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ABSTRACT. We consider the inverse scattering problem for the radiative trans-
port equation. We show that the linearized form of this problem can be formu-
lated in terms of the inversion of a suitably defined Fourier-Laplace transform.
This generalizes a previous result obtained within the diffusion approximation
to the radiative transport equation.

1. INTRODUCTION

1.1. BACKGROUND. The inverse problem of optical tomography (OT) is to re-
cover the optical properties of a highly-scattering medium from boundary mea-
surements [I]. The standard approach to this problem makes use of the diffusion
approximation (DA) to the radiative transport equation (RTE). Within the DA,
it is possible to formulate the linearized inverse problem in terms of the inversion
of a suitably defined Fourier-Laplace transform [2, B]. Here we describe analogous
results which hold beyond the DA. In particular, it is shown that by making use of
the recently derived plane-wave expansion for the Green’s function of the RTE [4],
a generalized Fourier-Laplace structure arises in the inverse scattering problem for
the RTE. This result is expected to find applications to the development of fast
image reconstruction algorithms for OT with large data sets [5, [6].

This paper is organized as follows. In the remainder of this section we recall the
relevant background from transport theory and review the Fourier-Laplace structure
of the inverse problem within the DA. In Section Bl we give a short exposition of the
plane-wave decomposition of the Green’s function for the RTE. This decomposition
is used in Section B to elucidate the generalized Fourier-Laplace structure of the
linearized inverse problem for the RTE. We note that uniqueness and stability results
for the nonlinear problem are discussed in [7].
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1.2. D1rrusioN THEORY. We begin by considering the propagation of light in a
three-dimensional random medium. The specific intensity I(r,§) at the point r € V
in the direction § is assumed to obey the stationary RTE

(1) 8- VI(r,8)+ (ua+ ue)I(r,8) = ps / p(8,8)I(r,8) 25 + S(r,3) .

Here u, and us are the absorption and scattering coefficients in V| respectively
and S is the power density of the source. The phase function p(§,§’) is normalized
so that [ p(8, §')d?s’ = 1 for all 8 and is assumed to depend only upon the angle
between § and §', corresponding to scattering by spherically symmetric particles.
The specific intensity also satisfies a boundary condition of the form

(2) I(r,§) =0, 1n-8<0, redV,

where 01 is the outward unit normal to V. Thus no light enters V' except due to
the source. The solution to () is given by

(3) I(r,8) = /d3r’d23’G(r,s;r’,é’)S(r’,s’) :

where the Green’s function G(r, §;1’,8’) is the solution to (@) with S(r,8) = §(r —
r')6(§—8§') subject to the boundary condition ). We note that the Green’s function
obeys the reciprocity relation G(r,§;r’,8') = G(r', —§’;r, —8§).

We suppose that the medium is inhomogeneously absorbing. It is then convenient
to decompose p, into a constant part fi, and a spatially varying part du,:

(4) [a(T) = fla + Opa(r) -

Eq. @) can be rewritten in the form

(5) §-VI(r,8) + pl(r,8) — ps /p(é’,é)f(r,s')d%' = —0pta(r)I(r,8) + S(r,8) ,
where p; = fig + s According to (B, the solution to ([H) is given by

(6) I(r,8) = I;(r,8) — /d3r’d25’G(r,§;r’,§’)6ua(r’)l(r’,§’) ,

where G denotes the Green’s function for a homogeneous medium with absorp-
tion fi, and I; is the incident specific intensity, defined as the solution to () with
ta = fig. Eq. (@) is the analog of the Lippmann-Schwinger equation of scattering
theory. It describes the “multiple scattering” of the incident specific intensity from
inhomogeneities in du,. If only one scattering event is considered, then the inten-
sity I on the right hand side of (@) can be replaced by the incident intensity I;.
This result, which we refer to as the Born approximation for the RTE, linearizes
the integral equation (@) with respect to du,. If the incident field is generated by
a point source at r; pointing in the direction §; then, within the accuracy of the
Born approximation, the change in specific intensity due to spatial fluctuations in
absorption can be obtained from the relation

(7) o(r1,81;12,82) = /d3rd28G(r1,él;r,é)G(r,é;rg,ég)é,ua(r) .

