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Abstract – The bulk-boundary correspondence (b-bc) principle states that the presence and
number of evanescent bandgap modes at an interface between two periodic media depend on
the topological invariants (Chern numbers in 2D or Zak phases in 1D) of propagating modes at
completely different frequencies in all Bloch bands below that bandgap. The objective of this
letter is to explain, on physical grounds, this connection between modes with completely different
characteristics. We assume periodic lossless 1D structures and lattice cells with mirror symmetry;
in this case the Zak phase is unambiguously defined. The letter presents a systematic study of
the behavior of electromagnetic Bloch impedance, defined as the ratio of electrical and magnetic
fields in a Bloch wave at the boundary of a lattice cell. The impedance-centric view confers
transparent physical meaning on the bulk-boundary correspondence principle. Borrowing from
the semiconductor terminology, we classify the bandgaps as p- and n-type at the Γ and X points,
depending on whether the Bloch impedance has a pole (p) or a null (n) at the bottom of that
gap. An interface mode exists only for pn-junctions per our definition. We expect these ideas to
be extendable to problems in higher dimensions, with a variety of emerging applications.

Introduction. – One of the central questions in topo-
logical physics is existence of interface modes between two
periodic structures at certain frequencies (energies). The
bulk-boundary correspondence principle states that the
presence of such modes – and, in higher dimensions, their
number – depend on the topological invariants (Chern
numbers in 2D or Zak phases in 1D) of all Bloch bands
below the gap [1–6]. Starting from Hatsugai’s work in the
early 1990s [3,4], this principle was proved in some special
cases and, typically, for special boundary conditions: e.g.,
Harper’s equation related to the Quantum Hall effect, the
Su-Schrieffer-Heeger (SSH) model, and one-dimensional
(1D) structures with two layers per lattice cell [3–5].

A baffling feature of the bulk-boundary correspondence
principle is that the properties of evanescent modes in a
band gap somehow depend on the properties of propagat-
ing modes at completely different frequencies. The purpose
of this letter is to demystify this connection. To this end,
we, following Refs. [5, 7, 8], adopt an impedance-centric
view of the topological properties of waves in periodic
structures. Thus, central in our analysis is a systematic
study of the behavior of electromagnetic Bloch impedance
Z(x, ω) (not to be confused with the intrinsic impedance
of a homogeneous material ζ =

√
µ/ϵ). Z(x, ω) is defined

as the ratio of the electric and magnetic fields e(x) and
h(x) of a Bloch wave at a given frequency ω. Particular
attention is paid to the value Z(0, ω), x = 0 being the lat-
tice cell boundary and also, for two abutting media, their
interface. In the latter case, the Bloch impedances are in
general different and will be denoted with Z1,2(0, ω).

Throughout the letter, we assume lossless materials and
lattice cells with a mirror symmetry. It is in this case
that topological properties manifest themselves in their
purest form; in particular, the Zak phase is unambigu-
ously defined [1,9]. A great deal of interest in more general
situations notwithstanding – in particular, higher dimen-
sions and non-Hermitian systems ( [6,10,11] and references
therein), – rigorous and generalizable results for simpler
models may serve as a foundation for the analysis of more
complex ones.

Consider two semi-infinite periodic 1D structures with a
common interface x = 0 (Fig. 1), and let the frequency ω
be in a band gap of both media (which we assume to have
overlapping band gaps). A key question is how the pos-
sible presence of an evanescent boundary mode is related
to the properties of propagating waves at lower frequen-
cies. A conceptual flow of our analysis is illustrated in
Fig. 2. The starting point is to note the importance of the
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Fig. 1: Schematic illustration of an evanescent mode between
two semi-infinite periodic 1D structures with a common inter-
face.

boundary value of the Bloch wave impedance Z(0, ω) [5].
Indeed, Maxwell’s boundary condition for the existence of
an evanescent edge mode is Z1(0, ω) + Z2(0, ω) = 0.
Crucially, at the Γ and X points within any band gap,

Z(0, ω) turns out to be imaginary (in lossless media), and
its imaginary part ZI(0, ω) decreases monotonically with
ω in one of the two ways: either as +∞ → 0 (pole-to-
null) or as 0 → −∞ (null-to-pole). Furthermore, poles
of Z(0, ω) at the Γ and X points correspond to Bloch
modes with a symmetric field e(x), while nulls correspond
to antisymmetric modes, where symmetry is defined as
e(x) being even, e(x) = e(−x) for all x. At the same time,
for cells with a mirror symmetry, the Zak phase of a Bloch
band is related to the parity change of the modes between
the Γ and X points across that band [1, 9] and, hence, to
either a null-to-pole or pole-to-null transition of Z(0, ω).
The bulk-boundary correspondence principle is derived by
connecting all these observations.

