boundaries is relatively insignificant for the computation of the T-matrix.
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However, computation of the data function (the measurable signal) according to formula (47)
can depend on boundary conditions very strongly. This is because elements of the matrices
GDV

0 and GVS
0 are Green’s functions G0(rd , r) and G0(r, rs) where rd and rs are located on

the medium boundary.
For the specific choice G0 = GF , the T-matrix depends parametrically on k2

d = α0/D0

but not on α0 and D0 separately. The same is true for W and Wc. The quantity kd is known
as the diffuse wavenumber and λd = 2π/kd as the diffuse wavelength; it gives the inverse
scale on which diffuse waves exponentially decay. In all numerical examples shown below,
λd sets the physical scale of the problem. The discretization step h is not a physical scale; it
merely characterizes the precision to which we approximate the continuous field u(r) by a set
of discrete values un.

In the numerical simulations shown below, we have used LAPACK subroutines
implemented in Intel’s MKL library. In particular, we have used the routines DSYEVD
and ZGEEV for diagonalization of real matrices W and complex symmetric matrices Wc,
respectively. The computation time (on an 4 × 1.6 GHz Itanium-II HP rx4640 server) scaled
approximately as 0.5(N/1000)3 s for SYEVD and 12(N/1000)3 s for ZGEEV. We have also
employed the Rayleigh quotient to compute the maximum eigenvalue of the real matrix W .
This method is quite reliable and can be used to find the maximum eigenvalue of matrices
with N ∼ 70 000 in approximately 1 min (once the matrix GVV

0 is computed, which can take
several additional minutes).

Although we show no directly relevant data, it is interesting to comment on the efficiency
of computing the T-matrix by direct inversion of the matrix A = I − VαGVV

0 according to
(52). In the case of sign-definite δα, factorization and subsequent inversion of A by the
routines DPOTRF and DPOTRI is performed in approximately 0.14(N/1000)3 s. For sign-
indefinite δα, the routines DGETRF and DGETRI were employed with a computational time
of 0.19(N/1000)3 s. Thus, computation of the T-matrix may be a highly efficient method of
solving the forward problem of OT and can be applicable for discretization involving up to
∼104 voxels. We stress that only the spatial regions that support inhomogeneities must be
discretized. The computational disadvantage of the T-matrix approach is that the matrices
GVV

0 and A are dense and require large storage and fast access to memory.

7.1. Sign-definite case

We start with the case when δα(r) does not change sign. Namely, we compute the real
symmetric matrix W and find its eigenvalues for several shapes of δα(r).

The first example is an absorbing inhomogeneity (‘target’) which has the shape of a
single cube with side H = λd/2. It was assumed that δα(r) = κα0 inside the cube and
is zero outside. The target was approximated by 103 cubic voxels of volume h3. For this
discretization, h = λd/20, kdReq = 0.195 and QF α0 = 0.053. The contrast κ was varied
from 1 to 4. The eigenvalues of W are shown in figure 1. Note that for the minimum physically
allowable contrast κ = −1, the eigenvalues differ from the case κ = 1 only very slightly due
to the reversal of sign of the term QF δαn in the denominator of (42) (data not shown). It can
be seen that all eigenvalues satisfy wn < 1 for κ = 1 with a large margin. Obviously, the
eigenvalues are even smaller for κ < 1.

Next, we fix the contrast at κ = 1 and study the dependence of eigenvalues on the size
of the cubic target, H. In figure 2, we plot eigenvalues for cubes of varying sizes H while
the discretization step is fixed at h = λd/20. It can be seen that the maximum eigenvalue
wmax (the one with the lowest relative number) increases with the cube size but, for the set of
parameters used, does not exceed unity. To study the behaviour of wmax in a broader range
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Figure 1. Eigenvalues wn, in descending order, versus the eigenvalue number n, for an absorbing
inhomogeneity of cubic shape of size H = λd/2 and various levels of contrast, κ . The target is
discretized by 103 cubic voxels of size h = λd/20.
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Figure 2. Eigenvalues wn, in descending order, versus the relative eigenvalue number, n/N , where
N is the size of the T-matrix, for an absorbing inhomogeneity of cubic shape, contrast κ = 1, and
various side length H. The discretization step is h = λd/20.

