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A B S T R A C T

We propose a method and codes for fast computation of complex dispersion relations in three-
dimensional photonic crystals (PCs) with rectangular geometry. The main idea of the method is to
convert the eigenproblem to a nonlinear equation equivalent to the zero-determinant condition. This
equation is then solved iteratively either by fixed-point iteration or by rational approximation method.
Additional mathematical elements include fast-converging continued-fraction expansion to compute
the interaction tensor (appearing in the above nonlinear equation) and efficient accounting for the
rectangular geometry in matrix-vector multiplications, which are involved in computing the continued
fraction coefficients. The method allows one to perform realistic three-dimensional computations on
a typical laptop computer, including finding the Bloch wave vector in the band gaps and in evanescent
mode bands. This paper is focused on the method and includes its detailed explanation and illustration
with examples. The associated computational package contains a detailed user guide and a set of
further demonstrations, which can be run with the help of provided scripts.
Program summary
Program Title: RectDisp v.1-3
CPC Library link to program files: (to be added by Technical Editor)
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: CC BY NC 3.0
Programming language: Fortran 2003
Nature of problem: The program computes the complex Bloch wave number 𝐪 as a
function of real frequency 𝜔 in photonic crystals (PCs) with rectangular geometry. The PC
constituents are characterized by complex dispersive permittivities and are non-magnetic.
Projection of 𝐪 onto the 𝑋𝑌 -plane of the PC is fixed and can be specified by the user, and
the projection onto the 𝑍-axis is computed.
Solution method: The method converts the eigenproblem of finding 𝐪 to the nonlinear
equation equivalent to the zero-determinant condition for, at most, a 3×3matrix, and solves
the latter by an iterative method (either fixed-point iteration or rational approximation
or a combination of the two approaches). Additional features include continued-fraction
expansion for computing the coefficients in the nonlinear equation and utilization of
variable separability characteristic of the rectangular geometry for fast matrix-vector
multiplication.
Additional comments including restrictions and unusual features: The current version of
the codes compute at most one value of 𝐪 for each frequency. This excludes spurious modes
arising due to the artificial band folding. Such modes are usually not coupled to incident
radiation. However, some other modes can be missed. Under most circumstances, this can
happen at higher frequencies, i.e., for 𝜔ℎ∕𝑐 > 𝜋, where ℎ is the PC period. Verification of
mode coupling to external radiation and exhaustive search for all coupled modes are not
currently implemented but we plan to add these features in future releases. If a solution is
not found at some frequency, it can potentially be found by fine-tuning input parameters as
described in the User Guide.

1. Introduction
Three-dimensional full-wave electromagnetic simula-

tions remain demanding even with modern computers.
While many electromagnetic software packages are cur-
rently available, most of them are designed to handle objects
of rather general geometry and properties. But generality
and efficiency do not come easily together, as is well
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known in numerical analysis. Therefore, development of
specialized methods that provide high performance for a
narrow class of problems is still of considerable interest.
In this paper, we describe a specialized method and present
codes for computing the dispersion relations (more precisely,
some restrictions of the Bloch variety) of three-dimensional
photonic crystals (PCs) with a rectangular geometry of
both the elementary cell and the inclusions. The paper is
focused on the theory, detailed explanation of the method
and illustrative examples. The associated computational
package contains a User Guide with detailed instructions
on the code usage, as well as a number of further examples,
which can be run directly or with the help of provided scripts.
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Dispersion diagrams of three-dimensional photonic crystals

PCs have many applications in science and technol-
ogy [1]. For instance, sharp features in the transmission
and reflection spectra near the edges of photonic band-gaps
can be utilized in optical filters and sensors [2–5]. Other
PC-based devices include waveguides and interconnects [6],
optical diodes [7] and optical elements for collimation and
focusing of light [8]. In these and many other applications,
precise and efficient computation of dispersion relations is
an important part of optical design.

The conventional methods of such computations start
from the assumption that the PC constituents are character-
ized by constant and positive permittivities. Then, by using
a Bloch ansatz with a real wave vector 𝐪, one can reduce
Maxwell’s equations to a Hermitian eigenproblem [9]. The
eigenvalue in this formulation is the squared frequency, 𝜔2.
Eigenvalues of a Hermitian problem are real but can be pos-
itive or negative. Therefore, the frequency 𝜔 corresponding
a selected 𝐪 is either real (in the pass bands) or imaginary (in
the band gaps). Thus, the conventional methods access one
possible restriction of the Bloch variety. By Bloch variety
we mean here the set of all, generally, complex pairs (𝜔,𝐪)
for which Maxwell’s equations have a nontrivial solution in
the PC. A restriction of the Bloch variety is a subset obtained
by applying additional constraints.

The conventional restriction obtained by requiring that
𝐪 be real and viewing it as a mathematically-independent
variable, which is scanned in a computation, has obvious
drawbacks. For example, one can determine that a certain
real frequency 𝜔0 is in a gap (that is, there are no real
eigenfrequencies 𝜔 in the vicinity of 𝜔0). However, in an
experiment, it is possible to illuminate the PC by a quasi-
monochromatic light at the real frequency 𝜔0. The con-
ventional methods do not provide information about the
complex Bloch wave vector at 𝜔 ≈ 𝜔0. Besides, realistic
materials are dispersive, have nonzero absorption 1 and
can even be metals. Finally, the conventional methods are
incapable of describing the evanescent modes, which are
characterized by general complex 𝐪. Accounting for the
evanescent modes is important, for instance, in problems
involving interfaces and tunneling [10, 11] and in PCs con-
taining metallic components [12].

The above limitations have motivated interest in a more
physically-relevant restriction of the Bloch variety, often
referred to as complex dispersion relations [13–15]. To
define this variety, we select the real frequency 𝜔 as the
mathematically-independent variable and, for each 𝜔 con-
sidered, compute the complex Bloch wave vector 𝐪. By scan-
ning 𝜔, we can sample the dispersion relation 𝐪(𝜔) where 𝜔
is real but 𝐪 can be complex. Note that this approach is more
general than just selecting a different restriction of the same
variety. Indeed, since 𝜔 is now mathematically-independent,
it is easy to include into consideration dispersive and there-
fore complex permittivities of the PC constituents. Thus,
not only we select a different restriction, but also can now
consider more general Bloch varieties.

1Small absorption can be accounted for in the conventional methods
perturbatively.

The price of above improvements is increased math-
ematical complexity. Indeed, complex dispersion relations
require solution of a quadratic eigenproblem, which can be
transformed to a linear problem but without any special
symmetry. The matrix in this case is neither symmetric nor
Hermitian, and the computational complexity can become
prohibitively high, especially in three dimensions. Numer-
ical investigation of complex dispersion relations began in
1990-ies. The problem was initially attacked using the trans-
fer matrix method [16, 17]. The deficiency of this approach
is that it requires determination of the eigenvalues of a
matrix with an exponentially large condition number. In
practice, this cannot be done without an almost absolute
loss of precision [18]. There are other issues associated
with the transfer matrix method and it is rarely used at
present. Plane-wave expansion of the fields and algebraic
solution of the quadratic eigenproblem by direct methods
such as those implemented in EISPACK was another popular
approach [10, 12, 19]. The condition number in this case is
not exponentially large but the computational complexity of
direct methods scales as 𝐿9 in three dimensions, where 𝐿
is the number of discretization units (either plane waves or
real-space points) in one spatial direction. This has, essen-
tially, limited the applicability of the method to two dimen-
sions. Yet another approach utilized finite difference time do-
main (DFTD) discretization to extract complex modes from
the transmission coefficient of a finite structure [20]. The
methods requires introduction of perfectly-matched layers
in order to achieve a finite computational domain and is
similar in spirit to the transfer matrix method. More recent
approaches to computing complex dispersion relations in
three-dimensional PCs are mostly focused on constructing
special bases for discretization and then solving the ensuing
eigenproblem by Krylov-subspace methods such as Arnoldi
iteration [13, 15, 21]. Recently, a stochastic approach to
solving the eigenproblem was also proposed [22].

In this paper, we utilize the plane wave basis for dis-
cretization but then take a somewhat unorthodox approach
and compute the eigenvalues of interest by considering
the nonlinear equation, which is equivalent to the zero-
determinant condition for the original matrix. However,
we use the fundamental theorem of determinants of block
matrices to state this condition for a matrix of the size
3 × 3 at most. We then solve the ensuing nolinear equation
iteratively. Of course, it is common knowledge that reducing
an eigenproblem to the zero-determinant condition is not
an efficient way to compute the eigenvalues. In fact, the
reverse order of steps is preferred. For example, a stable way
to find the roots of a high-order polynomial is to construct
the companion matrix and then compute its eigenvalues by
the methods of matrix algebra. However, we will show that,
for the Bloch variety problem, one can safely use the zero-
determinant condition.

The situation is somewhat similar to solving the equation
𝑧 = 𝑒−𝑧, which can be approximated by a polynomial in a
circle of a finite radius 𝑅. The equation has infinitely many
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roots in the complex plane, but only one real root 2. The latter
can be easily found by a simple fixed-point iteration. If this
root is all one needs, there is no reason to consider the more
complicated equation. Otherwise, one can expand the expo-
nent to some finite but sufficient order, reduce the equation
to a polynomial, and construct the companion matrix. The
roots of the polynomial can be obtained by diagonalizing
the latter. Thus we can compute the roots of the equation
𝑧 = 𝑒−𝑧 in a circle of an arbitrary radius 𝑅 by reducing
a nonlinear equation to an eigenproblem. In this paper, we
adopt a strategy that is in some sense reverse-order; we
start from an eigenproblem and reduce it to a nonlinear
equation; we then solve this equation iteratively guided by
the knowledge that we need only one or two physically-
relevant roots. One simplification that will ensue is that we
will not need to store or manipulate any large matrices; the
memory requirements of the proposed method are modest,
which is unusual for three-dimensional problems.

There are two other important mathematical elements
that we will employ. First, we will use rapidly-converging
continued-fraction expansions to arrive at the nonlinear
equation mentioned above. In fact, the method proposed here
is also in some sense a Krylov-subspace method; we just use
the Krylov basis to arrive at the nonlinear equation rather
than to search for the eigenvalues directly. This is advanta-
geous since, as we will show, the algebraic computations will
be reduced to solving a system of equations but not for all the
unknowns; rather, we will need projections of the solution
onto at most three basis vectors. Such computations can
be efficient with the use of continued fraction expansions.
Second, we will specialize to rectangular geometry of both
the lattice and the inclusions. In this case, one can exploit
separation of variables to compute the coefficients in the
continued fraction. If we use 𝐿 basis functions in one
spatial dimensions, the overall computational complexity of
the algorithm scales as 𝑀𝐿4 where 𝑀 is the number of
iterations. For comparison, direct methods for solving the
dispersion relations in three-dimensional PCs by diagonal-
ization scale as 𝐿9 and general iterative methods scale as
𝑀𝐿6. Two-dimensional and one-dimensional problems can
be considered as special cases, which the codes can handle
easily. The computational complexity scales as 𝑀𝐿3 for
two-dimensional problems and as𝑀𝐿2 for one-dimensional
problems. Of course, we should keep in mind that any one-
dimensional PC with just two layers can be solved analyt-
ically; the capability to solve one-dimensional problems in
the codes is included only for making comparisons.