Preliminaries (1D electromagnetic problem). –
We assume normal propagation of monochromatic waves
in a medium whose properties vary only in the x-direction;
each of the fields e(x), h(x) depends only on x and has
only one Cartesian component. The complex amplitudes
e(x) and h(x) satisfy the ordinary differential equations,

e′(x) = i kµ(x)h(x) , h′(x) = i kϵ(x)e(x) , (1)

in the Gaussian system under the exp(−i ωt) phasor con-
vention; k = ω/c is the wave number. The dielectric
permittivity ϵ(x) and magnetic permeability µ(x) are as-
sumed to be real, strictly positive, bounded away from
zero, lattice-periodic, and possess mirror symmetry:

ϵ(x+ a) = ϵ(x) , µ(x+ a) = µ(x) ;

ϵ(a− x) = ϵ(x) , µ(a− x) = µ(x) .
(2)

These properties hold for all x, x + a, a − x within a
given medium, and a is its lattice period. Dependence
of physical quantities on the frequency ω may not always
be explicitly indicated. System (1) can be converted to a
second-order equation for either of the fields,

Lee(x)
def
=

1

ϵ(x)

d

dx

1

µ(x)

de(x)

dx
+ k2e(x) = 0 (3)

Fig. 2: Conceptual flow of analysis.

Lhh(x)
def
=

1

µ(x)

d

dx

1

ϵ(x)

dh(x)

dx
+ k2h(x) = 0 . (4)

The standard Bloch boundary conditions read

e(a) = λe(0) = exp(i qa) e(0) ,

h(a) = λh(0) = exp(i qa)h(0) ,
(5)

where λ = exp(i qa) is the eigenvalue and q is the Bloch
wave number. Both quantities are, in general, complex,
but under the assumptions of this letter, q is either real or
imaginary. It is standard to restrict the real part of q to
the first Brillouin zone (FBZ):

FBZ: − π < Re(qa) ≤ π . (6)

An essential role in the analysis will be played by the
impedance Z(x) and its inverse, the admittance Y (x), of
a given Bloch wave. These quantities are defined as

Z(x)
def
= e(x)/h(x) , Y (x)

def
= h(x)/e(x) . (7)

Especially important will be the boundary values Z(0) =
Z(a) and Y (0) = Y (a). If either h(x) = 0 or e(x) = 0,
we say that either the impedance or the admittance has a
pole. Poles and nulls of the the boundary values h(0) and
e(0) at the Γ and X points are of particular interest.

Properties of the transfer matrix. – It is conve-
nient to merge e(x) and h(x) into a single vector

ψ(x) =

[
e(x)
h(x)

]
. (8)

Since Eqs. (1) are linear in the fields, the vector ψ(x) is
related to ψ(0) by a linear transformation

ψ(x) = T (x)ψ(0) , (9)

where T (x) is a 2 × 2 transfer matrix. The columns of
T (x) are the two fundamental solutions ψ10(x), ψ01(x) of
(3) satisfying the boundary conditions

ψ10(0) =

[
1
0

]
, ψ01(0) =

[
0
1

]
. (10)
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For multilayered structures, a closed form of the transfer
matrix can be found by matching the plane-wave solutions
to (3), (4) layer-by-layer [12]. For a general variation of
ϵ(x) and µ(x), various approximations can be used. The
special value T (a) is known as the monodromy matrix ; its
properties, summarized below, play an important role in
our analysis.

1. For a single homogeneous layer of width δ, refractive
index n =

√
ϵµ and intrinsic impedance ζ =

√
µ/ϵ,

the transfer matrix is of the form

T (δ) =

[
cos(nkδ) i ζ sin(nkδ)

i ζ−1 sin(nkδ) cos(nkδ)

]
. (11)

2. For a general (not necessarily homogeneous) lossless
cell of width a, the monodromy matrix is of the form

T (a) =

[
α i β
i γ α

]
(12)

with real α, β, γ.

