
1

Binary Discrete Fourier Transform and its Inversion
Howard W. Levinson and Vadim A. Markel

Abstract—A binary vector has elements that are either 0 or
1. We investigate whether and how a binary vector of known
length N can be reconstructed from a limited set of its discrete
Fourier transform (DFT) coefficients. A priori information that
the vector is binary provides a powerful constraint. We prove
that a binary vector is uniquely defined by its first two DFT
coefficients (zeroth, which gives the popcount, and first) if N is
prime. If N has two prime factors, additional DFT coefficients
must be included in the data set to guarantee uniqueness,
and we find the number of required coefficients in this case
theoretically. In the presence of noise, one may need to know
even more DFT coefficients to guarantee stable and unique
inverse solution. We say that inversion is stable if the solution
does not depend on the input strongly, so that a small change
in the data (i.e., due to noise or loss of precision) does not
result in a dramatically different inverse solution. Since the
inverse solutions that we seek are discrete, stability in the context
of this paper implies that small changes in the data do not
change the inverse solution at all. Our results indicate that
stable inversion can be obtained when the number of known
coefficients is about 1/3 of the total. This entails the effect of
super-resolution (the resolution limit is improved by the factor of
∼ 3). Two algorithms for solving the inverse problem numerically
are proposed and tested. The first algorithm is combinatorial and
suitable for problems with N ≲ 60. Although the problem in
general is NP-hard, the required computational complexity in a
typical application of the algorithm is much smaller than that of
exhaustive search. The second algorithm is based on optimization
of a non-convex continuous functional with random jumps out
of local minima, and its computational complexity is algebraic,
although the number of required iterations is difficult to estimate.
This latter method is applicable to much larger values of N , as
we demonstrate numerically for N = 199.

Index Terms—Discrete Fourier transform, super-resolution,
binary vector

I. INTRODUCTION

Super-resolution in imaging and signal processing is a
subject of significant current importance. Fundamentally, the
resolution limit is related to experimental inaccessibility of
the spatial Fourier harmonics of an object beyond some band
limit [1]. The resulting image is therefore a low-path filtered
version of the object. The classical Abbe limit on the resolution
of optical systems is of this nature [2, Sec. 13.1.2]. There
exist many more examples of imaging or signal reconstruction
problems in which Fourier components of a signal beyond
some band limit are lost, corrupted or inaccessible.

One of the most powerful approaches for achieving super-
resolution, as well as for image denoising, is based on utiliza-
tion of prior information [3], [4]. The latter can be introduced

H.W. Levinson is with Department of Mathematics and Computer Science,
Santa Clara University, Santa Clara, CA, USA (e-mail: hlevinson@scu.edu)

V.A. Markel is with Department of Radiology, University of Pennsylvania,
Philadelphia, PA, USA (e-mail: vmarkel@upenn.edu)

Published in IEEE Trans. Sign. Proc. 69, 3484-3499 (2021).
For up-to date version of associated codes, see Supplementary Material.

explicitly as a probability density in the Bayesian frame-
work [5], or implicitly as a regularizing term in a cost func-
tion [6]. In addition to the classical Tikhonov regularization
(ridge regression), the developed techniques include nonlinear
interpolation [7], [8], Laplacian [9], [10], total variation [11],
[12], sparsity-based methods [13]–[15], and many variants of
the above.

Another promising regularization technique is based on the
so-called compositional constraints or the p-species model.
It has been used in a variety of settings including mi-
croscopy [16], [17], MRI [18], diffuse optical tomogra-
phy [19], [20] and electromagnetic tomography [21]. The
approach relies on the a priori knowledge that the sample
consists of two or more known “species”, that is, materials
whose properties are known. The spatial distribution of the
components is however unknown and must be found by
solving an inverse problem. In the context of signal processing,
the p-species model implies that a discrete signal can take only
p known values.

In this paper, we examine what is perhaps the most simple
and at the same time the most fundamental mathematical
question of the p-species model. Assume that there are only
two species, i.e., the signal can take only two distinct values.
How many Fourier coefficients one needs to know to recon-
struct the signal precisely? More specifically, let the discrete
Fourier transform (DFT) coefficients be labeled by m where
m ∈ [−M,M] and 2M + 1 = N is the total number of the
signal samples. We also assume that the signal can take two
distinct known values, say, a and b. Can we reconstruct the
signal precisely if we know the DFT coefficients only within
the band limit m ∈ [−L,L] where L < M? What is the
smallest value of L for which reconstruction is still possible?

Below, we prove that the inverse problem of reconstructing
a binary signal from the band-limited DFT data has a unique
solution if L = 1 and N is prime. Moreover, we derive the
minimum value of L that guarantees uniqueness if N has
two prime factors. We also discuss stability and computational
efficiency of inversion. Thus, in the case of a large prime N ,
L = 1 is theoretically sufficient to guarantee uniqueness of the
inverse solution. However, finding this solution numerically
can be difficult or impractical due to high computational
complexity and low noise tolerance. The difficulty can be
mitigated by including additional DFT coefficients into the
data set. As L is increased, stability of the inverse problem
is improved and computational complexity is reduced. By
stability we mean here a lack of sensitivity of inverse solutions
to small changes in the given DFT coefficients. Thus, if
inversion is stable, we expect to recover the exact binary
vector even if the DFT coefficients on input are imprecise or
corrupted by noise. In Supplementary Material, we provide a
computational package based on the the inversion algorithms

https://ieeexplore.ieee.org/abstract/document/9451606
http://whale.seas.upenn.edu/vmarkel/CODES/BinDFTInv.html
http://whale.seas.upenn.edu/vmarkel/CODES/BinDFTInv.html

2

described below, and a set of examples in which forward
data are rounded off to 8 and 4 significant figures. In all
cases we have considered (with both prime and non-prime N),
reconstruction becomes computationally efficient and stable
when L ≳ M/3. In this case, the data can be further rounded
off to 3 or even 2 significant figures without affecting the
inverse solution. This corresponds to achieving a three-fold
improvement of the resolution limit.

The related previous theoretical work includes investigation
of discrete Fourier sampling and recovery with both ran-
dom [22] and deterministic [23], [24] sampling. Ref. [25]
introduced an uncertainty principle for prime order cyclic
groups, which is related to our uniqueness results. Also
relevant are the algebraic ideas that arise in error correcting
for channel coding [26], [27] and in the investigation of the
vanishing sums of the roots of unity [28]–[32].

On the inversion and algorithmic side, we are interested
in reconstructing the signal precisely and not approximately,
and the form of the signal is assumed to be general. In
particular, the signal may be more complicated than one or
two compact pulses. Under the circumstances, application of
the level-set methods [33] is impractical. Also, binarity is
related to but not identical to sparsity. A sparse vector has
many of its elements equal to zero but the rest can take any
(unknown) values. The binary vectors considered here can
have about one half of their elements equal to 0 (in the most
difficult case) but the rest have the same (known) value of 1.
Therefore, we did not investigate sparsity-based algorithms.
Further, the inverse problem considered by us can be rephrased
as a linear integer programming problem of the form Ax = φ̃,
where φ̃ (defined in Section VI below) contains the known
DFT coefficients, A is the relevant Fourier matrix, and x is
the unknown binary vector. As there is no further objective
function (just the equality constraint), using branch-and-bound
techniques do not offer significant improvements as there is no
optimization quantity to bound. The combinatorial algorithm
described below is, in fact, an efficient implementation of
the branching method in which we sequentially search the
subsets of binary vectors separated from an initial guess
by a monotonously-increasing distance. Without an objective
function, bounding improvements must come from analyzing
the feasibility of solutions within a branch. In some cases, one
can apply cutting planes methods to restrict the size of the
search space [36]. As we have verified, a direct application
of cutting planes to our problem has a marginal effect, but
devising more sophisticated definitions of cutting planes is a
natural area for improvement. The problem we are considering
is also closely related to the 0-1 knapsack problem and its
reduction to the subset sum problem [34], which is known to
be NP-hard [35]. There are also many refined approaches for
solving linear binary integer programming problems, including
dynamic programming [37], [38] and probabilistic and approx-
imate solutions [39]–[41]. As a benchmark, we have solved the
test inverse problems (included as examples in the computa-
tional package) using the standard linear integer programming
techniques via MATLAB’s mixed-integer linear programming
function intlinprog. This function was able to recover the
three model vectors defined below, but required longer running

time than the codes provided in the computational package.
The rest of this paper is organized as follows. In Section II

we introduce the binary DFT, discuss its basic properties and
show that it is sufficient to consider the vectors whose elements
take only two known values, 0 and 1. In Section III, we
adduce several numerical examples that illustrate the theoret-
ical possibility of reconstructing a binary vector from band-
limited DFT data. In Section IV, we prove two key uniqueness
theorems. In Section V we discuss stability and in Section VI
two algorithms for numerical inversion are introduced and
tested. Section VII contains a discussion and conclusions.
Supplementary Material contains the complete data set that
can be used to reproduce all figures of this paper and a
computational package with a detailed user guide and a set
of examples. The package implements the inversion methods
of Section VI.

Below, the following acronyms are used: “gcd” is “greatest
common divisor” and the symbol “mod” is used to denote
modulus congruence, that is, n ≡ m (mod k) if n − m is
divisible by k.

II. BINARY DFT
Let v = (v1, v2 . . . , vN) be a vector of length N > 1. For

simplicity, we assume that N is odd. The DFT of v is given
by

ṽm =

N∑
n=1

vne
iξmn , (1a)

where

ξ =
2π

N
, −M ≤ m ≤M , M =

N − 1

2
. (1b)

Note that ṽm is defined for any integer m and is periodic
so that ṽm+N = ṽm. It is therefore sufficient to restrict m
to the interval [−M,M]. Assuming that we know all Fourier
coefficients with indexes in this interval, we can reconstruct v
by the inverse DFT according to

vn =
1

N

M∑
m=−M

ṽme−iξnm , 1 ≤ n ≤ N . (1c)

We will refer to v and ṽ = (ṽ−M , ṽ−M+1, . . . ṽM) as to the
real-space and Fourier-space vectors.