We will use Fourier (plane wave) basis and thus avoid
the technical complexities of the finite difference or finite
element methods. This basis is commensurate with the rect-
angular geometry. The nonlinear equation expressing the
zero-determinant condition will be solved by the fixed-point
iteration or the rational approximation methods or a com-
bination of these methods. With the mathematical develop-
ments briefly described above, this results in a rather simple

2One can reduce the complex equation 𝑧 = 𝑒−𝑧 to the real equation
𝑥 + exp(𝑥 ctg(𝑥)) sin(𝑥) = 0.

algorithm, which is easy to program and which can perform
realistic three-dimensional electromagnetic computations on
a simple laptop computer on the timescale of seconds or min-
utes. Of course, as any computational method, the method
proposed here can be broken or become slow, but the set of
examples provided with the codes will illustrate the relevant
range of applicability. These examples can be changed and
generalized by the users.

The rest of this paper is organized as follows. In Section 2
we introduce the problem geometry and basic notations. In
Section 3 we reduce the dispersion equation in a PC to a
nonlinear equation expressing the condition that the deter-
minant of the characteristic matrix is zero. This derivation is
based on our previous work [23–25], and here we also prove
the main result using the theory of determinants of block
matrices. Also, in this section we introduce the interaction
tensor – the key mathematical ingredient of the proposed
method. The zero-determinant condition depends on this
tensor, and its algebraic computation is the most intensive
part of the proposed algorithm. In Section 4, we show
how the interaction tensor can be computed efficiently. The
specific properties of the rectangular geometry are used at
this stage. Also in this section we analyze the computational
complexity of the proposed algorithm. In Section 5, we
discuss the Bloch wave polarization modes, which appear by
considering the zero-determinant condition, and the ensuing
nonlinear equation. Section 6 contains a detailed numerical
illustration of the method and a few examples of dispersion
calculations including more difficult cases. In Section 7,
we provide validation of the proposed methods by direct
comparison with computations based on finite-element dis-
cretization of the field and Arnoldi iterations for the resulting
polynomial eigenproblem. In Section 8, we give a brief
self-consistent summary of the proposed method. Finally,
Section 9 contains a discussion.

2. Problem geometry and set up
Consider a PC with a general orthorhombic lattice. The

unit cell is a parallelepiped with the sides ℎ𝑥, ℎ𝑦 and ℎ𝑧
(we work in a reference frame whose axes 𝑋𝑌𝑍 coincide
with the crystallographic axes of the PC). Further, each
unit cell contains a parallelepiped-shaped inclusion with
the sides 2𝑎𝑥, 2𝑎𝑦 and 2𝑎𝑧. Without loss of generality, we
can assume that both parallelepipeds (the unit cell and the
inclusion) have a common center. Note that geometrical
consistency requires that 𝑎𝛼 ≤ ℎ𝛼∕2. Here and below small
Greek indexes 𝛼, 𝛽, 𝛾 take the values of 𝑥, 𝑦 or 𝑧. For later
convenience, we denote by 𝑎𝛼 one half of the inclusion side
length. In what follows, we refer to PCs of this type as simply
rectangular.

The inclusions and the host medium are characterized
by the dielectric permittivities 𝜖𝑖(𝜔) and 𝜖ℎ(𝜔), respectively,
where 𝜔 is the electromagnetic frequency. The host and
inclusions are assumed to be intrinsically non-magnetic.
Generalization to magnetic media is in principle possible
but not of interest at high frequencies. Thus, the PC is
fully characterized by its position- and frequency-dependent
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permittivity 𝜖(𝐫, 𝜔). Using the above assumptions, we can
write

𝜖(𝐫, 𝜔) = 𝜖ℎ(𝜔) + [𝜖𝑖(𝜔) − 𝜖ℎ(𝜔)]Θ(𝐫) , (1)

where Θ(𝐫) is the shape function: it is equal to unity inside
an inclusion and to zero in the host. In what follows, the
dependence of 𝜖𝑖, 𝜖ℎ and 𝜖 on the electromagnetic frequency
is implied but not included explicitly in the list of formal
arguments. That is, we write 𝜖(𝐫) instead of 𝜖(𝐫, 𝜔), etc.
From the discrete periodicity of the PC, it follows that 𝜖(𝐫)
can be expanded as

𝜖(𝐫) =
∑

𝐠
𝜖𝐠𝑒

i 𝐠⋅𝐫 , (2)

were

𝐠 =
(

2𝜋𝑛𝑥
ℎ𝑥

,
2𝜋𝑛𝑦
ℎ𝑦

,
2𝜋𝑛𝑧
ℎ𝑧

)

(3)

are the reciprocal lattice vectors (RLVs) and 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧
are arbitrary integers. Note that we use the notation involving
summation over 𝐠 (as in (2)) as a shorthand for summation
over the triplet of associated integers.

The expansion coefficients in (2) can be written in the
form

𝜖𝐠 = 𝜖ℎ
[

𝛿𝐠𝟎 + 𝜒𝑀(𝐠)
]

, (4)

where 𝛿𝐠𝐩 is the Kronecker delta-symbol acting on the RLVs
(or triplets of associated integers), 𝟎 is the trivial RLV
corresponding to (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = (0, 0, 0),

𝜒 = 𝜌
𝜖𝑖 − 𝜖ℎ
𝜖ℎ

(5)

is a scalar parameter, which quantifies the degree of inhomo-
geneity of the PC,

𝜌 =
𝑉𝑖
𝑉ℂ

=
8𝑎𝑥𝑎𝑦𝑎𝑧
ℎ𝑥ℎ𝑦ℎ𝑧

(6)

is the volume fraction of inclusions (𝑉𝑖 is the volume of one
inclusion, 𝑉ℂ is the volume of one unit cell), and

𝑀(𝐠) = 1
𝑉𝑖 ∫ℂ

Θ(𝐫)𝑒−i 𝐠⋅𝐫𝑑3𝑟 . (7)

The integration in this formula is over one unit cell and
the function Θ(𝐫) further restricts the integration region to
the inclusion. The function 𝑀(𝐠) has been defined so that
𝑀(𝟎) = 1 and

∑

𝐠𝑀(𝐠) = 1∕𝜌. For the latter equality to
hold, the center of the unit cell must be inside the inclusion,
as we assume here; otherwise, the sum is zero.

Below, we will rely on the following important obser-
vation: in a rectangular PC, 𝑀(𝐠) are separable, that is, if
𝐠 = (𝑔𝑥, 𝑔𝑦, 𝑔𝑧), then

𝑀(𝐠) = 𝑀𝑥(𝑔𝑥)𝑀𝑦(𝑔𝑦)𝑀𝑧(𝑔𝑧) , (8a)

where

𝑀𝛼(𝑔𝛼) =
sin(𝑔𝛼𝑎𝛼)
𝑔𝛼𝑎𝛼

=
sin(2𝜋𝑛𝛼𝑎𝛼∕ℎ𝛼)
2𝜋𝑛𝛼𝑎𝛼∕ℎ𝛼

. (8b)

Here we have also used the expression (3) for RLVs in terms
of triplets of integers (𝑛𝑥, 𝑛𝑦, 𝑛𝑧).

Note that the expressions (4), (7) have been introduced
in [23–25] in a more general setting. However, the expres-
sions (6) and, more importantly, (8) are specific to rectan-
gular PCs. Finally, 𝑀(𝐮) is defined mathematically for a
generic vector argument 𝐮. However, this function is used
below in a such a way that its argument is either a RLV or a
difference between two RLVs, as in 𝑀(𝐠−𝐩). Note that, for
Bravais lattices, a sum of two RLVs is also a RLV.

3. Dispersion equation in a rectangular PC
The starting point for the derivations of this paper is the

frequency-domain Maxwell’s equation for the electric field,
written in the form

∇ × ∇ × 𝐄(𝐫) = 𝑘2𝜖(𝐫)𝐄(𝐫) , 𝑘 = 𝜔∕𝑐 . (9)

Here 𝑘 is the free-space wave number at the frequency 𝜔.
We work in the frequency domain and write all fields that are
functions of position and time in the form Re[𝐄(𝐫)𝑒−i𝜔𝑡].

The solution to (9) with 𝜖(𝐫) defined in (1)-(7) can be
sought using the ansatz

𝐄(𝐫) =
∑

𝐠
𝐄𝐠𝑒

i (𝐪+𝐠)⋅𝐫 , (10)

where the wave vector 𝐪 and the constant coefficients 𝐄𝐠
must be determined. Importantly, (10) is a solution to (9)
only for some special values of 𝐪. We say that, if (10) with
some 𝐪 = 𝐪𝐵 satisfies (9), then 𝐪𝐵 is the Bloch wave vector.
Computing numerically the dispersion function 𝐪𝐵(𝜔) is the
main goal of this paper. In this computation, 𝜔 is assumed
to be real-valued but the components of 𝐪𝐵 can be complex.
We therefore expect that 𝐪𝐵(𝜔) is defined (but can be multi-
valued) for all positive 𝜔.

By substituting (10) and (2) into (9) and accounting for
orthogonality of the functions 𝑒i 𝐠⋅𝐫 over a unit cell, we arrive
at the equation

(𝐪 + 𝐠) × (𝐪 + 𝐠) × 𝐄𝐠 + 𝑘2
∑

𝐩
𝜖𝐠−𝐩𝐄𝐩 = 0 . (11)

We then use the expression (4) for 𝜖𝐠−𝐩 to re-write (11) as

(𝐪 + 𝐠) × (𝐪 + 𝐠) × 𝐄𝐠

+ 𝑘2
[

𝜖ℎ𝐄𝐠 + 𝜖ℎ𝜒
∑

𝐩
𝑀(𝐠 − 𝐩)𝐄𝐩

]

= 0 . (12)

Following Refs. [23–25], we treat the cases 𝐠 = 𝟎 and 𝐠 ≠ 𝟎
separately. Thus, by setting 𝐠 = 𝟎 in (12), we obtain

𝐪 × 𝐪 × 𝐄𝟎 + 𝑘2
[

⟨𝜖⟩𝐄𝟎 + 𝜖ℎ𝜒
∑

𝐠≠𝟎
𝑀(−𝐠)𝐄𝐠

]

= 0 , (13)
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where

⟨𝜖⟩ = 𝜖𝟎 = 𝜌𝜖𝑖 + (1 − 𝜌)𝜖ℎ (14)

is the average permittivity of the PC. Note that summation
in (13) does not contain 𝐄𝟎.

The following observation is crucial for the derivation
presented here. Namely, from the linearity of (12), it follows
that there exists a 3 × 3 matrix Σ(𝐪) such that

∑

𝐠≠𝟎
𝑀(−𝐠)𝐄𝐠 = Σ(𝐪)𝐄𝟎 . (15)

We refer to Σ(𝐪) as to the interaction tensor. It is uniquely
defined by the PC geometry, the electromagnetic frequency
𝜔 and the vector 𝐪. In the notation Σ(𝐪), we include only 𝐪 in
the list of formal arguments since this dependence on 𝐪 will
be exploited below to compute 𝐪𝐵(𝜔). A practical method
for computing Σ(𝐪) is given in Section 4.

We can now re-write (13) as
[

(𝐪 × 𝐪×) + 𝑘2⟨𝜖⟩ + 𝑘2𝜖ℎ𝜒Σ(𝐪)
]

𝐄𝟎 = 0 . (16)

The above equation has a non-trivial solution for 𝐄𝟎 if and
only if the determinant of the 3 × 3 matrix in the square
brackets is zero. Denoting this matrix by Π(𝐪), we arrive at
the following condition for 𝐪 to be a Bloch wave vector:

det[Π(𝐪)] = 0 , (17)

where

Π𝛼𝛽(𝐪) = 𝑞𝛼𝑞𝛽 +
(

𝑘2⟨𝜖⟩ − 𝑞2
)

𝛿𝛼𝛽 + 𝑘2𝜖ℎ𝜒Σ𝛼𝛽(𝐪) . (18)

Here 𝑞2 = 𝑞2𝑥 + 𝑞2𝑦 + 𝑞2𝑧 and we have used the triple vector
product formula 𝐪 × 𝐪 × 𝐄𝟎 = 𝐪(𝐪 ⋅ 𝐄𝟎) − 𝑞2𝐄𝟎. Assuming
that the interaction tensorΣ(𝐪) is known or can be computed,
we will seek 𝐪𝐵(𝜔) by solving the nonlinear equation (17) at
various values of 𝜔.