of parameters, we have used the Rayleigh quotient for various cube sizes and three different
voxel sizes (see figure 3). The Rayleigh method is well suited for computing wmax because of
the large gap between the first two eigenvalues. The size of the cube was limited (depending
on discretization) by the computational restriction on N. The maximum value of N used was
N = 74 088. Approximately one fourth of all data points were verified by full diagonalization,
with very good agreement. It follows from figure 3 that wmax does not exceed unity for a very
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Figure 3. Maximum eigenvalue of W, wmax, for a cubic target of contrast κ = 1 as a function the
cube size H (relative to the diffuse wavelength λd ) for different discretization.

broad range of parameters. The curves wmax(H/λd) approach unity from below but appear
to be unlikely to cross it. Note that inhomogeneities of sizes significantly larger than those
used in figure 3 are rarely, if ever, encountered in OT experiments since the typical value of
λd in biological tissues is 5 cm. The visible difference between curves with h = λd/10 and
h = λd/20 is due to the presence of the h-dependent self-energy QF δαn in the denominator
of (42). This term is comparable to unity for h = λd/10 but is already small for h = λd/20.
Therefore, the difference between the h = λd/40 and the h = λd/20 curves is insignificant.
Note that we expect that discretization with h = λd/10 is too rough to produce accurate results.
However, the difference (or the lack of it) between the curves wmax(H/λd) with different h/λd

cannot be used per se to verify convergence of the T-matrix with h.
Since we have performed numerical simulations in infinite space, it is possible to compare

wmax(H/λd) with the result that can be inferred from the convergence condition (2). To this
end, we note the following. The data for figure 3 were computed for a cube of contrast κ = 1.
If we increase the contrast by the factor γ , the Born series will still converge as long as
γwmax < 1, or, equivalently, δα/α0 < 1/wmax. On the other hand, the convergence condition
(2) has the form δα/α0 < 1/f (kda), where f (x) is defined by (34) and a is the radius of the
smallest sphere that circumscribes the cube of side H, namely, a = √

3H/2. For these two
conditions to be consistent, we must have wmax(H/λd) < f (π

√
3H/λd). The latter function

is shown as a dotted line in figure 3.
Next, we consider the effects of multiple scattering of diffuse waves between two spatially

separated absorbing inhomogeneities. To this end, we plot the spectrum of eigenvalues of W

for two equivalent cubic targets of contrast κ = 1 and side H = λd/2, placed side-by-side
and separated by the surface-to-surface distance �H . The targets were discretized using
h = λd/20, so that each cube was approximated by 103 voxels. The results are shown in
figure 4. When the cubes are sufficiently far apart (�H = H), the interaction is weak and each
eigenstate is doubly degenerate (this is in addition to the triple degeneracy of some eigenvalues
which is due to the cubic symmetry). When the cubes approach, the degeneracy is broken by
interaction. However, the effect of interaction is weak even when the two cubes approach each
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Figure 4. All eigenvalues wn of the matrix W (in descending order) versus the eigenvalue number
n for an absorbing inhomogeneity of contrast κ = 1 in the shape of two equivalent cubes of side
H = λd/2 placed side-by-side and separated by the surface-to-surface distance �H . Each cube
was discretized using h = λd/20 (103 voxels per cube).

other very closely. At �H = 0, the two cubes merge and form a single parallelepiped. At
this point, the maximum eigenvalue is increased only by 17% compared to the noninteracting
limit. The weak interaction of spatially separated inhomogeneities is consistent with the idea
of exponentially suppressed long-range interaction which was discussed in section 3.1.