3. The determinant of T (a) is equal to unity, viz,

detT (a) = α2 + βγ = 1 . (13)

4. The characteristic equation of T (a) is

λ2 − 2αλ+ 1 = 0 (14)

with the roots

λ1,2 = α±
√
α2 − 1 . (15)

Note that λ1λ2 = 1. The real reciprocal roots for
|α| > 1 correspond to a band gap, while the complex
conjugate roots for |α| < 1 correspond to a pass band.

5. For α = 1 or α = −1, it is true that qa = 0 or
|qa| = π, respectively, while the monodromy matrix
acquires the Jordan form

T (a) =

[
1 i β
0 1

]
or T (a) =

[
1 0
i γ 1

]
. (16)

6. In a band gap, the impedance Z(0) of an evanescent
Bloch mode is imaginary, Z(0) = i ZI(0), with

ZI(0) = −sgn(α) sgn(β)
√
−β/γ , (17)

and sgn(β) = −sgn(γ). The sign of ZI(0) can vary.

Since admittance and impedance are inverses of each
other, similar results hold for the admittance Y (0). Proofs
of the above assertions are outlined below.

1. Expression (11) for a homogeneous layer follows from
writing e(x) = c1 exp(i knx)+c2 exp(−i knx), finding
the coefficients c1, c2 from the boundary conditions
at x = 0, and then substituting x = δ.

2. For a single homogeneous layer, (12) is evident from
(11). If T (a) of a given structure has the form (12),
then adding two layers of width δ symmetrically yields
T (a + 2δ) = T (δ)T (a)T (δ). Direct calculation shows
that this product is also of the form (12); hence (12)
follows by induction for a general symmetric layered
cell. Smooth spatial variation of ϵ(x) and µ(x) can be
viewed as a limiting case of that, whereby the layer
thicknesses tend to zero.

3. Given that T (x) = [ψ10(x), ψ01(x)]
T , direct differen-

tiation yields [detT (x)]′ = 0 and, since T (0) is the
identity matrix, detT (x) = 1 [7, 8]. Alternatively,
this result follows from the Abel–Liouville–Jacobi–
Ostrogradskii identity for the Wronskian of a linear
system [13, §8.4].

4. Eqs. (14) and (15) follow from (13) by straightforward
algebra.

5. Assume that α = ±1. Since detT (a) = α2 + βγ = 1
according to (13), we have βγ = 0, which implies the
Jordan form (16).

6. By definition of the transfer matrix (9), we have

(α− λ) e(0) + iβh(0) = 0 . (18)

It follows that

Z(0) = e(0)/h(0) = −iβ/(α− λ) . (19)

An evanescently decaying mode has the Bloch eigen-
value |λ| < 1. Then, from (15) and (13),

λ = α− sgn(α)
√
−βγ , (20)

where sgn(β) = −sgn(γ). Substituting this into (19),
we obtain

Z(0) = −i sgn(α) sgn(β)
√
−β/γ , (21)

which is equivalent to (17).

Properties of solutions. – Assuming mirror-
symmetric cells and Bloch modes at the Γ and X points
(important: both assumptions must hold), these modes
are either symmetric (S), e(−x) = e(x), or antisymmet-
ric (AS), e(−x) = −e(x) [7, 8, 14]. To prove that, it is
convenient to define the mirror symmetry operator P as

Pe(x) def
= e(−x) . (22)

It is easy to show that P commutes with either of the dif-
ferential operators Le, Lh. Since the boundary conditions
are also P-invariant at Γ and X, at these points one can
construct a pair of even and odd Bloch modes

eS(x) =
e(x) + e(−x)

2
, eAS(x) =

e(x)− e(−x)
2

. (23)

If the Bloch mode e(x) is not identically zero, there are
two possibilities:
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1. eS(x) and eAS(x) are both nontrivial. In this case,
these two modes form a complete set of solutions of
(1) and the respective Bloch problem.

2. One of the modes eS(x), eAS(x) is identically zero.
In this case, the Bloch problem has only one solution
of either even or odd parity.