It should be noted that Σ(𝐪) and Π(𝐪) are defined for all 𝐪
but are not lattice-periodic. However, if some 𝐪∗ is a root of
(17), then 𝐪∗ + 𝐠 is also a root, where 𝐠 is an arbitrary RLV.
This statement is true assuming Σ(𝐪) was computed using
the whole infinite set of RLVs. For any finite truncation, the
property is approximate and tends to lose precision for large
𝐠’s. Numerical methods developed in this paper take this into
account as described in Section 6.

Derivation of (17) from (16) is straightforward. How-
ever, derivation (16) from (12) may not be as obvious or
familiar. To the best of authors’ knowledge, Eq. (16) is not
widely known or understood. Considering the fundamental
importance of (16) in the physics of PCs, we provide below
an alternative derivation based on the theory of determinants
of block matrices [26, 27]. Consider a square block matrix 𝚇

of the form

𝚇 =
[

𝙰 𝙱

𝙲 𝙳

]

, (19)

where 𝙰, 𝙱, 𝙲 and 𝙳 are blocks of arbitrary size (𝙱 and 𝙲

may not be square) with the only constraint that they fill 𝚇

completely and have one common vertex. The basic theorem
in this field states that the determinant of 𝚇 is given by

det[𝚇] = det
[

𝙰 − 𝙱𝙳−1𝙲
]

det[𝙳] . (20)

In the case when 𝙰, 𝙱, 𝙲, and 𝙳 are numbers, this expression
becomes the well-known formula for a 2 × 2 matrix. In a
more general setting, (20) is not as trivial but can be proved
using multiplicativity of determinants. For our purposes,
the following fact is important: if 𝙳 is invertible, then the
conditions det[𝚇] = 0 and det[𝙰−𝙱𝙳−1𝙲] = 0 are equivalent.

Now, (12) is an infinite set of homogeneous linear equa-
tions, which can be written formally as 𝚇𝚎 = 0 where 𝚎 is a
vector with the elements (𝐄𝐠)𝛼 , and

𝚇𝐠𝛼,𝐩𝛽 =
[

(𝐪 + 𝐠)𝛼(𝐪 + 𝐠)𝛽 +
(

𝑘2𝜖ℎ − (𝐪 + 𝐠)2
)

𝛿𝛼𝛽
]

𝛿𝐠𝐩
+ 𝑘2𝜖ℎ𝜒𝑀(𝐠 − 𝐩)𝛿𝛼𝛽 . (21)

The condition for 𝚇𝚎 = 0 to have a non-trivial solution is
det[𝚇] = 0, and we wish to apply theorem (20) to det[𝚇].
To this end, we partition 𝚇 into four blocks. Let us arrange
the matrix elements with 𝐠 = 𝐩 = 𝟎 in the top-left corner
of 𝚇. In this case, 𝚇 is infinitely continued down and to the
right. We then define the 3 × 3 top-left corner block 𝙰 with
the elements

𝙰𝛼𝛽 = 𝑞𝛼𝑞𝛽 +
(

𝑘2⟨𝜖⟩ − 𝑞2
)

𝛿𝛼𝛽 . (22)

The semi-infinite block 𝙱 of the size 3 ×∞ is directly to the
right of 𝙰; its elements correspond to 𝐠 = 𝟎, 𝐩 ≠ 𝟎 and are
of the form:

𝙱𝛼,𝐩𝛽 = 𝑘2𝜖ℎ𝜒𝑀(−𝐩)𝛿𝛼𝛽 , 𝐩 ≠ 0 . (23)

Similarly, the block 𝙲 directly below 𝙰 contains the elements
with 𝐠 ≠ 𝟎, 𝐩 = 𝟎. The elements of 𝙲 are

𝙲𝐠𝛼, 𝛽 = 𝑘2𝜖ℎ𝜒𝑀(𝐠)𝛿𝛼𝛽 , 𝐠 ≠ 0 . (24)

Finally, the block 𝙳 is below 𝙱 and to the right of 𝙲; it touches
𝙰 at the top-left corner. The elements of 𝙳 are of the same
generic form as in (21), except that we restrict this expression
to 𝐠 ≠ 𝟎 and 𝐩 ≠ 𝟎.

Now assume that 𝙳 is invertible and define 𝚈 = 𝙰−𝙱𝙳−1𝙲.
It follows from (20) that the conditions det[𝚇] = 0 and
det[𝚈] = 0 are equivalent. According to the definition, 𝚈 is a
3 × 3 matrix with the elements

𝚈𝛼𝛽 = 𝑞𝛼𝑞𝛽 +
(

𝑘2⟨𝜖⟩ − 𝑞2
)

𝛿𝛼𝛽

−
(

𝑘2𝜖ℎ𝜒
)2 ∑

𝐠,𝐩≠𝟎
𝑀(−𝐠) 𝙳−1𝐠𝛼,𝐩𝛽 𝑀(𝐩) . (25)

Comparing this expression to (18), we see that Π = 𝚈 if we
identify

Σ𝛼𝛽 = −𝑘2𝜖ℎ𝜒
∑

𝐠,𝐩≠0
𝑀(−𝐠) 𝙳−1𝐠𝛼,𝐩𝛽 𝑀(𝐩) . (26)

This is indeed the algebraic definition of Σ. It can be easily
verified that the matrix defined in (26) satisfies (15). We
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note that, in order to compute Σ, the whole inverse matrix
𝙳−1 is not needed; we only need several matrix elements.
Considering that Σ is symmetric 3, we need at most 6
matrix elements. In Section 4, we explain how these matrix
elements can be computing without inverting the matrix 𝙳

directly or solving large sets of linear equations.
It remains to discuss what would happen if 𝙳 was not

invertible. Although we do not have a mathematical proof,
we never encountered singular 𝙳’s in simulations. In fact,
singularity of 𝙳 is unphysical; it would result in one of two
possibilities: either solutions to Maxwell’s equation (9) do
not exist in the PC at all, or such solutions are non-unique
under the conditions when we can expect uniqueness on
physical grounds. Perhaps, 𝙳 can become singular in am-
plifying media with Im𝜖 < 0 wherein stationary harmonic
solutions do not satisfy time-domain Maxwell’s equations.
But we do not consider such cases in this paper. Therefore,
in what follows, we assume that 𝙳 or its finite truncations are
invertible.

4. Computing the interaction tensor
In principle, the interaction tensor is defined by (26).

However, in most cases of interest, the matrix 𝙳 is large and
its direct inversion is neither possible nor really needed. In
fact, working with 𝙳 numerically is not the best approach,
and we will introduce an analytical transformation of (26),
which can be used to devise an efficient numerical method
for computing Σ.

We already considered the case 𝐠 = 𝟎 in Eqs. (13), (16).
Now let us write (12) for 𝐠 ≠ 𝟎. With some re-arrangement
and using the triple vector product formula, we obtain

[

(𝐪 + 𝐠)2 − 𝑘2𝜖ℎ
]

𝐄𝐠 − (𝐪 + 𝐠)
(

(𝐪 + 𝐠) ⋅ 𝐄𝐠
)

=

= 𝑘2𝜖ℎ𝜒

[

𝑀(𝐠)𝐄𝟎 +
∑

𝐩≠𝟎
𝑀(𝐠 − 𝐩)𝐄𝐩

]

, 𝐠 ≠ 0 . (27)

In the right-hand side of the above equation, we have split
the summation over 𝐩 into the 𝐩 = 𝟎 and 𝐩 ≠ 𝟎 terms. We
now notice that the matrix in the left-hand side of (27) is
invertible. Indeed, consider the linear equation for a generic
vector 𝐮:

(𝑠2 −𝑤)𝐮 − 𝐬(𝐬 ⋅ 𝐮) = 𝐛 , (28)

where 𝑠2 = 𝐬 ⋅ 𝐬. Assuming 𝑤 ≠ 0 and 𝑤 ≠ 𝑠2, the solution
to (28) is

𝐮 = 1
𝑤

𝑤𝐛 − 𝐬(𝐬 ⋅ 𝐛)
𝑠2 −𝑤

. (29)

Using this result, we can transform (27) identically as

𝐄𝐠 = 𝜒𝙺(𝐪 + 𝐠)
[

𝑀(𝐠)𝐄𝟎 +
∑

𝐩≠𝟎
𝑀(𝐠 − 𝐩)𝐄𝐩

]

, (30)

3 Since 𝙳 is symmetric and the set of RLVs over which the summation
in (26) runs can be partitioned completely into pairs of the form {𝐠, −𝐠}.

where

𝙺𝛼𝛽(𝐮) =
𝑘2𝜖ℎ𝛿𝛼𝛽 − 𝑢𝛼𝑢𝛽

𝑢2 − 𝑘2𝜖ℎ
. (31)

Here 𝐮 is a generic three-dimensional vector and 𝙺(𝐮) is a
3 × 3 matrix.

The form of Eq. (30) is convenient in several respects.
For example, it can be iterated to obtain an expansion of
Σ(𝐪) in powers of 𝜒 . The first non-vanishing term in this
expansion is

Σ(1)(𝐪) = 𝜒
∑

𝐠≠𝟎
𝑀(−𝐠)𝙺(𝐪 + 𝐠)𝑀(𝐠) , (32a)

or, in components,

Σ(1)
𝛼𝛽 (𝐪) = 𝜒

∑

𝐠≠𝟎
𝑀(−𝐠)

𝑘2𝜖ℎ𝛿𝛼𝛽 − (𝐪 + 𝐠)𝛼(𝐪 + 𝐠)𝛽
(𝐪 + 𝐠)2 − 𝑘2𝜖ℎ

𝑀(𝐠) .

(32b)

We have already noticed thatΣ is symmetric (see footnote 3).
This property is general for orthorhombic lattices and inde-
pendent of the inclusion shape. Additional symmetry proper-
ties that are specific to rectangular inclusions can be inferred
from (32b). Note that these properties hold beyond first-
order approximation and therefore are exact. Thus, if 𝐪 has
only one Cartesian component (in a frame coinciding with
the crystallographic axes), then Σ is diagonal. If, in addition,
the inclusion is cubic, all diagonal elements of Σ are equal. If
𝐪 lies in one of the crystallographic planes, say, 𝑋𝑌 , then Σ
has one nonzero off-diagonal element Σ𝑥𝑦 but Σ𝑥𝑧 = Σ𝑦𝑧 =
0. If 𝐪 has non-zero projections onto all three axes, then Σ is
a full matrix with 6 independent elements.