7.2. Sign-indefinite case

We now turn to the case of sign-indefinite δα(r). In this section, we will study the complex
eigenvalues of the matrix Wc defined in section 3.2. We note that, unlike in the case of W

which is independent of the sign of δα,Wc[−δα] = −Wc[δα]. Note that the eigenvalues of
Wc change sign when the sign of δα is inverted.

The first example considered here is two cubic inhomogeneities similar to those used to
compute the data points for figure 4, but now one of them has the negative contrast κ = −1. In
figure 5, all eigenvalues of Wc for this system are shown as dots in the complex plane. When the
cubes are sufficiently far apart, the imaginary parts of the eigenvalues are very small (∼10−7

for �H = H ). This corresponds to the non-interacting limit, when the interaction operator
Wc is, approximately, block-diagonal, where each block is real symmetric. As the cubes
approach, some of the eigenvalues acquire imaginary parts. The eigenstates with complex
eigenvalues are ‘hybridized’, i.e., they are collective eigenstates of the two interacting objects
rather than ‘pure’ eigenstates of each object taken separately. However, the hybridization is
weak. Imaginary parts of the eigenvalues do not exceed 0.0015 in absolute value. Again, this
is in agreement with the idea of exponentially-suppressed long-range interactions.

Next, we consider a layered structure of 15 thin square layers of thickness h and alternating
contrast κ = ±1 sandwiched on top of each other to form a cube of side H = 0.75λd . The
discretization step is still h = λ/20. The eigenvalues of Wc are shown in figure 6. The
displayed data indicate that there are hybridized eigenstates (those with complex eigenvalues)
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Figure 5. All eigenvalues of the matrix Wc for two cubic inhomogeneities of equal sides
H = 0.5λd , placed side-by-side and separated by the surface-to-surface distance �H . One
cube has contrast κ = +1 and the other κ = −1. Discretization: h = λd/20.
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Figure 6. All eigenvalues of the matrix Wc for the layered absorptive inhomogeneity described in
the text.

and eigenstates associated with an isolated thin layer and almost unaffected by the interaction
(with almost purely real eigenstates). Overall, the absolute values of all eigenstates do not
exceed 0.05. In this case, the matrix W is negligibly small compared to I and can be neglected.
This corresponds to the first Born approximation, i.e., T = V . Thus, multiple scattering of
diffuse waves for this layered structure is quite weak and can be neglected with little loss of
precision.

The final example is one cubic inhomogeneity embedded inside another. Namely, a
cube of size 11h × 11h × 11h with contrast κ = −1 was ‘coated’ by a larger cube of size
21h × 21h × 21h with contrast κ = +1. The contrasts in the inner and outer cubes were
not additive, so that κ = −1 in the interior and κ = +1 in the exterior of the structure.
The discretization step was h = λd/20, so that the outer cube side was Hout = 1.05λd ; the
inner cube side was Hin = 0.55λd . The eigenvalues of the matrix Wc for this structure are
shown in figure 7. Note that the vertical scale in this figure is the same as in figure 6, but
the horizontal scale is ten times larger. Thus, while multiple scattering of diffuse waves inside
each component (e.g., within the regions of positive or negative contrast) is much stronger
than in the case of the layered structure of figure 6, hybridization is much weaker. The
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Figure 7. All eigenvalues of the matrix Wc for the absorptive inhomogeneity in the shape of two
embedded cubes described in the text.

hybridized eigenvalues can be seen near the origin of the complex plane and are all very small
in magnitude. At the same time, the eigenvalues that are relatively large in magnitude are
almost purely real, which is characteristic for weak interaction between regions with positive
and negative contrasts.