The questions we wish to address are the following. Assume
that we know only some of the Fourier coefficients ṽm,
namely, those with the indexes bounded as |m| ≤ L ≤M , and
also that vn can take only two distinct, a priori known values,
say, a and b. What is the smallest value of L for which we
can reconstruct the whole vector v uniquely from the Fourier
data? For which values of L the reconstruction is numerically
stable? Finally, we wish to develop a computational algorithm
for the reconstruction.

We can simplify the problem by writing

vn = a+ (b− a)xn , (2)

where xn can take only two values, 0 and 1. We will say that
the vector x = (x1, x2 . . . , xN) is binary. Substituting (2) into
(1a), we obtain:

ṽm = aNδm0 + (b− a)x̃m , (3)

http://whale.seas.upenn.edu/vmarkel/CODES/BinDFTInv.html

3

where δml is the Kronecker delta-symbol and x̃m are defined
in terms of xn analogously to the DFT convention (1a).

Equation (3) can be inverted to yield the relation

x̃m =
ṽm − aNδm0

b− a
. (4)

Therefore, if ṽm is known, then x̃m is also known. We thus
see that the inverse problem of finding v from ṽ is mapped
onto the problem of finding a binary vector x from its DFT x̃.

Therefore, we are interested in reconstructing the full binary
vector x from a limited set of coefficients x̃m with |m| ≤ L.
If L = 0, the only information about x that is present
in the data is the popcount (the total number of 1s in x).
Reconstructing x with only this information is obviously
impossible. However, the popcount is an important constraint
on the possible solutions. In what follows, we assume that the
popcount

r ≡ x̃0 =

N∑
n=1

xn (5)

is known with a high degree of confidence, so that (5) can be
viewed as a hard constraint on the possible inverse solutions.

We denote the set of all vectors x of length N containing
r 1s by Ω(N, r). The size of this set is

S[Ω(N, r)] =
N !

r!(N − r)!
. (6)

It is sufficient to consider r in the range

0 < r ≤M =
N − 1

2
(7)

because the sets Ω(N, r) and Ω(N,N − r) can be obtained
from each other by the substitution 0 ↔ 1. Therefore, the
problems with r = q and r = N − q are mathematically
identical. In what follows, we assume that r is in the range
(7). Note that r = 0 is a technically possible but trivial case
since r = 0 implies that all elements of x are 0s. Therefore,
we exclude this possibility in (7).

The band-limited to L Fourier-space distance between any
two vectors x, y ∈ Ω(N, r) is defined as

χp(x, y;L) =

[
1

L

L∑
m=1

|x̃m − ỹm|p
] 1

p

, p ≥ 1 . (8)

Note that the term with m = 0 is excluded from the
summation. The real-space distance between x, y ∈ Ω(N, r)
is defined as

d(x, y) =
1

2

N∑
n=1

|xn − yn| . (9)

If the distance between two vectors in Ω(N, r) is d, one can
be obtained from the other by d pair-wise switches of 0s and
1s. The possible values of d are in the interval 0 ≤ d ≤ r
assuming r is in the range (7). If L = M , the invertibility of
DFT implies that the statements χp(x, y;M) = 0, d(x, y) = 0
and x = y are equivalent. However, if L < M , we do not
generally know whether there exist pairs of distinct vectors
x ̸= y for which χp(x, y;L) = 0.

Clearly, if r = 1, it is sufficient to know only one additional
Fourier coefficient, say, x̃1. The inverse problem is then
reduced to finding the position ν where the single 1 is located.
We can use the equation x̃1 = exp(iξν) to find ν. If x̃1 is in
range of the forward operator, then the above equation has
a unique integer solution in the interval [1, N]. If x̃1 is not
in range, then the equation has no integer solutions. One can
still find the integer ν that minimizes the error |x̃1−exp(iξν)|.
The case r = 2 is also easy to analyze. The problem becomes
difficult when r ∼ N/2 and N ≫ 1 so that S[Ω(N, r)] is
combinatorially large. The remainder of his paper is largely
focused on this more difficult case.

III. A NUMERICAL EXAMPLE

As a first step, we can investigate the problem numerically.
To this end, we have considered the following two model
vectors xmod:

(a) N = 31, r = 15, S[Ω(N, r)] = 300, 540, 195

xmod = (1001011000011101101100011010100)

and

(b) N = 33, r = 16, S[Ω(N, r)] = 1, 166, 803, 110

xmod = (100100110001100111001010100110110)

For these values of N , all elements of Ω(N, r) can be
constructed explicitly on a computer.

In Fig. 1, we display the quantities χ2(x, xmod;L) (below
some thresholds) for all x ∈ Ω(N, r), various L, and the two
model vectors xmod defined above. It can be seen that, for N =
31 and all L considered, there exists only one x ∈ Ω(N, r) for
which χ2(x, xmod;L) = 0. This x is the true solution, that is, it
is identical to xmod. This result implies that the knowledge of
just the first two Fourier coefficients x̃0 = r and x̃1 suffices
to find the whole xmod. This result is surprisingly strong but,
as discussed below, not unexpected. One obvious observation
is that 31 is a prime number. We will show that uniqueness
of inverse solutions with L = 1 is a general property of all
prime N .

In the case N = 33 (not a prime), there are three distinct
vectors x with χ2(x, xmod; 1) = 0; only one of them is equal to
xmod. The other two are false solutions. However, uniqueness
of the inverse solution is restored by selecting L ≥ 3 (L = 2
is still insufficient). In the next section, the theoretical reasons
why L = 3 provides the unique solution in this case will be
given.

IV. UNIQUENESS OF INVERSE SOLUTIONS

We now fix a few definitions and prove two key uniqueness
theorems.

Definition 1. We say that two vectors x, y ∈ Ω(N, r) are L-
distinguishable if χp(x, y;L) > 0, where 1 ≤ L ≤ M , and
L-indistinguishable otherwise. If this property holds for some
p, it holds for all p ≥ 1, including the formal limit p =∞. To
generalize the definition, we say that vectors of the same length
N but with different popcounts r are 0-distinguishable 1. All

1Such two vectors do not belong to the same set Ω(N, r).

4

χ2

N = 31, r = 15, L = 1

0.01

0

N = 33, r = 16, L = 1

χ2

N = 31, r = 15, L = 3

0.4

0

N = 33, r = 16, L = 3

χ2

N = 31, r = 15, L = 5

Sequential number of x

0.8

0

N = 33, r = 16, L = 5

Sequential number of x

Model (a) Model (b)

Fig. 1. Fourier-space distances χ2(x, xmod;L) between various x ∈ Ω(N, r)
and a model vector xmod with the same N and r. The left and right columns
correspond to the models (a) and (b), which are defined in the text. Different
rows correspond to different values of L. All data points that fit the vertical
scale of each plot are shown. Projections onto the horizontal axis are the
sequential numbers of the data points and have no other significance. Due
to the finite size of the dots that are used to represent the data points, it
may appear that one sequential number (a projection onto the horizontal axis)
corresponds to more than one dot; in fact, this is not so. Large blue dots mark
exact zeros. Note that, for L = 1, χp is independent of p.

vectors in Ω(N, r) have the same popcount and are therefore
0-indistinguishable. If two vectors are L-distinguishable, they
are also L′-distinguishable for any L′ > L.

Definition 2. We use the acronym IP(N, r, L) to denote the
inverse problem of reconstructing a generic binary vector x

of known length N and popcount r from the set of its DFT
coefficients x̃m with 1 ≤ m ≤ L (the coefficient x̃0 = r with
m = 0 is already included in the data set). Since x̃−m = x̃∗

m,
coefficients with negative indexes do not provide additional
information and are not included in the data set. In this
paper, we consider only odd N . The possible values of r in
IP(N, r, L) are defined by the inequality (7).

Definition 3. We say that IP(N, r, L) is uniquely solvable if all
pairs of distinct vectors x, y ∈ Ω(N, r) are L-distinguishable.

Definition 4. We say that a binary vector x ∈ Ω(N, r) contains
a regular polygon if there exists integers m and k such that
xn = 1 for all n ≡ m (mod k). We call k the order of the
polygon, and refer to such a polygon as a k-gon. Similarly,
we say that x contains an empty regular polygon if xn = 0 for

all n ≡ m (mod k). Note that these definitions require k to
divide N . We say that x contains a pair of regular polygons
if x contains both a regular polygon and an empty regular
polygon of the same order. Regular polygons are disjoint in x

if they do not share any indices n.

Theorem 1. IP(N, r, 1) is uniquely solvable for all r in the
interval (7) if N is prime.

Proof. Theorem 1 is proved by showing that all vectors in
Ω(N, r) are pairwise 1-distinguishable for N prime. Consider
two distinct vectors x, y ∈ Ω(N, r) and suppose that x and y

are 1-indistinguishable. Let z = x−y with zn (n = 1, 2, . . . N)
denoting the real-space components of z and z̃m denoting
its DFT coefficients defined according to the convention (1a).
Note that z is not a binary vector as its entries can take three
possible values: 0 and ±1. Therefore, z /∈ Ω(N, r). Since
we have assumed that x and y are 1-indistinguishable, the
following equality must hold:

0 = z̃1 =

N∑
n=1

zne
iξn . (10)

Since N is prime, the N − 1 exponential factors eiξn with
1 ≤ n < N − 1 (excluding the term eiξN = 1) form the
complete set of N -th primitive roots of unity [42]. Therefore,
the N -th cyclotomic polynomial [42] has the form

ΦN (x) =

N−1∏
n=1

(x− eiξn) =

N−1∑
n=0

xn . (11a)

By Eisenstein’s criterion, this polynomial is irreducible over
the rationals [42]. We also introduce the polynomial 2

g(x) = zN + z1x+ z2x
2 + ·+ zN−1x

N−1 . (11b)

Assuming that (10) holds, g(x) has a root at eiξ. We now
observe that both ΦN (x) and g(x) are polynomials with
rational coefficients of degree N−1 and with the common root
eiξ. Since ΦN (x) is irreducible over the rationals, and thus a
minimal polynomial, these two polynomials can only differ
by a constant. This implies that zn = C for some constant C.
Recall zn can only take values of 0 and ±1. If C = ±1, then
x is a vector of all 1s and y is a vector of all 0s (or vice versa),
which violates the assumption that they are both in Ω(N, r).
Hence the only possibility is zn = 0, which is equivalent to
x = y and contradicts the initial assumption that x and y are
distinct.