Here ¢ is proportional to the change in intensity relative to a reference medium with
absorption fi, and ra, 8> denote the position and orientation of a point detector.
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The DA is obtained, following [9], by expanding the Green’s function G in angular
harmonics of § and §'. To lowest order, it can be seen that

c

(8) G(r,8;r,§) (1+08-Vy) (1 =08 - V) G(r,1')

™
where the transport mean free path £* = 1/(fiq+p}) with p), = (1—g)ps, g being the
anisotropy of the phase function p, which is assumed to be rotationally invariant.
The diffusion Green’s function G(r,r’) satisfies the equation

9) — DV2G(r,') + aG(r,v') = 6(r — ') ,

where the diffusion coefficient D = 1/3¢¢* and o = ¢fi,. The diffusion Green’s
function also satisfies the boundary condition

(10) G(r,r') +/h-VG(r,t') =0, r,re€dV,

where £ is the extrapolation length [§]. The DA may be used to simplify the integral
equation (). Making use of ) and assuming that the source and detector are
oriented in the inward and outward normal directions, respectively, it can be seen
that () becomes

N
(1) ol alrin ) = 1= (1475 ) [ @606 e
where da = ¢d,. The DA is valid when the diffusion Green’s function G(r, r') varies
slowly on the scale of £*. The DA breaks down in optically thin layers; in weakly
scattering or strongly absorbing media, that is with ps < pe; and near boundaries.
One or more of these conditions are often met in biomedical applications.

For the remainder of this paper we will assume that the volume V consists of
the half-space z > 0. In this geometry, it can be shown that the diffusion Green’s
function can be expanded into two-dimensional plane waves:

(12) G(r,r') = / ﬁeiq(pfp’)g(z 2:q)
3 (27T)2 ) ) 3
where we have used the notation r = (p, z). If either r € OV or v’ € 9V then
(13) 9(z,0;q) = 9(0,2q)
- ﬁ#e—Q(q)z ,
DQ(g)f+1

where

(14) Q@) =ve¢+a/D.

Note that the above diffuse modes have the form of evanescent waves which are
oscillatory in the transverse direction and decay exponentially in the positive z
direction.

The inverse problem of OT is to recover du, from boundary measurements of ¢.
Within the DA, the linearized form of this problem can be studied by reduction to
Fourier-Laplace form [2, B]. To understand this point, we consider an experiment in
which the source and detector are located on the z = 0 plane. Next, we introduce
the Fourier transform of ¢ with respect to the source and detector coordinates:

(15) dla,qz) = / d?prd® pae WP P) G(p 0, 2; py, 0, —2)
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It can then be seen that

16) danq) - (“” !

2
1w\ D > @)l + (@)l + 1)
y / drexpli (ar +a2) - p— (Qar) + Q(as)) 2] da(r) .

Eq. [[@) has the form of a Fourier-Laplace transform relating da to ¢. This result
can be used to obtain inversion formulas for the integral equation () [2]. Such
inversion formulas are the basis for developing fast image reconstruction algorithms

in OT [9].
2. GREEN’S FUNCTIONS AND ROTATED REFERENCE FRAMES

In this section we recall some details of the construction of the Green’s function
for the RTE using the method of rotated reference frames []. We begin by consid-
ering the plane-wave modes for the RTE in a homogeneous medium which are of
the form

(17) I (r,8) = Ay (8)ekT

where the amplitude A is to be determined. Evidently, the components of the wave
vector k cannot be purely real; otherwise the modes would have exponential growth
in the k direction. We thus consider evanescent modes with

(18) k=iqxvq¢?>+1/X%2 %,

where q -2 = 0 and k -k = 1/)\2. These modes are oscillatory in the transverse
direction, decay in the +z-directions and are the analogs of the diffuse modes con-
sidered in ([2) and ([@3)). By inserting (@) into the RTE (@) with S = 0, we find
that Ak (8) satisfies the equation

(19) (8K s+ 102) Au(8) = g [ (8.8 Al

To solve the eigenproblem defined by ([[@) it will prove useful to expand Ag(8)
into a basis of spherical functions defined in a rotated reference frame whose z-axis
coincides with the direction k. We denote such functions by Ylm(é;f{) and define
them via the relation