8. Discussion

In this paper, we have derived a sufficient condition for convergence of the Born series
for the forward operator of optical tomography. The condition is quite simple and states
that the series converge if the relative deviation of the absorption coefficient from its
background value δα(r)/α0 does not exceed unity, independent of the support of δα(r).
A similar condition was obtained for scattering inhomogeneities which are manifested by a
spatially inhomogeneous diffusion coefficient. We have considered absorbing and scattering
inhomogeneities separately; the situation when the absorption and the diffusion coefficients can
vary simultaneously is not discussed in this paper. We argue that the convergence condition
depends only on the amplitude but not on the support or form of δα (or δD) due to the
exponential spatial decay of diffuse waves. Because of this decay, multiple scattering is
suppressed on large scales. We emphasize again that we discuss here multiple scattering of
diffuse waves—scalar solutions to the diffusion equation (4)—not electromagnetic multiple
scattering which happens at much smaller physical scales. In the case when δα(r) has a
compact support in a ball of radius a, a sharper convergence condition has been obtained
(formula (2)), which is a generalization of the result previously obtained for the scalar wave
equation [11]. A crucial difference between the convergence condition for propagating and
diffuse waves is revealed in the limit a → ∞, as is discussed in section 5.

An interesting consequence of the convergence condition is that the nonlinearity of the
inverse problem of optical tomography can be controlled if the constant α0 can be controlled.
Thus, increasing α0 results in effective linearization of the inverse problem. Theoretically, α0

can be chosen arbitrarily. However, the ill-posedness of the linear inverse problem tends to
increase with α0. This reveals an interplay between the ill-posedness of the linearized inverse
problem and the degree of nonlinearity of the full inverse problem (before linearization). Note
that in experiments, α0 can be tuned, for example, by changing the composition of a matching
fluid.
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We have performed numerical simulations for absorbing inhomogeneities. All numerical
data are in agreement with the analytical results of this paper. We have found that the derived
convergence condition is satisfied for a very broad range of parameters which are accessible
in numerical experiments. We have also found that the effects of multiple scattering between
spatially separated inhomogeneities such as two separate cubes is quite weak. This is again a
consequence of the exponential decay of diffuse waves. Interaction of inhomogeneities whose
contrasts have different signs was found to be especially weak. Thus, for the layered structure
discussed in section 7.2, the interaction is insignificant and the first Born approximation can
be used with high accuracy—even though the object is a layered cube of size H = 0.75λd .

While we have found no substantial interaction between spatially separated
inhomogeneities, nonlinearity can become strong in bulk inhomogeneities of large spatial
extent or high contrast. In this case, the nonlinearity results from short-range interactions.
Here two voxels can strongly interact with each other even if they are far apart, provided that
there is a continuous path of other voxels connecting them.

Another aspect of the paper that deserves comment is the independence of the results on
source–detector orientation. Indeed, it may seem natural that two absorbing cubes that block
the line of sight will have more effect on the measured signal than the same two cubes rotated
so that only one of them blocks the line of sight. In fact, convergence or divergence of the
Born series can be influenced, to a certain extent, by the source–detector arrangement. Indeed,
calculation of the measurable signal according to (47) involves multiplication of the T-matrix
by GDV

0 and GVS
0 from left and right. These matrices are source- and detector-dependent. It

can happen that the matrix W has an eigenvalue larger than unity so that the Born series for
the T-matrix diverges, but the corresponding eigenvector has a zero projection on either GDV

0
or GVS

0 . Then the Born expansion of Green’s function GDS will converge for the selected
source–detector configuration. However, if the Born series converges for the T-matrix, it
converges for all possible source–detector pairs.

Finally, our results pertain only to convergence of the forward series. Analogous results
on the convergence of the inverse series are not yet known.
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Appendix A. Proof of validity of equation (21) for non-invertible operators S

The most straightforward algebraic derivation of equation (21) involves manipulation with the
operator S−1 where S may be (and, typically, is) not invertible. However, the derivation is
still valid due to a cancellation of factors. To prove that this is the case, we verify (21) by
substituting the expression for T into the equation T (I − G0V ) = V , which follows from,
e.g., (18). Note that we assume here that I − G0V is non-singular and T exists. Taking into
account the definition of S, V = −σSS, we obtain

S(I + σSG0S)−1S(I + σG0SS) = SS. (A.1)

The crucial point is that we can now cancel one factor of S (from the left) in both sides of (A.1)
even if S is not invertible. To see that this is the case, consider the real-space representation of
S, namely