Theorem 1 implies that, at least theoretically, any binary
vector x of a prime length N can be uniquely recovered from
its two Fourier coefficients x̃0 = r and x̃1. It does not imply
that this problem can always be solved in a numerically stable
manner. Stability of inversion is discussed in Section V below.

When N is not prime, we do not have such a strong
statement of uniqueness. However, if N has two prime factors,
we can characterize the false solutions and derive the sufficient
conditions of uniqueness assuming that some additional DFT
coefficients are known. The following Lemma establishes the

2Note that the coefficient indexes in (11b) are correct. An alternative way
to define g(x) with the same properties is g(x) = z1+z2x+ ...+zNxN−1.

5

Fig. 2. Geometrical illustration of Lemma 1 for the model vector (b) with
N = 33. Plotted are the points eiξn on the unit circle. The small red and
large blue dots are obtained for the values of n such that xn = 1 and xn = 0,
respectively. There are two 3-gons contained in the model vector (b), which
are shown by thin red lines. There is also one empty 3-gon shown by thick
blue lines. This gives two ways in which a pair of polygons can be formed;
each distinct pair results in a distinct false solution. The two false solutions
shown in Fig. 1 are obtained by switching 1s in the positions corresponding
to the vertices of one of the red 3-gons with 0s in the positions corresponding
to the vertices of the blue (empty) 3-gon.

necessary and sufficient condition for two binary vectors in
Ω(N, r) to be 1-distinguishable.

Lemma 1. Let N = pq where 1 < p ≤ q are primes
(not necessarily distinct). Let x ∈ Ω(N, r). Then x is 1-
indistinguishable from some other (different from x) vector(s)
in Ω(N, r) if and only if x contains at least one pair of p- or
q-gons (a p-gon is a regular polygon with p vertices) according
to Definition 4. Equivalently, x is 1-distinguishable from all
other vectors in Ω(N, r) if and only if it does not contain any
pairs of p- or q-gons.

The proof of Lemma 1 is given in Appendix A. It relies
on the algebraic ideas that were used to study the vanishing
sums of the roots of unity [28]–[32]. Geometrically, the proof
states that the only way x and y in Ω(N, r) can be 1-
indistinguishable is if they agree element-wise except for the
locations that make up an equivalent number of regular p- or
q-gons. This is illustrated in Fig. 2.

While Lemma 1 establishes the necessary and sufficient
condition for two distinct vectors in Ω(N, r) to be 1-
indistinguishable (in the two prime factors case), the following
Lemma provides a potential remedy to the non-uniqueness.
Specifically, it tells us how many additional DFT coefficients
must be included in the data set to guarantee uniqueness.

Lemma 2. Let N = pq with the same conditions on p, q
as in Lemma 1, and let x ∈ Ω(N, r). Let L be the smallest
integer for which x contains a pair of L-gons, which are not
subsets of any larger-order pair of regular polygons. Then x is
L-distinguishable from all other vectors in Ω(N, r). Moreover,
L is the smallest value of k for which x is k-distinguishable
from all other vectors in Ω(N, r).

The proof of Lemma 2 is given in Appendix B. The geomet-
ric concept behind this proof is illustrated in Fig. 3. Lemma 2
implies that, if p ̸= q, then all vectors in Ω(N, r) are q-

distinguishable. For N = p2, all vectors are p-distinguishable.
Considering again the case N = 33, r = 16, the best one can
assume is that all vectors in Ω(33, 16) are 11-distinguishable.
This implies that one must use L ≥ 11 to guarantee uniqueness
of IP(33, r, L) for any r ≥ 11. However, the model vector (b)
does not contain any 11-gons. Therefore, it can be recovered
with L = 3; using L = 11 would be an overkill. We note that
vectors that contain regular 11-gons make a small subset of
Ω(33, 16) (are statistically rare). Therefore, using L = 3 for
N = 33, r = 16 entails a relatively small risk of running into a
false solution. Moreover, Lemma 2 tells us exactly what form
these vectors, and the corresponding false solutions, take. The
question of statistically reliable invertibility – that is, accepting
a small risk of finding a false solution – is addressed more
systematically in Section V.

In the absence of any a priori knowledge about the true
solution apart from what is given in the data, we can state the
following sufficient condition for uniqueness of IP(N, r, L).

Theorem 2. Let N = pq with the same conditions on p, q as
in Lemma 1, r ≤M , and

L0 = max
ℓ,m∈{0,1}

(
{k = pℓqm : k ≤ r}

)
.

Then IP(N, r, L) is uniquely solvable for any L ≥ L0.

Proof. Theorem 2 is a direct consequence of Lemma 2. A
vector x ∈ Ω(N, r) must have at least L 1s to contain an
L-gon, which implies that L ≤ r. Then, by definition, L0 is
the largest order of polygons that can be formed in x. Hence,
by Lemma 2, any x ∈ Ω(N, r) is L0-distinguishable from all
other vectors in Ω(N, r). Therefore, IP(N, r, L) is uniquely
solvable for any L ≥ L0.

To illustrate Theorem 2, consider the case N = 143 =
11 · 13. If r < 11, then we have L0 = 1. If 11 ≤ r < 13,
then L0 = 11, and if 13 ≤ r ≤M = 71, then L0 = 13. Thus,
L = 13 guarantees uniqueness of the inverse solution for any
binary vector of length N = 143.

Remark 1. Even if IP(N, r, L) is not uniquely solvable,
some vectors in Ω(N, r) can be uniquely recovered from the
knowledge of x̃m with m = 1, 2, . . . L. For example the
following vector

(c) N = 35, r = 17, S[Ω(N, r)] = 4, 537, 567, 650

x = (10010110000111101100011010100100011)

is uniquely recoverable with L = 1 even though IP(35, 17, 1)
is not uniquely solvable. The reason is that x does not contain
any pairs of 5- or 7-gons.

Remark 2. Similar but more complicated results hold for the
case when N has two prime divisors, i.e., N = pαqβ and the
integers α, β can be larger than 1. Here the difficulty grows
from the possibility of an intricate overlapping of different
polygon pairs. The case when N has three or more prime
divisors is even more difficult to analyze due to the existence
of the so-called asymmetrical minimal vanishing sums of N -th
roots of unity [29], [32].

6

(a) (b) (c)

Fig. 3. Geometrical illustration of Lemma 2. Let x be given by the model vector (b) (N = 33, r = 16) and let y be one of the two vectors that are distinct
but 1-indistinguishable from x (we have chosen for y the specific false solution obtained by switching 1s and 0s in the pair of 3-gons shown in Fig. 2 that
are geometrically farther apart). Let, as in the proof of Theorem 1, z = x − y. Plotted are the terms that enter the definition (1a) of z̃1 (a), z̃2 (b), and z̃3
(c). Thus, Panel (a) displays the terms zneiξn for 1 ≤ n ≤ 33. The terms with such n that zn = 0, zn = 1 and zn = −1 are represented by small black
dots, intermediate-size red dots, and large blue dots, respectively. Panel (b) displays the terms zneiξ2n according to the same color convention. The additional
factor of 2 in the exponent results in a permutation of the dots that are displayed in Panel (a); however, the 3-gons are preserved. Note that the total number
of dots in Panels (a) and (b) is the same and equal to 33. It is clear that z̃1 = z̃2 = 0 since regular 3-gons sum to zero. In Panel (c), the terms zneiξ3n

are shown. For 1 ≤ n ≤ 33, the above terms take only 11 distinct values so that each displayed dot corresponds to a sum of three terms with different n.
However, only dots of the same color (same value of zn) can overlap in this example. It can be seen that each 3-gon of Panel(a) collapses to a single point
in Panel (c). Therefore, z̃3 ̸= 0 implying that x and y are 3-distinguishable.

V. STABILITY OF INVERSION

Even when an inverse problem IP(N, r, L) is uniquely
solvable, it is not clear whether finding the solution is a
numerically stable procedure. Consider the data points in
Fig. 1 for N = 31, r = 15 and L = 1. The large (blue) dot
corresponds to the true solution xmod and it is the only vector in
Ω(31, 15) with χ2(x, xmod; 1) = 0, so that the inverse solutions
is unique. However, the Fourier-space distance between the
first runner-up to the true solution (let us call it y) and the
model is quite small: χ2(y, xmod; 1) ≈ 0.0002. On the other
hand, the real-space distance between y and xmod is not small:
d(y, xmod) = 10. In other words, 10 out of 16 1s in y are
in the wrong places. This is an obvious sign of instability. A
small change in the DFT data can result in a large change of
the inverse solution.

In this section, we investigate the stability of IP(N, r, L)
numerically. To this end, we have selected some values of
N and generated sets of random vectors xj ∈ Ω(N, r) for
r = 2, 3, . . .M and j = 1, 2, . . . J , where J was chosen to
be sufficiently large to obtain statistically significant results.
The vectors xj were generated as follows. For a particular
random realization, r 1s were randomly placed into N possible
positions. Repetitions (identical random realizations) were
allowed but occurred very rarely. The number of random
realizations in a set, J , depended on r and N and varied from
104 to 102 in the most difficult cases such as N = 35, r = 17.

Then, for each xj , we have computed the Fourier-space
distances 3 χ2(xj , y;L) to all vectors y ∈ Ω(N, r) and the
minimum distance between xj and any y that is not equal to
xj . The latter quantity can be formally defined as

κ(xj ;L) = min
y,y̸=xj

χ2(xj , y;L) , xj , y ∈ Ω(N, r) . (12)

3In this section, we rely on the L2 norm.

Note that κ(xj ;L) and its averages defined below in (13)
depend implicitly on N and r. If κ(xj ;L) = 0, the vector
xj is not uniquely recoverable with the particular value of
L. If κ(xj ;L) > 0 but is in some sense small, then xj is
uniquely recoverable with the given L but the inverse solution
is numerically unstable. Generally, as κ(xj ;L) is increased, it
becomes easier to recover xj , and the precision requirements
on the DFT data become less stringent.