In principle, we can iterate (30) to obtain an expansion
of Σ in powers of 𝜒 to arbitrary order. Here we consider a
different approach, which is applicable, in particular, in the
strong interaction regime when 𝜒 is not small. By comparing
the definition of Σ (15) to (30), we see that

Σ𝛼𝛽(𝐪) =
⟨

𝚊(𝛼)| (z𝙸 − 𝚆(𝐪))−1 |𝚋(𝛽)(𝐪)
⟩

, (33)

where z = 1∕𝜒 is the spectral parameter of the theory, we
have used Dirac notations to shorten the expression 4, 𝙸 is the
identity matrix, 𝚊(𝛾), 𝚋(𝛾)(𝐪) are vectors and 𝚆(𝐪) is a matrix
defined by the following relations:

⟨𝐠𝛼|𝚊(𝛾)⟩ = 𝑀(𝐠)𝛿𝛼𝛾 , (34a)

⟨𝐠𝛼|𝚋(𝛾)(𝐪)⟩ = 𝙺𝛼𝛾 (𝐪 + 𝐠)𝑀(𝐠) , (34b)
⟨𝐠𝛼|𝚆(𝐪)|𝐩𝛽⟩ = 𝙺𝛼𝛽(𝐪 + 𝐠)𝑀(𝐠 − 𝐩) . (34c)

In these equations, 𝐠,𝐩 ≠ 𝟎 and |𝚋(𝛾)(𝐪)⟩, 𝚆(𝐪) depend on
𝐪. The superscripts in |𝚊(𝛾)⟩, |𝚋(𝛾)(𝐪)⟩ label different vectors
rather than components of a vector. Still, the three indexes

4The usual convention regarding Hermitian conjugation applies. For
example, it follows from (34a) that ⟨𝚊(𝛾)|𝐠𝛼⟩ = 𝑀∗(𝐠)𝛿𝛼𝛾 = 𝑀(−𝐠)𝛿𝛼𝛾 .
However, in the rectangular geometry of this paper, 𝑀∗(𝐠) = 𝑀(𝐠) and
𝑀(−𝐠) = 𝑀(𝐠).
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𝛼, 𝛽, 𝛾 take the values from the set {𝑥, 𝑦, 𝑧}. For example,
⟨𝐠𝛼|𝚊(𝑥)⟩ = 𝑀(𝐠)𝛿𝛼𝑥, etc. Also note that the first-order
approximation (32) can be obtained as 𝜒⟨𝚊(𝛼)|𝚋(𝛽)(𝐪)⟩.

Thus, in order to compute all six independent elements
of Σ, one needs six matrix elements of the from (33). For
example, we can compute the matrix elements between
|𝚋(𝑥)⟩ and three vectors |𝚊(𝑥)⟩, |𝚊(𝑦)⟩ and |𝚊(𝑧)⟩, between
|𝚋(𝑦)⟩ and two vectors |𝚊(𝑦)⟩ and |𝚊(𝑧)⟩, and finally between
|𝚋(𝑧)⟩ and |𝚊(𝑧)⟩. We can use the following identity [23] to
compute the matrix elements in (33) non-perturbatively:

⟨𝚊| (z𝙸 − 𝚆)−1 |𝚋⟩ = 1
z

⟨𝚊|𝚋⟩

1 −
⟨𝚊|(z𝙸 − 𝚆𝙿)−1𝚆|𝚋⟩

⟨𝚊|𝚋⟩

, (35)

where

𝙿 = 𝙸 −
|𝚋⟩⟨𝑎|
⟨𝚊|𝚋⟩

. (36)

The above relation holds for arbitrary 𝚆 as long as z ≠ 0
and z𝙸−𝚆 is non-singular. In particular, (35) holds for non-
Hermitian 𝚆 and/or complex z. One caveat is that, as ⟨𝚊|𝚋⟩
approaches zero, the expression (35) contains a 0∕0-type
removable singularity. A convenient approach to handle the
singularity numerically is to use the identity

(𝙸 − 𝜒𝚆)−1 = 𝙸 + 𝜒(𝙸 − 𝜒𝚆)−1𝚆 . (37)

It then follows that, if ⟨𝚊|𝚋⟩ = 0, we have

⟨𝚊|(𝙸 − 𝜒𝚆)−1|𝚋⟩ = 𝜒⟨𝚊|(𝙸 − 𝜒𝚆)−1𝚆|𝚋⟩ . (38)

Then theorem (35) can be applied to (38) with |𝚋′⟩ = 𝚆|𝚋⟩ in
place of |𝚋⟩. The “shifted inverse” identity (37) can be used
to regularize the recursion introduced below but it was not
used in the numerical simulations of this paper as there was
not need for this.

Now, we can apply (35) recursively to itself. This results
in the following continued-fraction expansion:

⟨𝚊| (z𝙸 − 𝚆)−1 |𝚋⟩ =
𝜒𝜇0

1 −
𝜒𝜇1

1 −
𝜒𝜇2
1 − ...

, 𝜒 = 1
z

. (39)

The coefficients 𝜇𝑛 in this expansion are determined as
follows. Starting from 𝜇0 = ⟨𝚊|𝚋⟩, |𝚋−1⟩ = 0 and |𝚋0⟩ = |𝚋⟩,
we compute for 𝑛 = 0, 1,…

|𝚋𝑛+1⟩ = 𝚆

(

|𝚋𝑛⟩ − 𝜇𝑛|𝚋𝑛−1⟩
)

, 𝜇𝑛+1 =
⟨𝚊|𝚋𝑛+1⟩

⟨𝚊|𝚋𝑛⟩
. (40)

Depending on the required precision, this expansion must be
computed until the coefficients 𝜇𝑛 become sufficiently small
as will be illustrated in Sec. 6.

Thus, (39) together with recursion (40) can be used to
compute an arbitrary matrix element of the inverse ofz𝙸−𝚆.
By computing the matrix elements between |𝚊(𝛼)⟩ and |𝚋(𝛽)⟩
defined in (34a),(34b), we find the elements Σ𝛼𝛽 according
to (33). The most computationally-intensive operation in

this algorithm is the matrix-vector multiplication in the
first equation of (40). However, the separability of 𝑀(𝐠),
which is expressed mathematically by Eq. 8, allows one to
speed-up this operation significantly. This observation is key
to the proposed computational method. In the remainder
of this section, we provide a quantitative estimate of the
computational complexity of matrix-vector multiplication
and of the speed-up associated with the separability of𝑀(𝐠).

The matrix 𝚆 is infinite and in a practical computation
it must be truncated, i.e., by restricting the RLVs to a finite
rectangular box. Let us restrict the integers 𝑛𝛼 that enter the
definition of 𝐠 (3) as −𝐿 ≤ 𝑛𝛼 ≤ 𝐿. Then the number
of RLVs included in the analysis (i.e., the number of plane
waves) is (2𝐿+1)3−1. Here unity is subtracted because the
trivial RLV 𝐠 = 𝟎 is excluded. We assume that 𝐿 ≫ 1 and
therefore the number of RLVs in the computational box is
≈ 8𝐿3. Further, for each 𝐠, there are three Cartesian com-
ponents to consider as labeled by 𝛼. Therefore, the length of
|𝚊⟩ and |𝚋⟩ is 𝑁 ≈ 24𝐿3, and the truncated matrix 𝚆 is of the
size 𝑁 ×𝑁 . The algebraic complexity of a direct algebraic
method such as LU decomposition to solve (30) is 𝑂(𝑁3) =
𝑂(243𝐿9). For the modest value 𝐿 = 50 (corresponding
to ≈ 106 plane waves), we have 𝑁 ∼ 3 ⋅ 106 and the
computational complexity of 𝑂(3⋅1019), which is clearly out
of reach. The generic complexity of an iterative method such
as the conjugate-gradient descent 5 or the continued-fraction
expansion proposed above is 𝑂(𝑀𝑁2) = 𝑂(242𝐿6𝑀),
where 𝑀 is the number of iteration. For 𝐿 = 50 we obtain
the complexity of 𝑂(9 ⋅1012𝑀). This is perhaps manageable
on a supercomputer but is too much for typical applications.

We now utilize the separability of 𝑀(𝐠). Let us assume
that we know some generic vector |𝚞⟩ and wish to compute
|𝚟⟩ = 𝚆|𝚞⟩. In components, we have

⟨𝐠𝛼|𝚟⟩ =
∑

𝐩𝛽
⟨𝐠𝛼|𝚆|𝐩𝛽⟩⟨𝐩𝛽|𝚞⟩ (41a)

=
∑

𝛽
𝙺𝛼𝛽(𝐪 + 𝐠)

∑

𝐩
𝑀(𝐠 − 𝐩)⟨𝐩𝛽|𝚞⟩ (41b)

=
∑

𝛽
𝙺𝛼𝛽(𝐪 + 𝐠)⟨𝐠𝛽|𝚞1⟩ , (41c)

where we have utilized (34c) for 𝚆 and

⟨𝐠𝛼|𝚞1⟩ =
∑

𝐩
𝑀(𝐠 − 𝐩)⟨𝐩𝛼|𝚞⟩ . (42)

The complexity of computing |𝚟⟩ from |𝚞1⟩ according to
(41c) is𝑂(72𝐿3), which is negligible. The problem therefore
is to compute |𝚞1⟩ from |𝚞⟩ according to (42). Using (8), we
have

⟨𝑛𝑥𝑛𝑦𝑛𝑧𝛼|𝚞1⟩ =
𝐿
∑

𝑚𝑥=−𝐿
𝑀𝑥(𝑛𝑥 − 𝑚𝑥)

𝐿
∑

𝑚𝑦=−𝐿
𝑀𝑦(𝑛𝑦 − 𝑚𝑦)

×
𝐿
∑

𝑚𝑧=−𝐿
𝑀𝑧(𝑛𝑧 − 𝑚𝑧)⟨𝑚𝑥𝑚𝑦𝑚𝑧𝛼|𝚞⟩ . (43)

5The matrix in question is not positive definite but we can use one
of the several modifications of the conjugate-gradient method for complex
symmetric matrices, i.e. see Ref. [28].
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Here we have used the triplet of integers (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) in place
of 𝐠 and (𝑚𝑥, 𝑚𝑦, 𝑚𝑧) in place of 𝐩. The complexity of this
nested summation is 𝑂(144𝐿4), and it is the dominating
contribution in the case of separable 𝑀(𝐠). To obtain this
result, we can break (43) into three independent summations.
For example, we can write

⟨𝑛𝑥𝑛𝑦𝑛𝑧𝛼|𝚞1⟩ =
𝐿
∑

𝑚𝑥=−𝐿
𝑀𝑥(𝑛𝑥 − 𝑚𝑥)

×
𝐿
∑

𝑚𝑦=−𝐿
𝑀𝑦(𝑛𝑦 − 𝑚𝑦)⟨𝑚𝑥𝑚𝑦𝑛𝑧𝛼|𝚞2⟩ , (44)

where

⟨𝑛𝑥𝑛𝑦𝑛𝑧𝛼|𝚞2⟩ =
𝐿
∑

𝑚𝑧=−𝐿
𝑀𝑧(𝑛𝑧 − 𝑚𝑧)⟨𝑛𝑥𝑛𝑦𝑚𝑧𝛼|𝚞1⟩ . (45)

We can further break (44) into two independent summations
of the form (45). The complexity of each summation (45)
is 𝑂(48𝐿4) (the factor of 48 is 3 ⋅ 24), and we need three
such summations to compute (43). This results in the overall
complexity of 𝑂(144𝐿4) as noted above. Again, using 𝐿 =
50 as an example, we obtain the complexity of one matrix-
vector multiplication of 9 ⋅ 108. In this particular case, the
computational speed-up relative to the case of a generic 𝚆 is
four orders of magnitude. For larger 𝐿, the speed-up is even
more dramatic.