!
(20) Yim(&k) = Y Dy (9.0,0) Y (8)
m/=—I
where Y},,,(8) are the spherical harmonics defined in the laboratory frame, D!, is

the Wigner D-function and ¢, 8 are the polar angles of k in the laboratory frame.
We thus expand Ay as

(21) A(8) =D CumYim (8:k)
lm

where the coefficients Cy,,, are to be determined. Note that since the phase function
p(8,8') is invariant under simultaneous rotation of § and §', it may be expanded
into rotated spherical functions according to

(22) p(.8) =Y pVim(3: k)Y, (k)

lm
where the expansion coefficients p; are independent of k.
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Substituting (21l into ([[@) and making use of the orthogonality properties of the
spherical functions, we find that the coefficients Cy,, satisfy the equation

(23) Z Ré%/cl/m/ = )\O’lclm .
,m’

Here the matrix R is defined by

(24) Rim, = / d?s & - kY, (8; k)Y, (8: k)
= Omm (b0 1—1 + bi1,m0r 1—1)
where
(25) bim = V(2 — m?) /(42 1),
and
(26) 01 = pa + ps(1 = p1) -

Eq. 23) defines a generalized eigenproblem which can be transformed into a stan-
dard eigenproblem as follows. Define the diagonal matrix S’llf?n, = Omm/ 011 \/01-
Note that o; > 0 since p; < 1 and thus S is well defined. We then pre and post
multiply R by S~' and find that W = \) where W = ST'RS~! and v = SC. It
can be shown that W is symmetric and block tridiagonal with both a discrete and
continuous spectrum of eigenvalues A\, and a corresponding complete orthonormal
set of eigenvectors 1, indexed by p [@]. We thus see that the modes (), which
are labeled by u, the transverse wave vector q, and the direction of decay, are of
the form

(27) =>. Z oDl (£,6,0)¥im (8)/ 1770119
l,)m m/’

where

(28) Qu(a) =/¢® +1/A% .

The Green’s function for the RTE in the half-space geometry may be constructed
as a superposition of the above modes:

(29) Glr,8:',8) = / (o) S Al Ty ' -3).

where the upper sign is chosen if z > 2/, the lower sign is chosen if z < 2’ and the
coefficients Aq, are found from the boundary conditions. We note that the above
expression obeys the reciprocity condition. Using this result, we see that G can be
written as the plane-wave decomposition

2
(30) G(rvé;rluél) :/ d Z gl’m’ Z,% 7q) (e p)lem(é)le’m’( ) ’

(2m) l U'm
where
1
(31) g (2,2 q) = SN Agt i,
N
XD (wae O) /M/(<p,9 O) (q)‘zle‘
(32) = 3Bl (g p)e @l
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Ficure 1. Illustrating the geometry of the experiment.

which defines B{",. It is important to note that the dependence of G on the

coordinates r, r’ and directions 8, § is explicit and that this expansion is computable
for any rotationally invariant phase function.

3. FOURIER-LAPLACE STRUCTURE

We now turn our attention to the inverse problem for the RTE. As before, we will
work in the z > 0 half-space with the source and detector located on the z = 0 plane,
as illustrated in Figure 1. The source is assumed to be pointlike and oriented in the
inward normal direction. The light exiting the medium passes through a normally
oriented angularly selective aperture which collects all photons with intensity

(33) I(r) = / . A -8A8)I(r,8)d%s

where A accounts for the effect of the aperture and the integration is carried out
over all outgoing directions. When the aperture selects only photons traveling in the
normal direction, such as occurs sufficiently far from the sample, then A(§) = §(8 —
i) and Z(r) = I(r,11). The case of complete angularly averaged data corresponds to
A(8) = 1. If the medium is inhomgeneously absorbing, it follows from (@) and B3]
that the change in intensity measured relative to a homogeneous reference medium
with absorption fi, is given by

(34) d(p1,Po) = [ - éA(é)QS(Pb 0,2; p,, 0, —é)d23 .