We have also computed the average and the standard devi-
ation of κ(xj ;L) according to

⟨κ(L)⟩ = 1

J

J∑
j=1

κ(xj ;L) , (13a)

⟨κ2(L)⟩ = 1

J

J∑
j=1

κ2(xj ;L) , (13b)

σ2(L) = ⟨κ2(L)⟩ − ⟨κ(L)⟩2 . (13c)

These quantities are illustrated in Fig. 4 for N = 31, 33, 35
and L from 1 to 5. The data displayed in this figure convey
how “easy” it is to reconstruct a vector from Ω(N, r). For
example, consider the case N = 35, L = 3 and r = 15.
We have for these parameters ⟨κ⟩ ≈ 0.1 and σ ≈ 0.03. This
means that most vectors in Ω(35, 15) (those within the the
±2σ-interval in the statistical distribution) have the Fourier-
space distance to the closest distinct neighbor between 0.04
and 0.16. Therefore, if we find a vector y = Ω(35, 15) with
χ2(x, y; 3) ≤ 0.04, it is likely to be the true solution. We thus
conclude that the Fourier data should be specified with the
absolute precision of 0.04 or better.

Not all combinations of N , L and r allow such simple
considerations. The differences ⟨κ⟩ − σ can be very small
or even negative (this is technically possible). In such cases,
the lower parts of the error bars in Fig. 4 are outside of the
plot frames. Relevant examples include N = 35, L = 1 for

7

N = 31 N = 33 N = 35

〈κ(L)〉

L = 1

1

10−1

10−2

10−3

10−4

10−5

L = 1 L = 1

〈κ(L)〉

L = 2

0.512

0.128

0.032

0.008

L = 2 L = 2

〈κ(L)〉

L = 3

0.4

0.2

0.1

0.05

L = 3 L = 3

〈κ(L)〉

L = 4

0.6

0.3

0.15

L = 4 L = 4

Popcount, r

〈κ(L)〉

L = 5

15141312111098765432

0.64

0.4

0.25

Popcount, r

L = 5

1615141312111098765432

Popcount, r

L = 5

171615141312111098765432

Fig. 4. Averages ⟨κ(L)⟩ as functions of r for N = 31, 33, 35 and L from 1 to 5. Error bars are shown at the level of one standard deviation, σ(L), as
defined in (13). The vertical axes in all plots are logarithmic. The trivial case r = 1 is not shown.

(a) N = 31 (b) N = 33 (c) N = 35

Popcout, r

P (ǫ; 1)

15141312111098765432

1

10−1

10−2

10−3

10−4

ǫ = 10−3

ǫ = 10−4

ǫ = 0

Popcout, r

P(ǫ; 1)

1615141312111098765432

Popcout, r

P(ǫ; 1)

171615141312111098765432

Fig. 5. Cumulative probabilities P (ϵ; 1) for ϵ as labeled and N = 31 (a), N = 33 (b), and N = 35 (c) as functions of r. The trivial case r = 1 is not
shown.

8

r ≥ 5. In practical terms, the inverse problems with these
combinations of N , L and r are hard to solve since it is likely
that a vector in Ω(N, r) has a distinct neighbor that is almost
L-indistinguishable from itself. To make the inverse problem
better conditioned, one can either increase L or increase the
precision of the DFT data, assuming the inverse solution is
unique.

So far, we have not characterized the statistical distribution
of κ(xj ;L). Therefore, the considerations based on the data of
Fig. 4 are qualitative. Computing the full statistical distribution
of κ(xj ;L) is a combinatorially hard problem. Instead, we
have introduced the cumulative probabilities

P (ϵ;L) =
1

J

J∑
j=1

Θ(ϵ− κ(xj ;L)) , (14)

where

Θ(x) =

{
1 , x ≥ 0
0 , x < 0

(15)

is the step function. Just like κ(xj ;L), P (ϵ;L) depends
implicitly on N and r. It gives the (approximate) fraction of
vectors in Ω(N, r) with at least one distinct neighbor that is at
least as close in Fourier space (as quantified by the χ2(x, y;L))
as ϵ. In particular, P (0;L) gives the fraction of vectors in
Ω(N, r) that have at least one distinct but L-indistinguishable
neighbor.

The quantities P (ϵ; 1) are shown in Fig. 5 for N =
31, 33, 35, and ϵ = 0, 10−4, 10−3. As expected, P (0; 1) = 0
for N = 31. This means that, in agreement with Theorem 1, all
vectors in Ω(31, r) with r = 1, 2, . . . ,M are 1-distinguishable
from each other.

Data for larger L are not shown in Fig. 5 but can
be described as follows. In the case N = 31, we have
P (10−3;L) = P (10−4;L) = P (0;L) = 0 for all r considered
and L > 1 (note that P (ϵ;L) is a non-decreasing function
of ϵ). Therefore, choosing L = 2 already makes the inverse
problem stable in this case.

In the case N = 33, P (10−3;L) = P (10−4;L) =
P (0;L) = 0 (for all r) when L > 2, whereas choosing
L = 2 is still not sufficient for making the inverse problem
stable. Note that, for L < 11 and r > 11, P (ϵ;L) are not
exactly zero due to the possibility of forming regular 11-gons
(see Lemma 1). However, the values of P are too small to
be determined by the statistical approach used here. These
cumulative probabilities can also be computed theoretically
by counting all the elements x that allow regular 11-gons.

Finally, in the case N = 35, we can use Theorem 2 to
determine whether there are false solutions. For r < 5, there
are no false solutions already with L = 1. For 5 ≤ r < 7,
false solutions are suppressed when L ≥ 5. For 7 ≤ r ≤ 17,
suppressing false solutions requires L ≥ 7. However, even if
L < 7, false solutions are statistically rare. Moreover, when
L > 1, the false solutions appear to be the only source of
numerical instability. Therefore, the inverse problem with N =
35 and arbitrary r can be solved in practice even with L < 7.
For example, choosing L = 3 entails the probability of running
into a false solution of the order of 0.01 or smaller.

d

χ2

N = 31, r = 15, L = 1

0.010

12

10

8

6

4

2

0

(×2)

d

χ2

N = 33, r = 16, L = 1

12

10

8

6

4

2

0
0.010

d

χ2

N = 31, r = 15, L = 3

0.40

12

10

8

6

4

2

0

d

χ2

N = 33, r = 16, L = 3

12

10

8

6

4

2

0
0.40

d

χ2

N = 31, r = 15, L = 5

0.80

12

10

8

6

4

2

0

d

χ2

N = 33, r = 16, L = 5

12

10

8

6

4

2

0
0.80

Model (a) Model (b)

Fig. 6. Real-space distance d(x, xmod) vs Fourier-space distance
χ2(x, xmod;L) for the same data points as in Fig. 1. Here xmod is the model
vector (a). The symbol (×2) indicates that the data point corresponds to two
distinct false solutions. Both false solutions have the same real-space distance
to the model, d = 3.

VI. INVERSION

Even if the solution to the inverse problem is unique and
we know the DFT data with sufficient precision to guarantee
stability, finding the solution is a nontrivial task. In particular,
iterative methods that seek to optimize χp are unlikely to work.
The reason for this is illustrated in Figs. 6 and 7. In Fig. 6, we
plot the real-space distance d(x, xmod) between various vectors
x ∈ Ω(N, r) and the model vector (a) vs the corresponding
Fourier-space distance χ2(x, xmod;L). It can be seen that the
two distances do not correlate well. It is possible to have small
χ2 for a large d and small d with a large χ2. Any optimization
technique that works directly with the real-space vectors x ∈
Ω(N, r) and tries to reduce the error χ2 iteratively is therefore
not likely to solve the problem: the iterations will inevitably
end up in one of the many local minima of χ2, which, in real
space, are still very far from the true solution. The difficulty
is not removed if we use χ∞ instead of χ2, as is illustrated
in Fig. 7.

Remark 3. If we could find a vector y such that d(y, xmod) =
1, we would be able to find, starting from this result, the
true solution (assuming it is unique) in at most r(N − r)
deterministic steps. But as can be seen from the data of Figs. 6
and 7, small χp does not imply small d. It is almost as hard
to find a vector y with the above property as it is to find xmod

9

d

χ∞

N = 31, r = 15, L = 3

0.60

12

10

8

6

4

2

0

d

χ∞

N = 33, r = 16, L = 3

12

10

8

6

4

2

0

0.60

d

χ∞

N = 31, r = 15, L = 5

1.20

12

10

8

6

4

2

0

d

χ∞

N = 33, r = 16, L = 5

12

10

8

6

4

2

0

1.20
Model (a) Model (b)

Fig. 7. Same as in Fig. 6 but for χ∞. Data for L = 1 are not shown since,
in this case, χ2 and χ∞ coincide.

itself.

Thus, we have encountered a somewhat paradoxical result.
The inverse problem can be linear and have a unique and stable
solution; yet, any method that updates iteratively x ∈ Ω(N, r)
in an attempt to minimize χp is not expected to work. The
mathematical reason for this difficulty is that the forward DFT
maps a discrete set Ω(N, r) onto a continuous linear space of
Fourier data; not every point in the data space is an image of
an element in Ω(N, r). Iterative methods that work well for
continuous maps do not work here.

However, we describe below two approaches to solving the
inverse problem that work reasonably well. One is a combi-
natorial approach to solve the NP-hard problem, and the other
is based on non-convex optimization of a continuous map; the
complexity of this method is polynomial (if it converges). The
combinatorial method does not seek a sequence of vectors x

with monotonously decreasing value of χp. Rather, it tests
all vectors in some real-space vicinity of an initial guess
(defined below) and either finds one with χp below a pre-
determined threshold or finds the vector with the smallest χp

over all vectors in this vicinity. The optimization method does
not work with χp directly but rather relaxes the assumption
of binarity first and defines a functional that quantifies how
close a general vector is to being binary. The functional is
non-convex but a fourth-order polynomial; along any search
direction it can have no more than two minima. This, together
with stochastic jumps strategy, allows one to search efficiently
for the deepest local minimum. The Supplementary Material
contains a computational package that implements these two
methods. The package is applicable to generic data consisting
of several DFT coefficients of the unknown vector (to be
supplied by the user), and includes detailed documentation
and examples.