The above estimates were obtained for a cubic box of
RLVs. We can easily generalize to the case of a rectangular
box of the size (2𝐿𝑥+1)(2𝐿𝑦+1)(2𝐿𝑧+1)where𝐿𝑥,𝐿𝑦 and
𝐿𝑧 are different integers. In a practical application, the values
of 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 can be fine-tuned to provide convergence
and optimal computational complexity. We finally note that
numerical summation of the form (45) is easily parallelizable
on computer architectures with shared memory or clusters.

5. Polarization modes
In Section 4, we have explained how the matrix Σ(𝐪) can

be computed for an arbitrary argument 𝐪. In order to find
the Bloch wave vectors 𝐪𝐵 at a given frequency, we also
need to solve the nonlinear equation (17). The latter is one
complex equation for three complex Cartesian components
𝑞𝛼 = 𝑞′𝛼+i 𝑞′′𝛼 (𝛼 = 𝑥, 𝑦, 𝑧). Considering the electromagnetic
frequency 𝜔 as one coordinate and 𝑞′𝛼 , 𝑞′′𝛼 as six additional
coordinates, and given the two constraints provided by (17),
the set of solutions to the dispersion equation is a five-
dimensional variety. Complete characterization of this va-
riety is a complicated task. However, we can simplify the
problem by restricting the values of 𝐪 in several ways.

One practically-relevant approach is to fix the projection
of 𝐪 onto the 𝑋𝑌 plane [13, 25]. We write 𝐪 = (𝑘𝑥, 𝑘𝑦, 𝑞𝑧),
where 𝑘𝑥 and 𝑘𝑦 are two known real constants and 𝑞𝑧 is a
complex scalar to be determined. Note that 𝑘𝑥 and 𝑘𝑦 can be
defined by the boundary conditions at the interface 𝑧 = 0
between the PC and another medium. That is, if a plane

wave with a real wave vector 𝐤 is incident onto a PC slab
from vacuum, then 𝑘𝑥 and 𝑘𝑦 are projections of 𝐤 onto the
𝑋 and 𝑌 axes. With the above restriction, (17) provides one
complex equation for 𝑞𝑧. The solutions can be parameterized
as 𝑞′𝐵𝑧(𝜔) and 𝑞′′𝐵𝑧(𝜔) and therefore form a one-dimensional
variety (usually, a curve, or several disjoint curves) in the
three-dimensional space (𝜔, 𝑞′𝑧, 𝑞

′′
𝑧 ).

With the above restriction on 𝐪, and for any finite trun-
cation of 𝚆(𝐪), the dispersion equation (17) is a polynomial
in 𝑞𝑧, and therefore it has many roots. We are however
interested only in solutions that are in the first Brillouin
zone of the PC, and have tacitly assumed that 𝑘𝑥, 𝑘𝑦 satisfy
this condition. Then one can hope to solve (17) iteratively
starting from the initial guess 𝑞𝑧 = 0 without finding all
the roots. Thus, we intend to replace a general eigenproblem
with a relatively simple search for the root of (17) in the first
Brillouin zone. To this end, we need to write (17) in a form
that can be directly iterated 6. This can be accomplished by
noticing that the diagonal elements of Σ approach a finite
limit when 𝑞𝑧 → 0. However, the off-diagonal elements with
one of the idexes equal to “𝑧” approach zero. Generally, the
dependence of the off-diagonal elements on the components
of 𝐪 is bilinear near 𝐪 = 0. We can write without loss of
generality

Σ𝛼𝛽(𝐪) = 𝜎𝛼𝛽(𝐪)
𝑞𝛼𝑞𝛽
𝑘2

, 𝛼 ≠ 𝛽 , (46)

where 𝜎𝛼𝛽(𝐪) approach finite limits when 𝐪 → 0. Now we
can use (46) together with the restriction 𝐪 = (𝑘𝑥, 𝑘𝑦, 𝑞𝑧) to
reduce (17) to the following from:

𝐴(𝐪)𝑞4𝑧 + 𝐵(𝐪)𝑞2𝑧 + 𝐶(𝐪) = 0 . (47)

The coefficients in this equation are given by the following
expressions:

𝐴 = 𝑘2𝜂𝑧 + 𝑘2𝑥
(

𝜉2𝑥𝑧 − 1
)

+ 𝑘2𝑦
(

𝜉2𝑦𝑧 − 1
)

, (48a)

𝐵 = −
[

(

𝜂𝑥 + 𝜂𝑦
)

𝑘2 − 𝑘2𝑥 − 𝑘2𝑦
] (

𝜂𝑧𝑘
2 − 𝑘2𝑥 − 𝑘2𝑦

)

− 𝑘2𝑥
(

𝜂𝑦𝑘
2 − 𝑘2𝑥

)

𝜉2𝑥𝑧 − 𝑘2𝑦
(

𝜂𝑥𝑘
2 − 𝑘2𝑦

)

𝜉2𝑦𝑧

+ 2𝑘2𝑥𝑘
2
𝑦𝜉𝑥𝑦𝜉𝑥𝑧𝜉𝑦𝑧 , (48b)

𝐶 =
[(

𝜂𝑥𝑘
2 − 𝑘2𝑦

)

(

𝜂𝑦𝑘
2 − 𝑘2𝑥

)

− 𝑘2𝑥𝑘
2
𝑦𝜉

2
𝑥𝑦

]

×
(

𝜂𝑧𝑘
2 − 𝑘2𝑥 − 𝑘2𝑦

)

, (48c)

where

𝜂𝛼 = ⟨𝜖⟩ + 𝜖ℎ𝜒Σ𝛼𝛼 , (48d)
𝜉𝛼𝛽 = 1 + 𝜖ℎ𝜒𝜎𝛼𝛽 , 𝛼 ≠ 𝛽 . (48e)

6Such a transformation is not generally required to solve (17), but is
convenient if one wishes to obtain a few initial points that can be further
used in the secant or rational interpolation methods.
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The dependence of 𝜂𝛼 , 𝜉𝛼𝛽 on 𝐪 is implied 7. We emphasize
that (47) is not a quadratic equation. However, we can solve
it as a quadratic equation formally for 𝑞2𝑧 and thus transform
it to a form suitable for fixed-point iteration. Alternatively,
we can use some other iterative method such as Newton’s,
secant, or rational interpolation. The first two fixed-point
iterations can be used to define the initial values for the se-
cant or the rational interpolation methods. Also note that the
quantities 𝜂𝛼(0) = lim𝐪→0 𝜂𝛼(𝐪) are the principal values of
the effective permittivity of the medium in the homogeniza-
tion limit [23]. At non-zero 𝐪, the functions 𝜂𝛼(𝐪) do not have
a simple physical interpretation. The off-diagonal functions
𝜉𝛼𝛽(𝐪) do not appear in the theory of homogenization.

From the structure of (47), it is clear that it has two
roots 𝑞2𝑧 with 𝑞𝑧 in the first Brillouin zone of the PC. These
roots can be distinct and correspond to different polarization
modes. By a polarization mode we mean here the amplitude
of the fundamental Bloch harmonic 𝐄0, which is a non-
trivial solution to (16). In the general case, the polarization
modes are quite complicated. Some simplifications can be
obtained for special directions of propagation as discussed
below. Note that, in order to define the polarization mode
completely, we must choose the branch of the square root
(of 𝑞2𝑧). This corresponds to the fact that a Bloch wave can
propagate in two opposite directions, and the polarization
modes depend on the propagation direction. These counter-
propagating modes correspond to different choice of sign in
±𝑞𝑧 and are related to each other by reflection in the 𝑋𝑌
plane.

Once the interaction tensor Σ(𝐪) is found for some 𝐪,
computing the coefficients of (47) according to the defini-
tions (48a), (48b) and (48c) is straightforward but involves
somewhat lengthy expressions. While evaluating these ex-
pressions numerically does not pose any problems or ad-
ditional complexity, one may wish to obtain formulas that
are easer to analyze. Cubic symmetry results in some sim-
plification since, in this case, one can write 𝜂𝛼 = 𝜂 and
𝜉𝛼𝛽 = 𝜉, so that the number of variables is reduced. However,
the most significant simplifications are obtained for special
propagation directions. These cases are discussed next.

5.1. Propagation in a crystallographic plane
Formulas are significantly simplified if we consider

propagation in one of crystallographic planes 𝑋𝑍 or 𝑌 𝑍.
For example, if we take 𝑘𝑦 = 0, then 𝐪 lies entirely in the𝑋𝑍
plane. Equation (47) simplifies in this case to the following.
For 𝑠-polarization:

𝑞2𝑧 = 𝑘2𝜂𝑦 − 𝑘2𝑥 , (49a)
𝐄𝟎 = (0, 1, 0)E ; (49b)

and for 𝑝-polarization:

𝑞2𝑧 =
𝑘2𝜂𝑥(𝑘2𝜂𝑧 − 𝑘2𝑥)
𝑘2𝜂𝑧 − 𝑘2𝑥 + 𝜉2𝑥𝑧𝑘2𝑥

, (49c)

7The quantities 𝜂𝛼 , 𝜒𝛼𝛽 and therefore 𝐴,𝐵, 𝐶 are functions of all three
components of 𝐪 = (𝑘𝑥, 𝑘𝑦, 𝑞𝑧). This dependence must be accounted for
when computing Σ and then 𝐴,𝐵 and 𝐶 according to (48). However, 𝑘𝑥
and 𝑘𝑦 can be viewed as fixed parameters in the context of this paper.

𝐄𝟎 =
(

𝑘2𝜂𝑧 − 𝑘2𝑥 , 0 , −𝜉𝑥𝑧𝑘𝑥𝑞𝐵𝑧
)

E , (49d)

where E is an arbitrary amplitude and 𝑞𝐵𝑧 in (49d) is the
solution to (49c). For the 𝑠-polarized mode, the amplitude
of the fundamental Bloch harmonic is aligned with the 𝑌 -
axis. Since 𝐪 is constrained to the 𝑋𝑍 plane, this mode is
transverse. The 𝑝-polarized mode is more complicated and
generally neither transverse nor similar to the 𝑝-mode in
a homogeneous anisotropic crystal. However, the analogy
with the latter is restored in the low-frequency limit 𝑘 → 0.
Indeed, as will be shown below, the nonzero off-diagonal
values of 𝜎𝛼𝛽 is a dynamic effect. That is, at low frequencies,
𝜎𝛼𝛽 vanish and it follows from (48e) that 𝜉𝛼𝛽 → 1. From this
we find for the 𝑝-polarized mode in the limit 𝑘 → 0:

𝑞2𝑧 = 𝑘2𝜂𝑥 − 𝑘2𝑥
𝜂𝑥
𝜂𝑧

, (49e)

𝐄𝟎 =
(

𝑘2𝜂𝑧 − 𝑘2𝑥 , 0 , −𝑘𝑥𝑞𝐵𝑧
)

E . (49f)

This polarization mode is transverse in the sense that 𝑘𝑥𝜂𝑥𝐸𝟎𝑥+
𝑞𝐵𝑧𝜂𝑧𝐸𝟎𝑧 = 0.

5.2. Propagation along crystallographic axes
Without loss of generality, we can consider propagation

along the 𝑍-axis. We set in this case 𝑘𝑥 = 𝑘𝑦 = 0 and obtain
simple dispersion equations and polarization modes of the
form

𝑞2𝑧 = 𝑘2𝜂𝑥 ,𝐄𝟎 = (1, 0, 0)E (𝑋-polarization) , (50a)
𝑞2𝑧 = 𝑘2𝜂𝑦 ,𝐄𝟎 = (0, 1, 0)E (𝑌 -polarization) . (50b)

For normal propagation (along the 𝑍-axis), the modes can-
not be classified as 𝑠- or 𝑝-polarized; instead, we say that the
modes are 𝑋- or 𝑌 -polarized. These two polarizations are
not generally equivalent. However, it can be seen that both
polarization modes in (50a),(50b) are transverse.