Note that the case of both eS(x) and eAS(x) being identi-
cally zero can be excluded, as this would imply e(x) ≡ 0.
Since there are, typically, two Bloch modes propagating
in the opposite directions, Case 1 above may appear to be
general, and Case 2 exceptional. However, at the Γ and
X points it is the other way around. Indeed, two linearly
independent Bloch modes may exist – or, equivalently, the
monodromy matrix of the Jordan form (16) may be non-
defective – only in the exceptional case when this matrix
is diagonal, and, even more specifically (since |α| = 1 at
qa = 0, π), T (a) = ±I2, where I2 is the 2 × 2 identity
matrix.

Parity of modes and Bloch impedance in band gaps.
There is a transparent relation between the parity of

Bloch modes at the Γ and X points on the one hand and
the Bloch impedance/admittance Z(0), Y (0) at the cell
boundary on the other. For symmetric modes, e(0) = 1,
h(0) = 0; hence Y (0) = 0 and Z(0) has a pole. The
opposite is true for antisymmetric modes.

Central in our analysis is the behavior of Bloch
impedance in band gaps. As proved in [7], the parity of
Bloch modes at the Γ and X points changes across any
band gap. This implies that the Bloch impedance changes
from a pole to zero, or vice versa, as the frequency in-
creases across a band gap. Let us, following Refs. [7, 8],
introduce functions ξ(x), χ(x), which can be referred to
as the mathematical impedance and admittance:

ξ(x)
def
= −µ(x)e(x)

e′(x)
= − e(x)

i kh(x)
= k−1ZI(x) ,

χ(x)
def
= −ϵ(x)h(x)

h′(x)
= − h(x)

i ke(x)
= k−1YI(x) .

(24)

We immediately see that

k2ξ(x)χ(x) = ZI(x)YI(x) = −Z(x)Y (x) = −1 . (25)

It is proved in [8] that the mathematical impedance ξ(0)
monotonically decreases as a function of k within any band
gap. Even though this theorem is sufficient for the analysis
of bulk-boundary correspondence, the following stronger
result on the monotonicity of ZI(0) = kξ(0) is instructive:
The Bloch wave impedance ZI(0) monotonically de-

creases as a function of frequency within any band gap.
Indeed, in a gap, the Bloch eigenvalue λ is real (|λ| < 1

for the decaying mode). Since the material parameters are
assumed real and the Bloch boundary conditions are real
as well, solutions to the Bloch problem can be chosen as
real. Thus χ(0), ξ(0), ZI(0), YI(0) are all real. If ξ(0)
happens to be negative and is, due to [8], monotonic, then
Z(0) = kξ(0) monotonically decreases as well.

Now suppose that ξ(0) is positive. Applying the mono-
tonicity argument to the magnetic field equation (4), we
conclude that χ(0) is monotonically decreasing with fre-
quency. But, as follows from (25), if ξ(0) is positive, then
χ(0) must be negative. Hence YI(0) = kχ(0) is also mono-
tonically decreasing, and so does ZI(0) = −1/YI(0).

Nulls, poles, and the behavior of Bloch impedance in
band gaps. Since, within a band gap, the Bloch wave
impedance at the Γ and X points decreases monotonically
with ω either from a pole to a null or vice versa, there are
only two possibilities for this change: from +∞ to 0 or
from 0 to −∞. We introduce the following definition.

Definition 1 (p- and n-type band gaps). We say that a
band gap is of type p if the Bloch impedance Z(0) has a
pole (p) at the bottom (lowest frequency) of that gap, or,
equivalently, the Bloch mode at the bottom of the gap is
symmetric. (Then Z(0) must have a null at the top of the
gap.) Similarly, we say that a band gap is of type n if the
Bloch impedance Z(0) has a null at the bottom of the gap,
with the respective mode being antisymmetric. (Connec-
tion with semiconductor terminology is purely mnemonic
and not substantive.)

We illustrate this with a Bloch band diagram of a
three-layer nonmagnetic structure with the permittivities
of the layers ϵ1,2,3 = 1.00, 4.87, 1.00 and widths d1,2,3 =
0.25a, 0.50a, 0.25a (Fig. 3). The Γ and X points in the di-
agram are color-coded. The cyan dots indicate symmetric
modes and the respective poles of Z(0); the black dots in-
dicate antisymmetric modes and nulls of Z(0). The points
across each gap have opposite color, in accordance with the
theory. Per Definition 1, the gaps with black dots at the
bottom are of the type n, while the gaps with cyan dots at
the bottom are of the type p. Same color-coding for any
two band gaps indicates the same transition of Z(0) from
the bottom to the top of the gap: either from +∞ to 0 or,
alternatively, from 0 to −∞.