We start by describing the set up of the numerical inverse
problem in more detail. Let φ̃m, 1 ≤ m ≤ L be a set of

DFT coefficients, which are given as input to the numerical
inversion. This set can be expanded by using the relations
φ̃0 = r and φ̃−m = φ̃∗

m. For the algorithms described
below, it is not important how φ̃m were generated. These can
be exact DFT coefficients of some binary vector, or noisy
approximations to such coefficients, or just an arbitrary set of
complex numbers. In the numerical package that accompanies
this paper, φ̃m with 1 ≤ m ≤ L are supplied as numbers in
an input file, and several examples of such “forward data”
corresponding to some model binary vectors (with various
degrees of precision) are provided for testing. We seek a binary
vector s (the solution) such that the Fourier-space distance

χp(s,φ;L) ≤ ϵ , (16)

where ϵ is a pre-determined small constant, or, if (16) cannot
be met, we seek the minimizer of χp(x,φ;L) over a suffi-
ciently large set of x. These conditions are referred to below
as the first and second stop conditions. We emphasize that s is
a numerical solution; it may or may not be equal to the model
vector xmod that was used to generate the data φ̃m. It might
also be the case that a model vector xmod was not even used
to generate φ̃m.

We also note the following three points. First, computation
of χp(x,φ;L) according to (8) does not require the knowledge
of the full vector φ; the set of known DFT coefficients φ̃m

with |m| ≤ L is sufficient. Second, if φ̃m do not correspond
to some binary vector with given N and r precisely, then
χp(s,φ;L) cannot be arbitrarily small and the first stop
condition cannot be met if the selected ϵ is too small. However,
the second stop condition can still provide the correct solution.
Under the circumstances, increasing ϵ can make the numerical
inversion more efficient since the first stop condition, if achiev-
able, is generally met much faster than the second condition.
Finally, the achieved distance χp(s,φ;L) is an indicator of
how reliable the obtained solution is. This quantity can be
compared to the data similar to those shown in Fig. 4 but
computed for the specific values of N , r and L that were
used in a reconstruction. If χp(s,φ;L) < ⟨κ(L)⟩ − 2σ(L),
one can be reasonably confident that s is the true solution.

In both approaches described below, we start with an initial
guess g = (g1, . . . , gN), which is computed as the low-path
filtered inverse DFT of the forward data, viz,

gn =
1

N

L∑
m=−L

φ̃me−iξnm , (17)

where we have used all the available data points φ̃m including
φ̃0 = r and φ̃−m = φ̃∗

m.

A. Combinatorial algorithm

For relatively small values of N (i.e., ≲ 60), we can use the
following approach. We start with the the initial guess (17) and
round off the r largest elements of g to 1 and the rest to 0. We
refer to this procedure as to “roughening” and write b = R[g],
where R[·] is the roughening operator. The result is a binary
initial guess b with the correct length and popcount, so that
b ∈ Ω(N, r). However, b is not expected to be consistent with
the data. To be sure, we always check whether b satisfies the

http://whale.seas.upenn.edu/vmarkel/CODES/BinDFTInv.html

10

first stop condition (16). If this is not so, as is usually the case,
we invoke a recursive procedure that builds all vectors x such
that d(x, b) = 1, then all vectors such that d(x, b) = 2, etc.
The algorithm stops when either a vector x satisfying (16) is
found (first stop condition) or all vectors x such that d(x, b) ≤
dmax, where dmax is the maximum depth of recursion, have been
tested (second stop condition). If we select dmax = r, then all
vectors in Ω(N, r) are tested, but such exhaustive search is
rarely necessary. In the computational package accompanying
this paper, the default value is dmax = min(10, r), and it can
be tuned by the user if necessary.

We now adduce the pseudo-code for the combinatorial
algorithm.

1: Compute g according to (17) and b as b = R[g];
2: for d = 1 to d = dmax do
3: Initialize χmin ← 109;
4: for i = 1 to r!/d!(r − d)! do
5: Select a new unique combination of d 1s out of r 1s

in b;
6: for j = 1 to (N − r)!/d!(N − r − d)! do
7: Select a new unique combination of d 0s out of

N − r 0s in b;
8: Swap 1s selected in Line 5 with 0s selected in

Line 7 and leave other 1s and 0s in b unchanged;
assign the resulting values to x;

9: Compute χ ≡ χp(x,φ;L);
10: if χ ≤ ϵ then
11: Solution found using Stop Condition 1. Assign

s← x and exit;
12: else
13: if χ < χmin then
14: χmin ← χ;
15: xmin ← x;
16: end if
17: end if
18: end for
19: end for
20: end for
21: Solution found using Stop Condition 2. Assign s← xmin;
22: print Achieved distance to data, χmin;
23: print Recursion depth at which solution was found, dmin;

The two internal loops, which go over all unique d-
combinations of r 1s and N − r 0s in b can be defined
recursively. The problem here is that of generation of all d-
combinations of a set of r or N − r distinguishable (labeled)
objects. To construct all d-combinations of 1s, we define the
recursive procedure next 1(k, l), where k is the number of 1s
already selected and l is the sequential number of the previous
1 selected. Here we assume that all 1s in b are numbered
sequentially from 1 to r (one can imagine a label attached to
each 1). Similarly, 0s can be numbered sequentially from 1
to N − r. The procedure is first invoked as next 1(0, 0). For
generic k and l, next 1(k, l) goes over all available positions
i for the next, (k+1)-th, 1. These positions, i, are in the range
l < i ≤ r−d+(k+1). For each i, the procedure includes the
corresponding 1 into a new combination and then invokes itself
as next 1(k + 1, i). Importantly, the new 1 in a combination

is always selected “to the right” of the previous selection.
Once a full d-combination of 1s is constructed, we have
k = d, and next 1(d, ∗) invokes another recursive procedure
next 0(0, 0), which builds all unique d-combination of 0s
in a similar manner. Once two unique d-combinations have
been constructed, the 0s and 1s in b are swapped and χp is
computed.

The computational complexity of the described algorithm
scales as O(LC), where

C =

dmax∑
d=1

r!(N − r)!

(d!)2(r − d)!(N − r − d)!
. (18)

Every term in this summation is the product of the number of
unique d-combinations of r 1s times the number of unique d-
combinations of N − r 0s, which are indicated in Lines 4 and
6 of the pseudo-code. This product is equal to the number of
all unique vectors x tested at the recursion depth d. It is also
equal to the number of all vectors in Ω(N, r) whose real-space
distance to b is d. The factor of L in O(LC) accounts for the
overhead of computing χp for every x tested. The complexity
C is illustrated in Fig. 8 for several values of N and r as a
function of dmax. It can be seen that C is much smaller than the
complexity of exhaustive search [that is, testing all vectors in
Ω(N, r)] if dmax is significantly smaller than r. For example,
for N = 61, the complexity is still manageable and well below
that of exhaustive search for dmax ≲ 10.

Still, the complexity (18) strongly depends on dmax, and the
choice of this parameter in practical computations is not trivial.
Let us assume that the data φ̃m correspond to some binary
vector xmod with good precision. That is, the stop condition
χp(x,φ;L) ≤ ϵ is met for x = s = xmod and is not met
for any other vector in Ω(N, r). Then, to guarantee finding
the true solution, the recursion must run to dmax = d(b, xmod).
The distance from the initial guess to the model is bounded
from above by r, but otherwise is not known a priori. This
underscores the importance of making the initial guess b as
close to the true solution as possible. In Fig. 9, we plot the
average values ⟨d(b, xmod)⟩ and the corresponding standard
deviations for 106 random model vectors xmod of the length
N = 61 and different values of L as functions of the popcount
r. It can be seen that the typical values of d(b, xmod) are
significantly smaller than r and, as expected, decrease with
L. We emphasize that the results shown in Fig. 9 pertain to
random model vectors without any particular structure. The
vectors in which 1s are grouped, i.e., representing a single
rectangular pulse or a few such pulses tend to have smaller
d(b, xmod). Therefore, the data of Fig. 9 or similar easily-
computable data sets can be useful for estimating the values
of dmax that are sufficient for obtaining the solution.

The algorithm described in this subsection was able to find
all three model vectors (a), (b) and (c) defined above with
L = 1 by using the stop condition χ2 ≤ ϵ = 10−5 (for
the models (a) and (b) ϵ = 10−4 is sufficient). We note that
IP(33, 16, 1) is not uniquely solvable but the algorithm has
found the true solution anyway. This occurred by chance; the
search could have ended up with one of the two false solutions.
Also, IP(35, 17, 1) is not uniquely solvable in general but, as

11

N =31,r=16

N =41,r=21

N =61,r=31

dmax

C

(a)

5 10 15 20 25 30
1

104

108

1012

1016

N =61,r=11

N =61,r=21
N =61,r=31

dmax

C

(b)

5 10 15 20 25 30
1

104

108

1012

1016

Fig. 8. Computational complexity C (18) as a function of the maximum
recursion depth dmax for several values of N and r, as labeled. Thin black lines
indicate the computational complexity of the exhaustive search, i.e., testing
all vectors in Ω(N, r). Panel (a) shows the dependence for several values of
N and the maximum value of r that is allowed for each N . Panel (b) shows
the dependence for N = 61 and several allowed values of r for this N . The
blue lines for N = 61, r = 31 in the two panels are identical.

was mentioned in Remark 1, the particular model vector (c)
is uniquely recoverable with L = 1. In Fig. 10, we show the
intermediate reconstruction steps for model (c) using L = 1
and L = 5. It can be seen that the band-limited initial guess
g does not have a well defined structure at both L = 1 and
L = 5. The “roughened” binary initial guess b has the distance
d(b, xmod) = 8 for L = 1 and d(b, xmod) = 4 for L = 5.