6. Numerical examples
As in all numerical methods involving finite approxi-

mations of infinite mathematical objects, we must establish
convergence of results with the truncation order(s). For the
method introduced in this paper, there are three parameters
that control convergence: the size of the box of RLVs, 𝐿, the
truncation order of the continued fraction (39), 𝑁CF, and the
number of iterations needed to solve the nonlinear equation
(47) with required precision, 𝑁iter . The parameter 𝐿 has
been introduced in Sec. 4 when we discussed computational
complexity. Establishing convergence with 𝐿 is critical as
the computational complexity of the method scales as 𝐿4

but is linear in 𝑁CF and 𝑁iter .
In Fig. 1, we illustrate convergence of the interaction ten-

sor Σ with 𝐿 using the following model media. We consider
a cubic elementary cell of the size ℎ𝑥 = ℎ𝑦 = ℎ𝑧 = ℎ
containing a centered parallelepiped-shaped inclusion with
the sides 2𝑎𝑥 = 2𝑎𝑦 = 0.8ℎ and 2𝑎𝑧 = 0.5ℎ. Thus, the
volume fraction of inclusions is 𝜌 = 0.32. The working
frequency 𝜔 used in Fig. 1 is such that 𝑘ℎ∕𝜋 = 0.5 or,
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Figure 1: Convergence of the elements of interaction tensor Σ with the size of the box of RLVs (number of plane waves) 𝐿. Plots
in the left and right columns correspond to the Low- and High-Contrast PCs, respectively. Propagation is in the 𝑋𝑍 plane with
fixed 𝑘𝑥 = 0.5𝑘, where 𝑘ℎ∕𝜋 = 0.5. Computations were carried out using truncation of continued fraction expansion (39) at the
order 𝑁CF = 8.

equivalently, ℎ = 𝜆∕4, where 𝑘 and 𝜆 are the free-space
wave number and length. The propagation is in the𝑋𝑍 plane
with 𝑘𝑥 = 0.5𝑘, which corresponds to 30◦ incidence angle
for plane waves entering the PC from vacuum through the
interface 𝑧 = 0. The relevant elements of Σ in this case
are Σ𝑥𝑥, Σ𝑧𝑧 and Σ𝑥𝑧 = (𝑘2∕𝑘𝑥𝑞𝑧)𝜎𝑥𝑧 (see (46)). The host
and inclusions are transparent dielectrics with 𝜖ℎ = 2 and
𝜖𝑖 = 4 in one case (referred to as low-contrast PC) and
𝜖ℎ = 2, 𝜖𝑖 = 8 in another case (high-contrast PC). Under the
circumstances, the wave number 𝑞𝐵𝑧 is real in the pass bands
and imaginary in the band gaps 8. Assuming the frequency
is in the pass band, it is sufficient to seek the solution to (47)
over reals. Therefore, we plot in (1) the elements of Σ as
functions of real 𝑞𝑧. The truncation order of the continued
fraction expansion 𝑁CF is fixed and equal to 8 in these
simulations. It can be seen that convergence with 𝐿 is quite
fast, at least for dielectric PCs. Converged results are reached
at 𝐿 = 64 for all cases considered and the results are already
quite accurate at 𝐿 = 32. In the special case of propagation
strictly along the 𝑍-axis, the only relevant element of Σ is
Σ𝑥𝑥, and for this element 𝐿 = 16 is sufficient. Of course, we

8Above the second band gap of the high-contrast PC, there exist
evanescent modes with more general complex 𝑞𝐵𝑧; these modes can be
considered separately.

should keep in mind that in higher bands larger values of 𝐿
may be required.

In Fig. 2, we illustrate convergence of the continued
fraction expansion (in this Figure, we have used 𝐿 = 64).
The truncation order 𝑁CF is defined as the largest value
oforf 𝑛 in the expansion (39). In other words, we truncate the
continued fraction by assuming that 𝜇𝑛 = 0 for all 𝑛 > 𝑁CF.
It can be seen that convergence of the continued fraction is
fast, although it can be oscillatory. In all cases considered,
the results with 𝑁CF = 16 and 𝑁CF = 32 are visually
indistinguishable. For the low-contrast PC, the results with
𝑁CF = 8 are already indistinguishable from those with
𝑁CF = 16.

We next illustrate the dependence of Σ on frequency. In
Fig. 3, we plot all four independent elements of Σ(𝐪 = 0) as
functions of the free-space wave number 𝑘. The independent
elements include Σ𝑥𝑥 = Σ𝑦𝑦, Σ𝑧𝑧, Σ𝑥𝑦 and Σ𝑥𝑧 = Σ𝑦𝑧. Note
that the off-diagonal elements are zero at 𝐪 = 0. We therefore
display the derivatives 𝜎𝛼𝛽 , which are defined in (46). To
compute the derivative, we have considered small but non-
zero values of 𝑘𝑥 and 𝑘𝑦. It can be seen that non-zero values
of the off-diagonal terms 𝜎𝛼𝛽 is, indeed, a dynamic effect,
which disappears in the limit 𝑘ℎ → 0.
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Figure 2: Convergence of the elements of interaction tensor Σ with the continued fraction truncation order 𝑁CF for fixed 𝐿 = 64.
Same parameters as in Fig. 1.

The numerical methods used in this paper for solving the
nonlinear equations (47) or one of its simplified forms are
described in Appendix A and include fixed-point iteration,
rational approximation, and various combinations of the two
methods. Here we illustrate the application of these methods
to computing dispersion curves. We start with purely real
𝜖𝑖 and 𝜖ℎ, which is a more difficult case for us for the
reasons that will become clear momentarily. In Fig. 4, we
plot the dispersion diagram computed by fixed-point iter-
ation starting from zero initial guess for the high-contrast
PC with the same parameters as in Fig. 1. Propagation is
strictly along the 𝑍-axis and the polarization is along 𝑋.
The equation that must be solved in this case is the first
equation in (50a). The relative precision of 𝜖 = 10−4 was
achieved for all points shown in the figure. At the frequencies
for which no data points are shown (primarily, in the band
gaps), convergence was not achieved. The difficulty men-
tioned above, is the following: a fixed point iteration with
real 𝜖𝑖 and 𝜖ℎ, which starts from a real initial guess, does
not produce any imaginary or complex-valued solutions 9.
Therefore, a naive application of the fixed-point iteration
method will produce the real Bloch wave numbers 𝑞𝐵𝑧 in
the pass bands but not the complex 𝑞𝐵𝑧 in the gaps, nor

9Except if the argument of the square root becomes negative, which
usually either does not occur or occurs in diverging iterations.

more complex evanescent modes that were mentioned in
footnote 8. This is indeed what we see in the figure. Note
that a few data points near the right edge of the plot (with
𝑘ℎ∕𝜋 ≈ 1) correspond to an evanescent mode. However, in
the pass bands, the convergence is fast, with only two or three
iterations necessary to reach the precision specified above.
Slightly more iterations are required close to the band gap
edges.

The vertical lines in Fig. 4 indicate several special fre-
quencies, for which the equation 𝑞𝑧 = 𝑓 (𝑞𝑧) (see Ap-
pendix A for details) is illustrated graphically in Fig. 5.
It can be seen that, in the first pass band, the fixed-point
iteration is expected to converge fast. In the second pass
band, the function 𝑓 (𝑞𝑧) is not continuous (there is a pole)
and the iteration can diverge if started with a wrong initial
guess. In practice, the fixed-point iteration still converged
from zero initial guess in the second pass band as well.
However, the existence of the pole indicates that the rational
approximation is a better approach to root searching. For the
two frequencies corresponding to the band gaps, there are no
solutions to 𝑞𝑧 = 𝑓 (𝑞𝑧) over reals, and the iterations (either
fixed-point or rational approximation) do not converge. This
is the difficulty one encounters in the case of purely real
permittivities.
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Figure 3: Dependence of the elements of Σ on 𝑘 = 𝜔∕𝑐 at 𝐪 = 0. Small values of 𝑘𝑥 and 𝑘𝑦 were used to compute the derivative
for the off-diagonal element 𝜎𝑥𝑧, according to (46). 𝐿 = 64, 𝑁CF = 16, other parameters same as in Figs. 1, 2.
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Figure 4: Real part of the Bloch wave number as a function of normalized frequency 𝑘ℎ∕𝜋 = 2ℎ∕𝜆 for the high-contrast PC
(𝜖ℎ = 2, 𝜖𝑖 = 8, ℎ𝑥 = ℎ𝑦 = ℎ𝑧 = ℎ, 𝑎𝑥 = 𝑎𝑦 = 0.4ℎ, 𝑎𝑧 = 0.25ℎ). Propagation along the 𝑍-axis with 𝑘𝑥 = 𝑘𝑦 = 0. Vertical lines
show the frequencies for which the nonlinear equation 𝑞𝑧 = 𝑓 (𝑞𝑧) is illustrated graphically in Fig. 5 below.

In Fig. 6, we show how the complex solutions in the
band gaps are formed. To obtain the data for this figure,
we considered complex 𝑞𝑧 = 𝑞′𝑧 + i 𝑞′′𝑧 and scanned the
imaginary part 𝑞′′𝑧 for a fixed real part 𝑞′𝑧. We then plotted
both the real and imaginary parts of the equation 𝑞𝑧 = 𝑓 (𝑞𝑧)
and showed that both are satisfied at some value of 𝑞′′𝑧 . In
Panel (a), we have fixed the frequency to 𝑘ℎ∕𝜋 = 0.55 (in
the first band gap) and set 𝑞′𝑧ℎ∕𝜋 = 1. The imaginary part
of the wave number was then scanned from 0 to 1∕ℎ. It can
be seen that around the value 𝑞′′𝑧 = 0.39∕ℎ, both parts of
the equation 𝑞𝑧 = 𝑓 (𝑞𝑧) are simultaneously satisfied. This
is indeed what we have found below in Fig. 8: the Bloch
wave number at 𝑘ℎ∕𝜋 = 0.55 is 𝑞𝐵𝑧 ≈ 𝜋∕ℎ+0.3929i ∕ℎ. In
panel (b) we illustrate how the root is formed in the second
(narrow) band gap at 𝑘ℎ∕𝜋 = 0.96. In this case, the real part
of the Bloch wave number is zero rather than 𝜋∕ℎ. Therefore
the Bloch wave number is purely imaginary, 𝑞𝑧 = i 𝑞′′𝑧 . As
we scan 𝑞′′𝑧 from 0 to 1∕ℎ, there is an interval in which

𝑓 ′(i 𝑞′′𝑧 ) = 0; the root obviously is constrained to this interval
and determined by the second condition 𝑞′′𝑧 = 𝑓 ′′(i 𝑞′′𝑥 ).
This condition is satisfied at 𝑞′′𝑧 ≈ 0.82∕ℎ. We note that
the root-searching is somewhat difficult in this case because
the function 𝑓 ′′(i 𝑞′′𝑧 ) has a large derivative. However, the
rational approximation algorithm still finds the root with
good precision; in the solution 𝑞′′𝑧 ≈ 0.82∕ℎ all figures are
significant; the error is in the next figure. This is indeed what
can be seen in Fig. 8 below. We can also comment that the
behavior of all functions in Panel (b) is that of a square root
and the associated numerical instability of root-finding is
that of computing the square root of a small number.