At the bottom of the first band gap (qa = π, ka ≈ 1.53),
the mode is antisymmetric and, consequently, Z(0) = 0.
Therefore, in the first band gap (1.53 ≲ ka ≲ 2.32) ZI(0)
must monotonically decrease from 0 to −∞, as indeed is
evident from Fig. 4, where Z(0) is plotted as a function of
ka for the same layered medium. The behavior of Z(0) in
the second and third gap is the same, as is symbolically
indicated by the black-to-cyan dot transition across these
gaps. But the fourth gap (qa = 0, 7.47 ≲ ka ≲ 8.14)
is different: namely, the cyan-to-black transition indicates
that Z(0) decreases monotonically from +∞ to 0.

Let us note in passing that, as evidenced by Fig. 4, the
Bloch impedance does not change sign within a band. Al-
though this result is not used directly in our analysis, it is
interesting in its own right and is proved in the Appendix.

Definition 2 (p−n, p−p and n−n junctions). In our 1D
setup, suppose that two periodic media share a common
interface. Suppose further that a given frequency lies in
some band gap of each medium. Under these assumptions,
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Fig. 3: Bloch bands in the positive half of the FBZ for a
symmetric three-layer, non-magnetic lattice cell. Permittivi-
ties ϵ1,2,3 = 1.00, 4.87, 1.00; widths d1,2,3 = a/4, a/2, a/4.

we say that the junction is of the type p − n if the band
gaps in the two media are of opposite types (per Definition
1). The p−p and n−n junctions are defined analogously.

This definition helps to address a key point in the anal-
ysis of bulk-boundary correspondence: whether two con-
secutive gaps are of the same type and hence exhibit the
same behavior of ZI(0). The answer depends on whether
the mode parity changes across the band between these
two gaps. If the two ends of the band are of different
type, then the behavior of Z(0) in the gaps is the same
– as, e.g., for band 2 connecting gaps 1 and 2 in Fig. 3.
Conversely, if the parity of the modes across the band is
the same, then the behavior of Z(0) in the two consecutive
gaps is opposite; an example of such behavior is band 4.

The bulk-boundary correspondence principle. –
To formalize the results of the previous section, let us

introduce a binary index γm of the band gap number m:

γm =

{
1 , ZI(0) : +∞ → 0 (p→ n)
0 , ZI(0) : 0 → −∞ (n→ p)

, (26)

where the arrows indicate the change of impedance as k
increases across the gap. Clearly, the imaginary part of
impedance is positive inside the gap if γm = 1 and nega-
tive otherwise. Similarly, let us assign the index sj (s for
“same”) to the Bloch band j as follows:

sj =

{
1 , same parity of modes at Γ and X

0 , different parity of modes at Γ and X
. (27)

There exists a simple one-to-one correspondence between
sj and the Zak phase (see Eq. 31 below). In the absence
of Dirac points (accidental band crossings), we have

γm =
∑m

j=1
sj (mod 2) . (28)

Fig. 4: The Bloch impedance Z(0) (real within the bands;
purely imaginary in the gaps) as a function of frequency. Same
parameters as in Fig. 3.

Indeed, at k = q = 0, e(x) = const; this mode is trivially
symmetric. If s1 = 1, then, by definition, the mode at
the bottom of gap 1 is also symmetric, and γ1 = 1. Thus,
(28) holds for m = 1. The rest follows by induction using
similar reasoning. The case when Dirac points are present
is considered below.

We are now in a position to analyze the existence of an
interface mode between two semi-infinite periodic media,
with the boundary impedances Z1(0, ω) = iZI1(0, ω) and
Z2(0, ω) = iZI2(0, ω), where ZI1,I2(0, ω) are real. It fol-
lows from Maxwell’s boundary conditions that an evanes-
cent interface mode exists if and only if

Σ(ω)
def
= ZI1(0, ω) + ZI2(0, ω) = 0 . (29)

To set the stage, consider an interface of a non-
magnetic homogeneous dielectric with a semi-infinite peri-
odic medium at a frequency within the band gap m of the
latter. If γm = 0, then ZI(0, ω) changes from 0 to −∞;
due to the continuity of that change, there must be a value
ω at which ZI(0, ω) = −ζ, where ζ =

√
1/ϵ is the intrinsic

impedance of the dielectric. At that frequency, (29) is sat-
isfied, and an evanescent interface mode must exist. If, on
the other hand, γm = 1, then ZI(0, ω) changes from +∞
to 0, (29) cannot hold, and there are no boundary modes.