n-§>0

As before, we consider the Fourier transform of ¢ with respect to the source and de-
tector coordinates. Upon substituting the plane wave decomposition for G given by
B0) into ([@) and carrying out the Fourier transform, we find, after some calculation,
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that

(35) dla,a) = Y Mmuz(ql,q2)/d3rexp [i(a1 +a2) - p
il&gm (a1) + Qpus(a2)2]dpua(r)

where

(36) My (ana) = 3 > By (ar m) By (a2, )

llml l/ m/l lzmz
x/ - SAR)Yiym, (3)d%s .
n-5>0

Eq. ([B3) is the main result of this paper. It is a generalization of the Fourier-Laplace
transform which holds for the DA. It can be seen that [BH) reduces to ([T in the
diffuse limit since only the smallest discrete eigenvalue contributes.

The inverse problem of OT consists of recovering du, from $. To gain further
insight into the Fourier-Laplace structure of this problem we perform the change of
variables

(37) Q1 =9+p/2, a=q9—-p/2,

where q and p are independent two-dimensional vectors and rewrite [B3) as
(39) Bap) = [ oK (a.pi2)ina(a.z)

Here ®(q,p) = (;;(q +p/2,9—p/2), 5ua(q, z) denotes the two-dimensional Fourier
transform of du, with respect to its transverse argument and

(39) K(a,piz) = Y Muu,u(a+p/2,a-p/2)

< oxp [ (Qu (a+ p/2) + Qo — p/2)) 2] .

This change of variables can be used to separately invert the transverse and longi-
tudinal functional dependences of du,. To see this, we note that for fixed q BX)
defines a one-dimensional integral equation for S,ua(q, z) whose pseudoinverse solu-
tion can in principle be computed numerically. We thus obtain a solution to the
inverse problem in the form

2
(40) dale) = [ gotze @ [ @pK (za.p)Blap)
where KT denotes the pseudoinverse of K. We will consider the numerical im-
plementation of this formula and other means of exploiting the Fourier-Laplace
structure of the inverse problem elsewhere. However, we do note that the inverse
problem for the RTE is ill-posed owing to the exponential decay of the evanescent
modes (1) for large z. Therefore, we expect that the resolution in the z direction
will degrade with depth but that sufficiently close to the surface the transverse
resolution will be controlled by sampling.

INVERSE PROBLEMS AND IMAGING VoLUME 1, No. 1 (2007), 181-188



188 J.C. SCHOTLAND AND V.A. MARKEL

REFERENCES

(1] S. Arridge, Optical tomography in medical imaging, Inv. Prob. 15(1999), R41.

[2] J.C. Schotland, Continuous wave diffusion imaging, J. Opt. Soc. Am. A 14 (1997), 275.

[3] V.A. Markel and J.C. Schotland, The inverse problem in optical diffusion tomography II role
of boundary conditions, J. Opt. Soc. Am A., 19(2002), 558-566.

[4] G.Y. Panasyuk, J.C. Schotland and V.A. Markel, Radiative transport equation in rotated
reference frames, J. Phys. A 39(2006), 115.

[5] R. Schulz, J. Ripoll and V. Ntziachristos, Noncontact optical tomography of turbid media,
Opt. Lett. 28(2003), 1701.

[6] G. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, Complete-angle pro-
jection diffuse optical tomography by use of early photons, Opt. Lett. 30(2005), 409.

(7] P. Stefanov, Inverse problems in transport theory, MSRI Publications 47(2003), 111.

[8] A. Ishimaru, “Wave Propagation and Scattering in Random Media,” Wiley-IEEE Press, New
York 1999.

[9] V.A. Markel and J.C. Schotland, Symmetries, inversion formulas and image reconstruction
for optical tomography, Phys. Rev. E 70(2004), 056616.

Received for publication October 2006.

FE-mail address: vmarkel@mail.med.upenn.edu
FE-mail address: schotland@seas.upenn.edu

INVERSE PROBLEMS AND IMAGING VoLUME 1, No. 1 (2007), 181-188



	1. Introduction
	1.1. Background
	1.2. Diffusion Theory

	2. Green's functions and Rotated Reference Frames
	3. Fourier-Laplace Structure
	References