For L = 1, the combinatorial inversion took 8, 40, and 209
seconds to recover models (a), (b), and (c), respectively. In
contrast, MATLAB’s intlinprog function recovered these
models in 60, 518, and 3006 seconds. See the User Guide
of the computational package (in Supplementary Material) for
additional benchmarks and examples.

B. Non-convex optimization

When N increases past ∼ 60, the combinatorial algorithm
of the previous subsection becomes impractical. We now
describe an alternative approach that relies on the continuity
of the conventional (unrestricted and unconstrained) DFT to
define an iterative scheme that does not involve combinatorial
complexity. Let v = (v1, . . . , vN) be a general real-valued
unconstrained vector of length N . We define the cost function
F [v] that quantifies how close v is to a binary vector as

F [v] =

N∑
n=1

v2n(vn − 1)2 . (19)

We then seek to minimize F [v] while keeping v consistent
with the data. To this end, we start with the band-limited
initial guess v = g [defined in (17)] and update v iteratively
according to

v←− v+ q , (20a)

where q = (q1, . . . , qN) is of the form

qn =

M∑
m=L+1

[cm cos(ξmn) + sm sin(ξmn)] . (20b)

Here cm and sm are some real-valued coefficients, which
must be determined at each iteration step independently. It can
be seen that the vector v updated according to (20) remains
consistent with the data. To determine q, we use the steepest
descent approach. The derivatives of F [v+ q] with respect to
the set of coefficients cm, sm evaluated at q = 0 are given by

F (c)
m [v] ≡ F [v+ q]

∂cm

∣∣∣∣
q=0

= 2

N∑
n=1

un cos(ξmn) , (21a)

F (s)
m [v] ≡ F [v+ q]

∂sm

∣∣∣∣
q=0

= 2

N∑
n=1

un sin(ξmn) , (21b)

where

un = vn(vn − 1)(2vn − 1) . (22)

Therefore, we have determined the gradient of F [v] with
respect to the unknown coefficients cm and sm. Denoting
the gradient vector by p = (p1, . . . , pN), we have for the
components:

pn =

M∑
m=L+1

[
F (c)
m [v] cos(ξmn) + F (s)

m [v] sin(ξmn)
]
.

(23)

According to the general strategy of steepest descent, we select
q = αp in the iteration step (20a), where α is a scalar to be
determined. By direct substitution, we find that

f(α) ≡ ∂F [v+ αp]

2∂α
= A0 +A1α+A2α

2 +A3α
3 , (24a)

where

A0 =

N∑
n=1

vn(vn − 1)(2vn − 1)pn =

N∑
n=1

unpn , (24b)

A1 =

N∑
n=1

[2vn(vn − 1) + (2vn − 1)2]p2n , (24c)

A2 = 3

N∑
n=1

(2vn − 1)p3n , A3 = 2

N∑
n=1

p4n . (24d)

The function F [v + αp] is a fourth-order polynomial in α
with a positive senior coefficient. Consequently, either it has
one real minimum or two minima and one maximum. These
special values of α can be determined by solving the cubic
equation f(α) = 0. If the cubic has a single real root α1,
we set α = α1. If there are three real roots α1 ≤ α2 ≤ α3,
then F [v+ αp] has a maximum at α2 and two minima at α1

and α3. To avoid “jumping” over a maximum, we set α = α1

if α2 > 0 and α = α3 otherwise. This completely defines
each iteration step and guarantees that F [v] is decreased in

http://whale.seas.upenn.edu/vmarkel/CODES/BinDFTInv.html

12

Popcount, r

〈d(b, xmod)〉
N = 61, L = 1

30252015105

15

10

5

0

Popcount, r

〈d(b, xmod)〉
N = 61, L = 3

30252015105

Popcount, r

〈d(b, xmod)〉
N = 61, L = 5

30252015105

Fig. 9. Average distance between random models xmod and the corresponding (roughened) initial guess b, ⟨d(b, xmod)⟩, for 104 random vectors xmod of
length N = 61 each, shown as functions of r for different values of L. Error bars are drawn at the level of one standard deviation.

(a) Initial guess g, L = 1

1

0

1

0

(b) Initial guess g, L = 5

1

0

1

0

(c) b = R[g], L = 1

1

0

1

0

(d) b = R[g], L = 5

1

0

1

0

(identical to model)
(e) Reconstruction s for both L = 1 and L = 5

1

0

351

1

0

Fig. 10. Intermediate steps in the reconstruction of model (c) with N = 35,
r = 17 and L = 5. Initial guesses for L = 1 g (a) and L = 5 (b); initial
guess after roughening, b = R[g], for L = 1 (c) and L = 5 (d); and the
reconstruction s (e), the same for both values of L and identical to the model.

each iteration until a local minimum of F [v] is reached. The
condition for the local minimum is

N∑
n=1

un cos(ξmn) =

N∑
n=1

un sin(ξmn) = 0 (25)

for L < m ≤M ,

where un are defined in (22). The steepest descent algorithm
described here can find a local minimum satisfying the above
condition efficiently and with high precision. Note that, in
most iteration steps, the cubic has only one real root. The
problem is however that F [v] has many local minima. It is
unlikely that any given local minimum is close to the true
solution.

To overcome the above difficulty, we can adopt the follow-
ing stochastic approach. Once a local minimum v̄k is found (k
labels different local minima), we compute χp(R[v̄k],φ;L)
and check whether the first stop condition 16 has been
satisfied. If so, we have found the solution s = R[v̄k]. If not,
we start from the deepest local minimum found so far, v̄min,
and perturb it by adding a vector qrand of the form (20b) with a
given length and random direction (in the space of coefficients
cm, sm). In this way, we select a new initial guess for v, from
which we run the steepest descent algorithm again. Depending
on the length and direction of qrand, we will end up either in
the same or a different local minimum. To avoid being trapped
in the same local minimum, we gradually increase the length
of random jumps.

Finally, a functionality is provided in the package to define
the stop condition in terms of F [v] itself rather than in terms
of χp. Since the latter approach does not require computation
of χp, it is slightly faster. The default setting is however to
use (16). Finally, the algorithm stops after a certain amount
of local minima has been found and reports the deepest local
minimum (second stop condition).

A simplified pseudo-code for the non-convex optimization
algorithm is presented below. Some parts of the algorithm are
stated only briefly and some additional logic, which is needed
to avoid mistakes and improve precision and speed, is not
shown to avoid excessive complexity. However, conceptually
important steps of the algorithm are all shown.

1: Define constants: small precision-related constant δ, ran-
dom jump step length (initial value S = 1), number
of iterations before S is incremented iinc (typical value
iinc = 1000), and the increment of S, ∆. These and other
constants are initialized from input parameter files.

2: Compute g according to (17);
3: Initialize v← g;
4: Initialize χmin ← 109;
5: for i = 1 to imax do
6: Compute F0 = F [v];

13

7: Initialize test← True;
8: while test do
9: Compute steepest descent direction p = p[v] accord-

ing to (21)-(23);
10: Compute the length of the steepest descent step α by

solving the cubic (24a) and choosing the distance to
the closest minimum along the search direction;

11: Make the steepest descent step v← v+ αp;
12: Compute F = F [v];
13: Evaluate t← F0/F − 1;
14: if t > δ then
15: F0 ← F ;
16: else
17: test = False;
18: end if
19: end while
20: Check the local minimum condition (25). If local min-

imum cannot be reached, report error and exit;
21: Compute x = R[v];
22: Compute χp = χp(x,φ;L);
23: if χp < ϵ then
24: Stop condition 1. Solution has been found. Assign

s← x and exit;
25: end if
26: if χp < χmin then
27: χmin ← χp;
28: vmin ← v;
29: end if
30: if mod (i, iinc) = 0 then
31: Increase the random jump step length as S ← S+∆;
32: end if
33: Construct a vector q of the form (20b) of unit length and

random direction in the space of cm, sm, L < m ≤M ;
34: Make random jump v← vmin + Sq;
35: end for
36: Solution found using Stop Condition 2. Assign s ←
R[vmin];

37: print Achieved distance to data, χmin;

Some variations of this algorithm, as implemented in the
computational package, include the following. (i) If local
minimum in Line 20 is not verified with required precision, the
code will attempt to approach the minimum closer by moving
along several deterministic directions parallel to the axes or
multi-dimensional diagonals in the space of cm, sm. Only if
after several attempts the local minimum could not be verified,
the code reports an error. This error occurs (due to round-
off errors) extremely rarely and can be fixed by changing the
precision-related constants. Note that the functional F [v] only
has local minima and maxima but not saddle points. (ii) The
random jumps in Line 34 can originate not only from the
deepest local minim found (default) but also from the initial
guess, i.e., v ← g + Sq or from the local minimum most
recently found, v← v+ Sq. In the latter case, the search for
solution is a random walk over the local minima of F [v]. In
the first (default) case, the random walk is restricted so that
the next stop always has a smaller χp. (iii) The algorithm can
use a different formulation of the stop condition 1, which is

(a) Initial guess g

1

0

1

0

(b) Reconstruction s (identical to model)
1

0

199991

1

0

Fig. 11. Reconstruction with N = 199, r = 90 and L = 29. Initial guess
g (a) and the reconstruction s (identical to the model xmod) (b).

based on smallness of F rather than χp. (iv) Finally note that
the current implementation of the codes relies on the L2 norm.
This can be changed to L1 or L∞ norms as explained in the
User Guide.

To illustrate the method, we have reconstructed a vector
of the length N = 199 with r = 90 using L = 29 (so
that the ratio L/M = 29/99 ≈ 1/3) and the stop condition
χ2 ≤ ϵ = 10−5 (if the DFT data are rounded-off to 4
significant figures, solution is still found fast with ϵ = 0.002).
The initial guess g for this simulation is shown in Fig. 11(a)
and the reconstruction (identical to the model) in Fig. 11(b).
If we apply the roughening operation directly to the initial
guess, b = R[g], we would obtain d(b, xmod) = 8. Although
the roughened initial guess and the model are not too far
apart in real space, the complexity of finding the solution
by the combinatorial method of Section VI-A is O(1024)
operations. This is beyond the reach for any modern computer.
The optimization method of this subsection however finds
the solution in under one minute. In general, however, it is
difficult to state a general condition of convergence to the
true solution or estimate the computational complexity of the
method described in this subsection. We note that the method
has several adjustable parameters and changing them can help
in situations when convergence appears to be slow. Additional
details are provided in the User Guide of the computational
package.