This analysis can be generalized to an interface between
two semi-infinite periodic media. Let there be a (partial
of full) overlap Ω = [ω1, ω2] of the band gaps of the two
media. If the γ-indexes of the respective gaps are the
same, then the two impedances have the same sign in Ω
and the interface condition (29) cannot hold.

Let as now consider the case where the γ indexes of
the two media in their respective gaps are different. Then
ZI(0, ω) of one of these media changes from +∞ to 0,
whereas the other one changes from 0 to −∞. It is intu-
itively clear that, under such conditions, there has to be a
frequency ω0 ∈ Ω such that Σ(ω0) = 0; then an interface
mode exists at ω = ω0. To show this rigorously, note that
ω1 must be either a pole or a null of at least one of the
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Fig. 5: Example: two three-layer media with overlapping
bandgaps of different type. Top: an n-type gap; permittivities
ϵ1,2,3 = 1, 4.87, 1; layer widths w1,2,3 = 0.25a, 0.5a, 0.25a. Bot-
tom: a p-type gap; ϵ1,2,3 = 1, 6.35, 1; w1,2,3 = 0.3a, 0.4a, 0.3a.

impedances. Without a loss of generality, assume that ω1

is a pole of Z1(0, ω) (the case of a null is analogous). Then

Σ(ω) = ZI1(0, ω) + ZI2(0, ω) → +∞ as ω → ω1 , (30)

where ZI1(0, ω) > 0 and ZI2(0, ω) < 0. At the other end of
the overlap region, ω2, there are two distinct possibilities:

1. ω2 is a null of Z1(0, ω). Then Σ(ω2) = ZI2(0, ω2) < 0.
Consequently, Σ(ω) has opposite signs and the ends
of the overlap interval and must be equal to zero at
some intermediate point ω0 ∈ Ω.

2. ω2 is a pole of Z2(0, ω). Then Σ(ω) → −∞ as ω → ω2.
Consequently, Σ(ω) has opposite signs at ω1 and ω2,
leading to the same conclusion as in Case 1.

We have therefore arrived at the following result: If two
periodic media share a common interface and the given
frequency lies in band gaps of both media, an interface
mode exists if and only if the junction is of the p−n type
according to Definition 2.
Fig. 5 gives a numerical illustration of two periodic me-

dia whose bandgaps just below ka ≈ 6 are of different type;
put together, these media would form a p− n junction in
the overlap range of the gaps – e.g., for ka ≈ 5.9. The
material parameters are indicated in the figure caption.

Parity of Bloch modes and Zak phase. – A widely
accepted parameter, closely related to the change of parity
of Bloch modes across a band, is the Zak phase θ [1, 5, 9].

It is a particular case of the Berry phase, whereby the
Bloch wave number is treated as an independent variable
crossing the FBZ. As such, the Zak phase is commonly
defined via an integral of the Berry connection, or the
limit of the corresponding discrete sum of phase shifts be-
tween the consecutive eigenmodes over the FBZ [1,9]. For
symmetric lattice cells, θ can assume only two values: 0
or π, depending on whether the parity of a Bloch mode
across the band changes (then θ = π) or not (then θ = 0).
Thus, there is a one-to-one correspondence with the index
sj defined in (27):

sj = 1− θj/π (31)

With this in mind, (28) can be re-written in the form

sm = (−1)m−1
∑m

j=1
exp(iθj) (mod 2) . (32)

This result appears in Refs. [5, 7, 8].