In principle, one can solve the dispersion equation in PCs
with purely real permittivities by scanning either 𝑞′𝑧 in the
pass bands or 𝑞′′𝑧 in the band gaps. However, this approach
requires determining whether a given frequency is in the pass
band or in a gap, and also it is unclear how to proceed in the
case of evanescent modes with more complicated 𝑞𝑧. Here
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Figure 5: Graphical illustration of the equation 𝑞𝑧 = 𝑓 (𝑞𝑧), which was solved to obtain the data points shown in Fig. 4. Frequencies
for which the four panels were computed correspond to the four frequencies indicated in Fig. 4 by vertical lines. The frequency
(a) is in the first pass band, frequency (b) is in the first band gap, frequency (c) is in the second pass band and (d) is in the
second band gap. For the frequencies in the band gaps, there are no solutions over reals.
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Figure 6: Graphical illustration of the equation 𝑞𝑧 = 𝑓 (𝑞𝑧), which was solved to obtain the data points shown in Fig. 4, at the
frequencies inside the band gaps. In these plots, the real part 𝑞′𝑧 of the wave number 𝑞𝑧 is fixed as indicated and the imaginary
part 𝑞′′𝑧 is scanned. The vertical arrows indicate the values of 𝑞′′𝑥 for which both parts of the equation 𝑞𝑧 = 𝑓 (𝑞𝑧) are satisfied
simultaneously.

we adopt a different approach. We note that either fixed-
point or rational approximation iteration work fine at all
frequencies if the permittivities have some small but non-
zero imaginary parts. This is illustrated in Fig. 7 where we
show the dispersion relation for exactly the same PC as in
Fig. 4 but with 𝜖𝑖 = 8 + 0.1i and 𝜖ℎ = 2 + 0.02i . Solutions
at all frequencies were found easily with the simple fixed-
point iteration (rational approximation yields the same result
but faster). This observation suggests a general approach to
solving the problem with purely real permittivities. Namely,
we start with the fixed-point iteration and check whether
a solution is found after some computationally reasonable
number of iterations. If yes, we have found the solution
and can move to the next frequency. If not, we modify
slightly the permittivities by adding a small imaginary part

to them (typically, 0.1 of the absolute value of the real part
is sufficient). We then find the solution with the modified
permittivities using rational approximation. This can usu-
ally be obtained easily. At the next step, we roll back the
premittivities to their original purely real values and use
the just obtained complex solution as the initial guess for
another rational approximation iteration. Since we start from
a complex initial guess, which is not too far from the root,
the iteration usually converges. We finally perform a shift to
the first Brilluoin zone and a precision correction if required
as discussed in more detail in Appendix A.

Results of the above algorithm are illustrated in Fig. 8
where we plot both real and imaginary parts of 𝑞𝑧 as func-
tions of frequency for the high-contrast PC with purely real
permittivities (same as in Fig. 4). A detailed frequency scan
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Figure 7: Same as in Fig. (4) but for complex permittivities 𝜖𝑖 = 8 + 0.1i , 𝜖ℎ = 2 + 0.02i .
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Figure 8: Same as in Fig. 4 but roots computed by a more advanced method as described in the text. The inset shows dispersion
relation in the interval 0.9 < 𝑘ℎ∕𝜋 < 1.

was performed with more than 2, 000 independent frequency
points. The algorithm converged with required precision at
all these frequencies. The most difficult part was to compute
the data in the second narrow band gap and the evanescent
mode that at follows immediately. These features are shown
in the inset of the Figure. It can be seen that after the second
pass band there is a narrow gap (the frequency 𝑘ℎ∕𝜋 = 0.96,
which is considered in Fig. 6(b) is in this spectral interval).
After the gap, there is an evanescent mode for which 𝑞′𝑧 ≠
𝜋∕ℎ, 0 and 𝑞′′𝑧 ≠ 0. After the evanescent mode there is
another narrow band gap, which is hard to see in the inset
due to the small width and then another evanescent mode. At
higher frequencies, there are additional regular pass bands
and band gaps (data not shown), which are actually not
difficult to compute. However, at such high frequencies, the
dispersion diagram becomes sensitive to the incidence angle
and geometrical parameters of the PC.

To a large extent, the above discussion was focused on
overcoming computational difficulties that one encounters in
the case of purely real permittivities. However, the method
of this paper is specifically designed for account of fre-
quency dispersion, which in turn entails finite absorption.
In fact, presence of absorption makes computations easier
and the difficulties mentioned above are moot. From the
physics standpoint, absorption suppresses strong multiple
scattering and complicated electromagnetic resonances at
high frequencies. This makes computations easier. The latter
point is illustrated in Fig. 9 where we plot the number
of iterations of the rational approximation solver that are
required to achieve the stop condition |𝐹 (𝑞𝑧)| ≤ 0.001

(see Appendix A). Simulations were performed for the high
contrast PC with added relatively small imaginary parts of
the permittivities, 𝜖′′

𝚑
and 𝜖′′

𝚒
. It can be seen that, within the

pass bands, the method converges fast independently of 𝜖′′
𝚑

and 𝜖′′
𝚒

(2 to 4 iterations is typical). However, near the edges
of the pass bands and inside the band gaps, the required
number of iterations increases and noticeably depends on
𝜖′′
𝚑

, 𝜖′′
𝚒

. As the latter quantities are increased, convergence
becomes faster. Note that, if we set 𝜖′′

𝚑
= 𝜖′′

𝚒
= 0, the

rational approximation method does not converge at some
frequencies. The more complicated method described above
still converges but is significantly slower. Thus, nonzero
imaginary part of the permittivities is indeed advantageous
for the proposed method.

In what follows, we show numerical examples for disper-
sive permittivities given by the following general formula:

𝜖(𝜔) = 1 +
[𝜖(0) − 1]𝜔2

0

𝜔2
0 − 𝜔2 − i 𝛾𝜔

. (51)

Parameters for the host and inclusions are listed in Table 1.
The frequency interval considered below is 0 < 𝑘ℎ∕𝜋 =
𝜔ℎ∕𝑐𝜋 < 1. The optical resonances in the two materials
occur at significantly higher frequencies, which is typical
for transparent dielectrics in the optical and infrared spectral
ranges.

In Fig. 10 we show the dispersion curves for a PC whose
constituents are described by equation (51) with parameters
as specified in Table 1. The inclusion has the fixed width in
the 𝑍 direction, 𝑎𝑧 = 0.25ℎ, and variable withs in the 𝑋 and
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Figure 9: Number of iterations 𝑛 of the rational approximation nonlinear solver required for achieving the stop condition
|𝐹 (𝑞𝑧)| ≤ 0.001 (see Appendix A) for the same PC as in Fig. 7 but with small imaginary parts of the permittivities. The real parts
𝜖′
𝚑
= 2 and 𝜖′

𝚒
= 8 are fixed and the imaginary parts 𝜖′′

𝚑
and 𝜖′′

𝚒
are independent of frequency for each data set but vary between

the data sets as labeled.

𝜖(0) 𝜔0ℎ∕𝜋𝑐 = 𝑘0ℎ∕𝜋 = 2ℎ∕𝜆0 𝛾∕𝜔0
Host 2.0 3.0 0.01
Inclusions 8.0 2.0 0.10

Table 1
Optical parameters of host and inclusions used in dispersion
formula (51). In the third column heading, 𝑘0 = 𝜔0∕𝑐 and
𝜆0 = 2𝜋∕𝑘0, where 𝑐 is the speed of light in vacuum.

𝑌 directions, from 𝑎𝑥 = 𝑎𝑦 = 0.1ℎ to 𝑎𝑥 = 𝑎𝑦 = 0.5ℎ. In
the latter case, the PC is a one-dimensional layered medium
in which the Bloch wave number can be found analytically.
It can be seen that, in this case, the agreement between the
theoretical and numerical results is almost perfect. It should
be kept in mind that the numerical method is not reduced in
this case to evaluating the theoretical formula; root searching
is still required. As one can expect, the band gap is most
pronounced in the case of layered medium and is suppressed
as 𝑎𝑥 = 𝑎𝑦 are decreased. At 𝑎𝑥 = 𝑎𝑦 = 0.1, there is
no band-gap and the medium is quasi-homogeneous in the
whole spectral range considered. The latter means that the
dispersion of waves in such a medium is indistinguishable
from that in a homogeneous medium with some effective
parameters.

We finally demonstrate the method for different polar-
ization modes when the propagation is not strictly along
the 𝑍-axis. To this end, we used the high-contrast PC with
dispersion formula (51) and computed the dispersion for
both 𝑠-polarized (Eq. (49a)) and 𝑝-polarized (Eq. (49c))
modes. It can be seen that the method works for off-normal
propagation as well. Some high-frequency points were not
computed (nonlinear solver failed to converge using default
options) but this can be corrected by allowing longer run
times. In general, we can always re-compute the data in
the spectral intervals of interest with increased values of
𝐿, allowed number of iterations, etc. In the case of Fig. 11
the main spectral features are captured quite well and the
displayed data points are accurate.

The figures in this section were computed using a work-
station with 16 physical threads and efficient parallelization.
Therefore, we have pushed the method to the limit and used,

for example, 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 32 for all frequencies, even
though this is not really required. Many practical simulations
can be performed with 𝐿 = 16 or even 𝐿 = 8. The
computational package associated with this paper contains a
demo directory with many examples of parameters files that
can be used to compute realistic dispersion relations on an
average laptop without parallelization; the timescale is two
to three minutes for a thousand independent frequencies.

7. Validation
To validate the proposed method, we have performed

a comparison with a conceptually-different numerical ap-
proach based on finite-element discretization of the field and
Arnoldi iterations for the resulting polynomial equation. We
have reproduced in this manner the data of Fig. 10. In this
section, we briefly describe the alternative computation and
present the comparison results.

To obtain a polynomial eigenproblem, we start from
Maxwell’s equation for the electric field, (9), and seek the
solution using the ansatz 𝐄(𝐫) = 𝑒𝑖𝐪⋅𝐫𝐄̃(𝐫), where 𝐄̃(𝐫) is
the Bloch-periodic part of (10), that is, 𝐄̃(𝐫) =

∑

𝐠 𝐄𝐠𝑒i 𝐠⋅𝐫 .
We however do not use the plane wave basis now but work
directly with 𝐄̃(𝐫), which is then projected onto the local
finite-element basis. The strong formulation of the poly-
nomial eigenvalue problem is obtained by substituting the
above ansatz into (9) and canceling the common exponential
factor 𝑒i𝐪⋅𝐫 , which results in

−𝐪 × 𝐪 × 𝐄̃ + i 𝐪×∇ × 𝐄̃ + i∇ × 𝐪 × 𝐄̃
+ ∇ × ∇ × 𝐄̃ − 𝑘2𝜖𝐄̃ = 0 . (52)

Here 𝜖 = 𝜖(𝐫, 𝜔) defined in Eqs. (1) and (2). The weak form
is obtained by multiplying (52) with a test function 𝐕 and
integrating the resulting equation over the unit cell ℂ

−∫ℂ
(𝐪 × 𝐪 × 𝐄̃) ⋅ 𝐕 𝑑3𝑟 + i ∫ℂ

(𝐪 × ∇ × 𝐄̃) ⋅ 𝐕 𝑑3𝑟

+ i ∫ℂ
(∇ × 𝐪 × 𝐄̃) ⋅ 𝐕 𝑑3𝑟 + ∫ℂ

(∇ × ∇ × 𝐄̃) ⋅ 𝐕 𝑑3𝑟

− 𝑘2 ∫ℂ
𝜖 𝐄̃ ⋅ 𝐕 𝑑3𝑟 = 0 . (53)
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Figure 10: Real (top) and imaginary (bottom) parts of the Bloch wave number as functions of normalized frequency 𝑘ℎ∕𝜋 for the
PCs with constituents described by the dispersion formula (51) with parameters specified in Table 1. Propagation along 𝑍-axis,
polarization along 𝑋 or 𝑌 . Inclusions have fixed width 𝑎𝑧 = 0.25ℎ and variable 𝑎𝑥 = 𝑎𝑦 as labeled. When 𝑎𝑥 = 𝑎𝑦 = 0.5ℎ, the PC is
a layered medium, uniform in the 𝑋-and 𝑌 directions. In this case, a theoretical solution for 𝑞𝐵𝑧 is available, and it is represented
in the plots by a solid line. The agreement between numerical and theoretical results is sufficiently close so that the two data sets
are not visually distinguishable.