VII. DISCUSSION AND CONCLUSIONS

We have shown that binary compositional constraints are
powerful priors that allow one to obtain a well-pronounced
super-resolution effect. In particular, we have proved that a
band limited DFT of a binary vector of length N is uniquely
invertible from the knowledge of just two complex DFT coef-
ficients – the zeroth and the first – if N is prime. If N has two
prime factors, then Theorem 2 tells us how many additional
DFT coefficients must be known to guarantee uniqueness.
The above result can be useful if applied to analysis of two-
dimensional images.

14

Although Theorems 1 and 2 establish the sufficient condi-
tion for invertibility assuming only that the unknown vector
is consistent with the data, many (but not all) binary vectors
are uniquely recoverable even if conditions of the Theorems
do not hold.

We have further investigated stability of inversion and
conditions under which reconstructing a binary vector from
a limited set of DFT coefficients is practically feasible. Pre-
liminary numerical data indicate that stable reconstructions
can be obtained when about 1/3 of all DFT coefficients
are known. This entails an approximately three-fold super-
resolution effect.

Although binarity is a powerful constraint, devising practical
reconstruction algorithms is a nontrivial task. We provided and
demonstrated two such algorithms in the paper. The first (com-
binatorial) algorithm is guaranteed to find a solution of the NP-
hard problem if run consistently but might become prohibitive
due to large computational time. Still, it involves fewer or
much fewer operations than exhaustive search. This approach
is applicable to vectors with N ≲ 100. For longer vectors,
we have developed an algorithm based on optimization of
the non-convex cost function F [·] (19). The local minima of
this function can be easily found using the steepest descent
approach. However, not every local minimum of a non-convex
function is a global minimum. To overcome this difficulty,
we have introduced random perturbations, which allow one to
sample many local minima and finally find one with sufficient
depth, which then coincides with the global minimum. We
note that convexization of the inverse problem, that is, finding
a relevant convex cost function, proved to be difficult and is
likely impossible.

Although we have obtained numerical reconstructions for
vectors up to N = 199 with about 1/3 of DFT coeffi-
cients considered to be known, it is clear that the developed
algorithms are not optimal and leave a lot of space for
improvement. We hope that, with further refinements, the
theoretical results of this paper can be used to obtain the super-
resolution effect in two-dimensional black-and-white images.
Extending the theoretical results and algorithm performance
to two-dimensional binary images is highly related to discrete
tomography [43]. This would allow for future applications in
image processing, nondestructive testing [44], X-ray crystal-
lography [45], and medical imaging [46]. One key challenge to
overcome is to adapt our inversion algorithms to inversion of
two-dimensional DFT. While the N = 199 inversion runs fast
in one-dimension, further algorithm development is required
for achieving fast super-resolved inversion of 199 × 199
images. Refinement of the cutting planes approach (applicable
to both combinatorial and optimization algorithms) appears to
be a promising way forward.

REFERENCES

[1] A. A. Maznev and O. B. Wright, “Upholding the diffraction limit in the
focusing of light and sound,” Wave Motion, vol. 68, p. 182–189, 2017.

[2] M. Born and E. Wolf, Principles of Optics. Cambridge, 1999.
[3] K. Nasrollahi and T. B. Moeslund, “Super-resolution: a comprehensive

survey,” Machine Vision and Applications, vol. 25, pp. 1423–1468, 2014.
[4] Y. Romano, M. Elad, and M. Peyman, “The little engine that could:

Regularization by denoising (RED),” SIAM J. Imag. Sci., vol. 10, p.
1804–1844, 2017.

[5] D. Watzenig, “Bayesian inference for inverse problems - statistical
inversion,” e & i Elektrotechnik und Informationstechnik, vol. 124, pp.
240–247, 2007.

[6] H. W. Engl and P. Kugler, “Nonlinear inverse problems: Theoretical
aspects and some industrial applications,” in Multidisciplinary Methods
for Analysis Optimization and Control of Complex Systems Mathematics
in Industry. Springer, 2005, vol. 6, pp. 3–47.

[7] D. Rajan and S. Chaudhuri, “Generalized interpolation and its applica-
tion in super-resolution imaging,” Image and Vision Computing, vol. 19,
pp. 957–969, 2001.

[8] C. V. Jiji, P. Neethu, and S. Chaudhuri, “Alias-free interpolation,” in
Compute Vision - ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz,
Eds. Springer, 2006, pp. 255–266.

[9] R. L. Lagendijk and J. Biemond, Iterative identification and restoration
of images. Springer, 1990.

[10] X. Liu, D. Zhai, D. Zhao, G. Zhai, and W. Gao, “Progressive image
denoising through hybrid graph laplacian regularization: A unified
framework,” IEEE Trans. Imag. Proc., vol. 23, pp. 1491–1503, 2014.

[11] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, pp. 259–268, 1992.

[12] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, p.
183–202, 2009.

[13] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Info. Theor.,
vol. 53, pp. 4655–4666, 2007.

[14] T. Blumensath, “Accelerated iterative hard thresholding,” Sign. Proc.,
vol. 92, pp. 752–756, 2012.

[15] ——, “Compressed sensing with nonlinear oservations and related
nonlinear optimization,” IEEE Trans. Info. Theor., vol. 59, pp. 3466–
3474, 2013.

[16] B. Deutsch, R. Reddy, D. Mayerich, H. Bhagrava, and P. S. Carney,
“Compositional prior information in computed infrared spectroscopic
imaging,” J. Opt. Soc. Am. A, vol. 32, pp. 1126–1131, 2015.

[17] L. Pfister, R. Bhargava, Y. Bresler, and P. S. Carney, “Composition-aware
spectroscopic tomography,” Inverse Problems, vol. 36, p. 115010, 2020.

[18] Z. Liang, “Spatiotemporal imaging with partially separable functions,” in
2007 4th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro. IEEE, 2007, pp. 988–991.

[19] A. Corlu, J. Durduran, R. Choe, M. Schweiger, E. Hillman, S. Arridge,
and A. Yodh, “Uniqueness and wavelength optimization in continuous-
wave multispectral diffuse optical tomography,” Opt. Lett., vol. 28,
no. 23, pp. 2339–2402, 2003.

[20] ——, “Diffuse optical tomography with spectral constraints and wave-
length optimization,” Appl. Opt., vol. 44, no. 11, pp. 2082–2090, 2005.

[21] T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini,
A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffrac-
tion microscopy at λ/10 resolution,” Optica, vol. 3, p. 609, 2016.

[22] J. A. Tropp, “On the linear independence of spikes and sines,” J. Fourier
Anal. Appl., vol. 14, p. 838, 2008.

[23] A. Moitra, “Super-resolution, extremal functions and the condition
number of vandermonde matrices,” in Proceedings of the Forty-Seventh
Annual ACM Symposium on Theory of Computing. New York, NY:
Association for Computing Machinery, 2015, p. 821–830.

[24] J. Bailey, M. A. Iwen, and C. V. Spencer, “On the design of deterministic
matrices for fast recovery of Fourier compressible functions,” SIAM J.
Matrix Analys. Appl., vol. 33, pp. 263–289, 2012.

[25] T. Tao, “An uncertainty principle for cyclic groups of prime order,”
Math. Res. Lett., vol. 12, pp. 121–127, 2005.

[26] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge
Univ. Press, 2009.

[27] F. Oggier, “Algebraic Methods for Channel Coding,” EPFL, Tech. Rep.,
2005.

[28] H. B. Mann, “On linear relations between roots of unity,” Mathematika,
vol. 12, pp. 107–117, 1965.

[29] J. Conway and A. Jones, “Trigonometric Diophantine equations (On
vanishing sums of roots of unity),” Acta Arithmetica, vol. 30, pp. 229–
240, 1976.

[30] H. W. Lenstra, “Vanishing sums of roots of unity,” in Proc. Bicentennial
Congress Wiskundig Genootschap, Part II. Vrije Univ. Amsterdam,
1978, pp. 249–268.

[31] T. Y. Lam and K. H. Leung, “Vanishing sums of mth roots of unity in
finite fields,” Finite Fields and Their Applications, vol. 2, pp. 422–438,
1996.

[32] ——, “On vanishing sums of roots of unity,” J. Algebra, vol. 224, pp.
91–109, 2000.

15

[33] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedland, and S. Roy,
“Level-set methods for convex optimization,” Math. Prog., vol. 174, pp.
359–390, 2018.

[34] S. Martello, D. Pisinger, and P. Toth, “New trends in exact algorithms for
the 0–1 knapsack problem,” Europ. J. Oper. Res., vol. 123, pp. 325–332,
2000.

[35] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations. Springer, 1972, pp. 85–103.

[36] E. Balas and M. Perregaard, “A precise correspondence between lift-
and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts
for 0-1 programming,” Mathematical Programming, no. 2, pp. 221–245,
2003.

[37] K. Koiliaris and C. Xu, “Faster pseudopolynomial time algorithms for
subset sum,” ACM Trans. Alg. (TALG), vol. 15, pp. 1–20, 2019.

[38] K. Bringmann, “A near-linear pseudopolynomial time algorithm for
subset sum,” in Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2017, pp. 1073–1084.

[39] T. M. Chan, “Approximation schemes for 0-1 knapsack,” in 1st Sym-
posium on Simplicity in Algorithms (SOSA 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[40] C. Boutsidis, M. W. Mahoney, and P. Drineas, “An improved approxima-
tion algorithm for the column subset selection problem,” in Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2009, pp. 968–977.

[41] N. Howgrave-Graham and A. Joux, “New generic algorithms for hard
knapsacks,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2010, pp. 235–
256.

[42] K. Ireland, M. Rosen, and M. Rosen, A Classical Introduction to Modern
Number Theory. Springer, 1990.