The role of Dirac points. – Dirac points (accidental
degeneracies or band crossings) may occur at Γ andX, but
not strictly inside the FBZ. Indeed, if the latter were the
case, in the vicinity of such a crossing point there would
be four possible values of the Bloch wave number, which
is impossible. For cells with two different constituent ma-
terials, the following explicit analytical condition for the
existence of Dirac points is available [5]. If the intrin-
sic impedances of the two constituents are different, then
Dirac points exist if and only if the optical lengths of the
constituents are commensurate – that is, (n1d1)/(n2d2) is
a rational number, where n1,2 are the refraction indexes.
The mathematical theory of Dirac points is complicated

even in 1D [7], but their treatment in the analysis of
1D bulk-edge correspondence is straightforward. The two
bands with an accidental crossing are simply merged into
one, and the resultant topological parameter is equal to
the sum of the two respective parameters of the merged
bands [7, Theorem 5.6]. Apart from that amendment, the
rest of the theory – in particular, (32) – remain unchanged.

An alternative topological invariant. – Let Nm

and Pm be the numbers of nulls and poles, respectively,
below a gap m. Note that, at zero frequency, the mathe-
matical impedance ξ(0, 0) has a pole.1 Further, one null
and one pole of impedance occur necessarily at the two
ends of any band gap. Thus, Pm − Nm depends only
on the type of the gap m. Namely, for an n-type gap
Pm −Nm = 0, while for a p-type gap Pm −Nm = 2. For-
mally, γm = (Pm −Nm)/2. This quantity is a topological
invariant, since any continuous change of physical and ge-
ometric parameters leading to a continuous change of the
band structure (no gap closings) leaves γm unchanged. Its

1At zero frequency, there is a distinction between the behavior
of the mathematical and Bloch wave impedances. Since the electric
field is constant, the mathematical impedance has a pole, while the
electromagnetic impedance is finite and can be expressed via the
effective constitutive parameters as Z(0, 0) =

√
µeff/ϵeff.
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topological nature could be further illustrated by applying
the argument principle and expressing γm via a contour
integral of ∂ω logZ(0, ω) in the complex plane.

Discussion and Conclusion. – We have considered
the case of periodic lattices with mirror symmetry and no
losses since, under these conditions, the topological prin-
ciples come through most clearly. The impedance-centric
view confers a transparent physical meaning on the bulk-
boundary correspondence principle in 1D.

A systematic analysis of the behavior of Bloch wave
impedance Z(0, ω) at the lattice cell boundary reveals sev-
eral crucial features. First, within band gaps, the imagi-
nary part ZI(0, ω) decreases monotonically as a function
of frequency either from a pole to a null or from a null to
a pole. Further, when two materials with different behav-
iors abut and their band gaps overlap, the sum of their
impedances must necessarily be zero at some frequency
within that overlap range. An evanescent interface mode
will then exist; otherwise it will not.

By a mnemonic analogy with the semiconductor termi-
nology, we classify band gaps at the Γ andX points as type
p or n depending on whether the Bloch wave impedance
has a pole (p) or a null (n) at the bottom (lowest fre-
quency) of that gap. An interface mode is shown to exist
if and only if the two media have the opposite band gap
types (one n and the other p). An alternative, and math-
ematically equivalent topological index is the difference
between the numbers of poles and zeros of Z(0, ω) below
a given band gap.

The above analysis applies to lossless media as a ba-
sic case. Our numerical experiments indicate that a small
amount of loss does not change the conclusions qualita-
tively. For appreciable losses, all stages of the analysis
need to be adjusted, as part of the rapidly expanding field
of non-Hermitian topological photonics [6, 10, 11]. Abun-
dant numerical evidence of bulk-boundary correspondence
in 1D, including an example of lossy media, appears in [11].
We also expect the ideas of this letter to be extendable to
more challenging problems in higher dimensions, with a
variety of emerging applications [2, 6, 15–20].
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Appendix: Bloch impedance does not change
sign within a band. – To prove this, suppose that the
Bloch impedance Z(0) has a zero at some frequency within
a Bloch band. Then (e0 = 0, h0 = 1) is an eigenvector of
the monodromy matrix T (a):(

α iβ
iγ α

)(
0
1

)
= λ

(
0
1

)
Hence this matrix must have a Jordan form, β = 0. If
so, α2 = detT (a) = 1; ⇒ α = ±1. Then λ = ±1 and
qa = 0,±π. This shows that zero impedance can only
occur at the band edges. Similarly, one can show that the
Bloch impedance Z(0) cannot have a pole within a gap.
The constant sign of impedance follows by continuity.
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