〈r|S|r′〉 = s(r)δ(r − r′), (A.2)
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where s(r) = √|δα(r)|. Let, for some value of r, δα(r) = 0. Correspondingly, s(r) = 0 and
S is not invertible. We will now show that

〈r|(I + σSG0S)−1S|r′〉 = 0, ∀ r′ and such r that s(r) = 0. (A.3)

Indeed, let r be such that s(r) = 0. Consider a general linear equation (I + σSG0S)|x〉 =
|b〉. Multiplying by 〈r| from the left and taking into account 〈r|S|r′〉 = 0, we have 〈r|x〉 =
〈r|b〉, or, equivalently, 〈r|(I + σSG0S)−1|r′〉 = 〈r|r′〉 = δ(r − r′). Therefore, 〈r|(I +
σSG0S)−1S|r′〉 = 〈r|S|r′〉 = 0. We have thus proven (A.3). But if (A.3) is true, cancellation
of one factor of S from each side of equation (A.1) does not change that equation. In other
words,

(I + σSG0S)−1S(I + σG0SS) = S (A.4)

is equivalent to (A.1) and if one holds, so does the other. The proof can be made plausible by
writing equation (A.1) in the real-space representation as

s(r)
∫

A(r, r′)B(r′, r′′) d3r ′ = s2(r)δ(r − r′′), (A.5)

where A = (I + σSG0S)−1S and B = (I + σG0SS). We have established in equation (A.3)
that if s(r) = 0, then A(r, r′) = 0 ∀ r′. Therefore, cancellation of one factor of s(r) does not
change equation (A.5).

We then multiply (A.4) from the left by I + σSG0S and obtain

S + σSG0SS = S + σSG0SS

which is an identity.

Appendix B. Computation of QBn for the case of a single planar boundary

Within the diffusion approximation to the radiative transport equation, the energy density u(r)
satisfies the diffusion equation (4) inside the volume occupied by the scattering medium, V .
In addition, the energy density must satisfy boundary conditions on the surface of the medium
∂V (the diffuse–nondiffuse interface), or at infinity in the case of free boundaries. In general,
equation (4) admits the following boundary conditions:

(1 + �n̂ · ∇)u(r)|r∈∂V = 0, (B.1)

where � is the extrapolation distance [22], a parameter inferred from radiative transport theory.
In the case of a single planar boundary with arbitrary �, Green’s function G0(r, r′) that

satisfies equation (7) and the above boundary condition (with respect to both arguments) can
be obtained as a Fourier integral [17, 23]. But in the two limiting cases � = 0 and � = ∞, it
can be written explicitly as

G0(r, r′) = GF (r, r′) ± GF (r,M(r′)). (B.2)

Here ‘−’ corresponds to � = 0, ‘+’ corresponds to � = ∞ and M(r) is the mirror reflection
of the point r with respect to the interface.

We now identify the second term in (B.2) as the boundary contribution GB(r, r′) and use
(38) to compute QBn. To the same level of approximation as was used to replace the term∑

m

∫
Cm

G0(rn, r)δα(r)u(r) d3r (n 	= m)

in equation (36) by

G0(rn, rm)vδαmum,
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we have

QBn = vGF (rn,M(rn)) = v
exp(−2kdLn)

8πD0Ln

, (B.3)

where Ln is the distance from the point rn to the interface. We then use the result (40) for QF

to compute the ratio QBn/QF as

QBn

QF

= Req exp(−2kdLn)

Ln

(kdReq)
2

6f (kdReq)
. (B.4)

At kdReq = 0, the second fraction in (B.4) is equal to 1/3; it then grows monotonically with
kdReq but does not exceed unity at kdReq = 1. Therefore, we have

QBn

QF

<
Req exp(−2kdLn)

Ln

, if kdReq � 1. (B.5)

The discretization scheme described in section 6 is only valid when kdReq � 1; therefore, the
above estimate is valid for all values of kdReq which are of practical interest.
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