[43] G. T. Herman and A. Kuba, Discrete tomography: Foundations, algo-
rithms, and applications. Springer, 2012.

[44] S. Krimmel, J. Baumann, Z. Kiss, A. Kuba, A. Nagy, and J. Stephan,
“Discrete tomography for reconstruction from limited view angles in
non-destructive testing,” Electronic Notes in Discrete Mathematics,
vol. 20, pp. 455–474, 2005.

[45] A. Alpers, H. F. Poulsen, E. Knudsen, and G. T. Herman, “A discrete
tomography algorithm for improving the quality of three-dimensional
X-ray diffraction grain maps,” J. Appl. Crystallography, vol. 39, pp.
582–588, 2006.

[46] G. T. Herman and A. Kuba, “Discrete tomography in medical imaging,”
Proceedings of the IEEE, vol. 91, pp. 1612–1626, 2003.

APPENDIX A
PROOF OF LEMMA 1

Suppose x is not pairwise 1-distinguishable from some
distinct vector y in Ω(N, r). By definition, we have x̃1 = ỹ1.
Following the same notation as in the proof of Theorem 1,
we define z = x− y and conclude that (10) must hold, where
each zn takes a value in {0,±1}. As x ̸= y, not all entries of
zn can be 0. Furthermore, as x and y are binary vectors with
the same popcount, by construction z̃0 = 0.

We will show that z either has an equivalent number of p-
gons and “negative” p-gons (a polygon with entries of −1), or
that z has an equivalent number of q-gons and “negative” q-
gons. As each positive p- or q-gon in z corresponds to a p- or
q-gon in x (and an empty p- or q-gon in y), and each negative
p- or q-gon in z corresponds to an empty p- or q-gon in x

(and a p- or q-gon in y), this will prove the forward direction.
We consider two cases: p = q and p ̸= q. First, consider the

case p ̸= q. Letting ζp and ζq be primitive roots of unity of p-
th and q-th order, respectively, we rewrite (10) using Theorem
2.3 in [30] as

0 =

q∑
ℓ=1

p∑
k=1

z(kℓ)ζ
k
p ζ

ℓ
q . (26)

Here we have introduced the composite index (kℓ) from 1 to
pq. Note that as ζkp ζ

ℓ
q = ζpℓ+qk

N , by fixing either a value of ℓ or

k, we vary over roots of unity the make a regular p- or q-gon,
respectively. We can now apply Lemma 1 of [29] to conclude
that (26) holds if and only if the inner sum is constant for all
ℓ. That is, for all ℓ,

p∑
k=1

z(kℓ)ζ
k
p =

p∑
k=1

z(k1)ζ
k
p .

Similar to the proof of Theorem 1, as ζp is a root of unity of
a prime order, this equation can only hold if, for each ℓ, there
is a fixed constant difference between z(kℓ) and z(k1) for all
k. Thus we have, for all k and ℓ,

z(kℓ) − z(k1) = Cℓ , (27)

where each Cℓ ∈ {0,±1,±2}. Now, by summing over all k
and ℓ, we obtain

p∑
k=1

q∑
ℓ=1

(
z(kℓ) − z(k1)

)
=

p∑
k=1

q∑
ℓ=1

Cℓ ,

−q
p∑

k=1

z(k1) =p

q∑
ℓ=1

Cℓ ,

where, in the second line, we have used the fact that z̃0 = 0.
As p and q are relatively prime,

∑
z(k1) must be a multiple of

p. As each zn is in {0,±1}, we must have
∑

z(k1) in {0,±p}.
We break this into two cases.

If
∑

z(k1) = ±p, then z(k1) is constant for all k with a
value of 1 or -1. By our indexing and Definition 4, z contains
either a p-gon or a negative p-gon. By (27), for 2 ≤ ℓ ≤ q,
z(kℓ) must form either a p-gon, an empty p-gon, or a negative
p-gon. As z̃0 = 0, there must be an equivalent number of
positive and negative p-gons, as desired.

If
∑

z(k1) = 0, we first note that, if all the z(k1) = 0,
then since not all entries of zn can be 0, there must be at
least one nonzero value of Cℓ in (27). This yields either a
positive or negative p-gon. Identical reasoning (z̃0 = 0) leads
to an equivalent number of positive and negative p-gons in
this case.

The remaining option is for z(k1) to have equal number of
+1 and -1’s. In this case, as z(kℓ) can only have entries in
{0,±1}, Cℓ must be equal to 0 in Eq. (27) for all ℓ. By our
indexing, values of k for which z(k1) = ±1 yield q-gons or
“negative” q-gons, respectively. As we have equal number of
+1 and -1 values, we have an equivalent number of positive
and negative q-gons, finishing the proof in the p ̸= q case.

For the p = q case, we apply Theorem 2.2 in [30], which
states that the sum in (10) vanishes if and only if, for all
1 ≤ j ≤ p,

0 =

p∑
n=1

z(jn)ζ
n
p ,

where (jn) is a composite index with n referring to p-periodic
locations in the original vector z. As in the proof of Theorem
1, this implies that for each j, either z(jn) is constant for all
n with a value of 0 or ±1. Similar to the previous case, as
not all entries zn can be 0, there must be at least one value of
j for which z(jn) = ±1. Applying the condition z̃0 = 0 then
results in equivalent number of positive and negative p-gons.

16

For the reverse direction, we note that, if x contains pairs
of p- or q-gons and empty p- or q-gons, then y, which flips
the full and empty p- or q-gons and agrees at all other entries
with x, satisfies x̃0 = ỹ0 and x̃1 = ỹ1.

APPENDIX B
PROOF OF LEMMA 2

The case L = 1 is a direct consequence of Lemma 1. For
L > 1, Lemma 1 states that, if y is not 1-distinguishable from
x, then z = x− y has a pair of positive and negative L-gons.
This may not be the only such pair of L-gons. However, the
proof of Lemma 1 showed that z cannot also have any positive
and negative L′-gon pairs for L′ ̸= L. We will rewrite the DFT
coefficients of z by grouping the roots of unity which form
each L-gon together. (with all other entries being 0). Each
L-gon uses the roots (for some ℓ)

{ζℓ+kN/L
N : 1 ≤ k ≤ L} = {ζℓNζkL : 1 ≤ k ≤ L} . (28)

We thus write

z̃n =
(∑

ℓ∈S+

ζℓN −
∑
ℓ∈S−

ζℓN

) L∑
k=1

ζnkL , (29)

where S+ and S− are index sets that track the appropriate
positive and negative coefficients for the polygons. As the
polygons come in pairs, |S+| = |S−|. We claim that

L∑
k=1

ζnkL =

{
L , n = L

0 , 1 ≤ n < L
(30)

The case n = L is straightforward. As ζL is an L-th root of
unity, ζkLL = 1 for all k. For n < L, we can analyze the sums
using a group theory approach.

As ζL is a generator of the cyclic group of order L, we
have ζnkL = ζnk

′
L if and only if nk ≡ nk′ (mod L) [42]. This

is equivalent to

k ≡ k′
(
mod

L

gcd(L, n)

)
. (31)

As L must be prime (it is either p or q) and n < L,
gcd(L, n) = 1. As 1 ≤ k, k′ ≤ L, (31) implies that
ζnkL ̸= ζnk

′
L for all k and k′. Thus, (30) is just a permuted

sum of all L-th roots of unity, which is still 0.
With (30) now verified, we can apply this to (29) as

z̃n =

{
L
(∑

ℓ∈S+ ζℓN −
∑

ℓ∈S− ζℓN

)
, n = L

0 , 1 ≤ n < L
. (32)

All that is left to do is to verify that the sum for z̃L in (32)
is nonzero. This is a sum of roots of unity of N th order
with equal number of coefficients of ±1. As in the proof of
Lemma 1, this term vanishes if and only if ζℓN ∈ S+ and the
ζℓN ∈ S− are all used to form an equivalent number of p- and
q-gons.

If ζℓN ∈ S+, then ζ
ℓ+kN/L
N /∈ S+ for all k as these rotations

would give the same L-gon. Thus by the form given by (28),
S+ cannot have any L-gons. Likewise, S+ cannot have any
L′-gons, as this would require |S+| = L′. This implies there
are L′ many L-gons in z. As L′ can only be p or q, LL′ = N

implying that x̃0 = N which is not true. Identical reasoning
applies to S−, and hence z̃L ̸= 0. Therefore, x is pairwise
L-distinguishable from all other vectors in Ω(N, r).

Howard Levinson received the B.A. degree in
mathematics from Tufts University in 2011, and the
Ph.D. degree in Applied Mathematics and Computa-
tional Science from the University of Pennsylvania
in 2016. He was a James Van Loo Postdoctoral
Assistant Professor at the University of Michigan
from 2016 to 2019. He is currently an Assistant
Professor in the Department of Mathematics and
Computer Science at Santa Clara University. His
current research interests include inverse problems,
imaging, and fast algorithms.

Vadim Markel earned an undergraduate degree in
Physics with specialization in Quantum Optics from
Novosibirsk State University in 1987. From 1987
through 1993, he worked at the Institute of Automa-
tion and Electrometry of the Siberian Branch of the
Russian Academy of Sciences conducting research
in nonlinear and statistical optics. He received PhD
in Physics from New Mexico State University in
1996 and continued with postdoctoral studies in
quantum many-body theory at the University of
Georgia (1998-1999) and in inverse problems and

imaging at the Washington University–St. Louis (1999-2001). Dr. Markel
has spent two years (2015-2017) as an A*MIDEX Excellence Chair at the
University of Aix-Marseille and Institut Fresnel in France. He is currently
an Associate Professor of Radiology and Bioengineering (secondary) and a
member of Graduate Group in Applied and Computational Mathematics at
the University of Pennsylvania. In he was selected as an Outstanding Referee
in 2016 by the American Physical Society, and in 2018 by the Institute of
Physics (UK).

	Introduction
	Binary DFT
	A numerical example
	Uniqueness of inverse solutions
	Stability of inversion
	Inversion
	Combinatorial algorithm
	Non-convex optimization

	Discussion and conclusions
	References
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Lemma ??
	Biographies
	Howard Levinson
	Vadim Markel