Using integration by parts and elementary algebra, the dif-
ferentiation orders can be split evenly between 𝐄̃ and 𝐕, so
that (53) is written equivalently in the form

∫ℂ
(𝐪 × 𝐄̃) ⋅ (𝐪 × 𝐕) 𝑑3𝑟

+ i ∫ℂ
[(𝐪 × ∇ × 𝐄̃) ⋅ 𝐕 − 𝐄̃ ⋅ (𝐪 × ∇ × 𝐕)] 𝑑3𝑟

+ ∫ℂ
(∇ × 𝐄̃) ⋅ (∇ × 𝐕) 𝑑3𝑟 − 𝑘2 ∫ℂ

𝜖 𝐄̃ ⋅ 𝐕 𝑑3𝑟 = 0 . (54)

Note that the boundary integrals generated due to the in-
tegration by parts sum to zero as a result of the periodic
boundary conditions.

We now specialize to the case of Bloch wave propagation
along the 𝑍-axis so that 𝐪 = 𝑞𝑧𝐳̂, where 𝑞𝑧 is a complex
number to be found. We select the polarization mode along
the 𝑋-axis by applying the auxiliary conditions

∫ℂ
𝐸̃𝑦𝑑

3𝑟 = 0 , ∫ℂ
𝐸̃𝑧𝑑

3𝑟 = 0 . (55)

These conditions correspond to selecting the polarization
mode 𝐄𝟎 = (1, 0, 0)E (see (50a) in Sec. 5.2). We have
accounted for these conditions by introducing two spaces C
consisting of one global complex degree of freedom each,
which are used to test the condition (55). For practical pur-
poses, this auxiliary space C can be identified with the field
of complex numbers. Elements of these spaces, including
their symmetric counterparts, are added to (54) to obtain a
saddle-point problem. For discretization of 𝐄̃, a second order

Nedelec space N was used. Details of the finite element
spaces and their implementation in Netgen/NGSolve [29]
can be found in [30] and [31].

The numerical problem is then formulated as follows:
Find 𝐄̃ ∈ N and 𝜂1, 𝜂2, 𝑞𝑧 ∈ C such that

𝑞2𝑧 ∫ℂ
(𝐳̂ × 𝐄̃) ⋅ (𝐳̂ × 𝐕) 𝑑3𝑟

+ i 𝑞𝑧 ∫ℂ

[

(𝐳̂ × ∇ × 𝐄̃) ⋅ 𝐕 − 𝐄̃ ⋅ (𝐳̂ × ∇ × 𝐕)
]

𝑑3𝑟

+ ∫ℂ
(∇ × 𝐄̃) ⋅ (∇ × 𝐕) 𝑑3𝑟 − 𝑘2 ∫ℂ

𝜖 𝐄̃ ⋅ 𝐕 𝑑3𝑟

+ ∫ℂ

(

𝜉1𝐸̃𝑦 + 𝜉2𝐸̃𝑧 + 𝜂1𝑉𝑦 + 𝜂2𝑉𝑧
)

𝑑3𝑟 = 0 . (56)

for all 𝐕 ∈ N and 𝜉1, 𝜉2 ∈ C. Assembling (56) leads to the
matrix equation

(

𝑞2𝑧𝙰1 + 𝑞𝑧𝙰2 + 𝙰3
)

𝚞 = 0 , (57)

where 𝙰1, 𝙰2 and 𝙰3 are the finite element matrices, which
depend on 𝜔 but not on 𝑞𝑧, and 𝚞 is the coefficient vector of
projections of 𝐄̃ onto the basis of the chosen finite element
space. This equation is solved using a variant of Arnoldi
iteration [32, Chapter 1] modified to handle the polynomial
eigenvalue problem.

Results of the comparison are shown in Figs. 12 and
13. In these figures, we reproduce the dispersion curves
shown in Fig. 10 and provide a detailed comparison of the
data. As the two methods employed here are completely
different, the obtained agreement is quite remarkable. The
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Figure 11: Same as in Fig. 10 but for fixed 𝑎𝑥 = 𝑎𝑦 = 0.4ℎ and propagation direction in 𝑋𝑍-plane. Two different polarization
modes are shown. Polarization along 𝑌 is marked as 𝑠 and polarization in the 𝑋𝑍-plane as 𝑝. The projection of Bloch wave number
onto the 𝑋-axis is 𝑘𝑥 = 0.6𝑘 for all frequencies. The curve for normal propagation (identical to the curve with 𝑎𝑥 = 𝑎𝑦 = 0.4ℎ in
Fig. 11) is shown for comparison. Some points close to the right edge of the polots were not computed with the default settings
we used and not shown (nonlinear solver failed to converge) but can be found with additional effort/refining. The shown data
points were verified by comparing 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 16 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 32 (no discernible difference).

slight deviations seen at higher frequencies are probably due
to insufficient basis in one or both of the methods. We thus
conclude that the results obtained by the proposed method
are reliable under the condition that convergence of the
numerical solver has been achieved.

8. Summary of the method
In this section we give a brief self-consistent summary

of the proposed method. To avoid repetition, references are
given to equations of the previous sections; however, the
main definitions are repeated. We describe here the algo-
rithm for one rectangular inclusion but it can be easily gen-
eralized for a direct superposition of several such inclusions,
which can be used to define unit cells of more complicated
shape.

The PC is assumed to have a rectangular geometry
with the crystallographic axes coinciding with the axes of a
Cartesian reference frame 𝑋𝑌𝑍. The unit cell of the lattice
is a cuboid of the dimension ℎ𝑥 ×ℎ𝑦 ×ℎ𝑧. Each cell has one
co-centric cuboidal inclusion of the size 2𝑎𝑥 × 2𝑎𝑦 × 2𝑎𝑧.
Note that the dimensions of the cell and the inclusion are
not required to be proportional. In other words, the ratios
𝑎𝑥∕ℎ𝑥, 𝑎𝑦∕ℎ𝑦 and 𝑎𝑧∕ℎ𝑧 are arbitrary modulo the geometri-
cal limitation 𝑎𝛼∕ℎ𝛼 ≤ 0.5 (𝛼 = 𝑥, 𝑦, 𝑧). If equality holds for
some 𝛼, the inclusions are continuous in this direction and
the problem dimensionality is effectively reduced.

The method computes the Cartesian component 𝑞𝑧 of
the Bloch wave vector 𝐪 = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) as a function of
the electromagnetic frequency 𝜔 from the characteristic

equation det[Π(𝐪)] = 0, where Π(𝐪) is a 3 × 3. In this
paper and in the associated computer codes, 𝑞𝑥(𝜔) and 𝑞𝑦(𝜔)
are specified and known, i.e., determined from the interface
conditions while 𝑞𝑧(𝜔) is computed. However, the method
can be used for other restrictions of the Bloch variety.

The matrix elements of Π(𝐪) are given by

Π𝛼𝛽(𝐪) = 𝑞𝛼𝑞𝛽 +
(

𝑘2⟨𝜖⟩ − 𝑞2
)

𝛿𝛼𝛽 + 𝑘2𝜖ℎ𝜒Σ𝛼𝛽(𝐪), (58a)

where 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧. In the above formula,

𝑘 = 𝜔
𝑐
, 𝜌 =

8𝑎𝑥𝑎𝑦𝑎𝑧
ℎ𝑥ℎ𝑦ℎ𝑧

, ⟨𝜖⟩ = (1 − 𝜌)𝜖𝚑 + 𝜌𝜖𝚒 , (58b)

𝜒 = 𝜌
𝜖𝚒 − 𝜖𝚑

𝜖𝚑
. (58c)

Here 𝜔 is the real-valued electromagnetic frequency, 𝜌 is
the volume fraction of inclusions, 𝜖𝚑 and 𝜖𝚒 are the possibly
complex and dispersive permittivities of the host and inclu-
sions, respectively, ⟨𝜖⟩ is the average complex permittivity
of the medium, 𝜒 is the complex coupling constant, and the
3×3 complex symmetric matrix Σ(𝐪) (the interaction tensor)
is defined next.

The main part of the algorithm is computing the interac-
tion tensor Σ(𝐪). Formally, the elements Σ(𝐪) are defined as
a resolvent of the matrix 𝚆(𝐪),

Σ𝛼𝛽(𝐪) =
⟨

𝚊(𝛼)
|

|

|

[

𝜒−1𝙸 − 𝚆(𝐪)
]−1

|

|

|

𝚋(𝛽)(𝐪)
⟩

, (59)

where 𝙸 is a unit tensor and the vectors |𝚊(𝛼)⟩, |𝚋(𝛼(𝐪)⟩ and
the matrix 𝚆(𝐪) are defined in Eqs. (34). Elements of the
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Figure 12: Comparison of the real part of the Bloch wave number 𝑞𝐵𝑧 as a function of the normalized frequency computed by the
method of this paper using the package RectDisp (red centered symbols labeled as RectDisp) and by finite element discretization
and Arnoldi iterations (blue line labeled as FEM), as described in Section 7. Computations are shown for the same geometry and
PC parameters as in Fig. 10. Permittivities of the host and inclusions are given by (51) with the parameters as shown in Table 1.
The case 𝑥𝑎 = 𝑎𝑦 = ℎ∕2 is not shown as both methods reproduce in this case the analytical result with high precision.

vectors |𝚊(𝛼)⟩, |𝚋(𝛽)(𝐪)⟩ and of the matrix 𝚆(𝐪) are labeled
by a composite index consisting of 𝛾(= 𝑥, 𝑦, 𝑧) and by the
RLVs 𝐠 = 2𝜋(𝑛𝑥∕ℎ𝑥, 𝑛𝑦∕ℎ𝑦, 𝑛𝑧∕ℎ𝑧) where 𝑛𝛼 are integers
in the range −𝐿𝛼 ≤ 𝑛𝛼 ≤ 𝐿𝛼 and the trivial vector 𝐠 = 𝟎 is
excluded. Here 𝐿𝛼 are truncation parameters that determine
the size of the RLV box used in the simulations. The total
length of the vectors (the number of plane waves used) is
3(2𝐿𝑥 + 1)(2𝐿𝑦 + 1)(2𝐿𝑧 + 1) − 1. In many cases, one
can take 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝐿. However, if inclusions are
continuous in the direction 𝛼 (if 𝑎𝛼 = ℎ𝛼∕2), it is sufficient
to take 𝐿𝛼 = 0.

Although the size of 𝚆(𝐪) can be rather large, computa-
tion of the resolvent in (59) is achieved efficiently by the it-
erative method which takes advantage of the fact that 𝚆(𝐪) is
a product of a block-diagonal matrix (with blocks of the size
3×3) and a separable matrix. This decomposition is evident
in the explicit form (34c). The problem here is that of algebra
for matrices of a special form; Section 4 gives a complete
description of the method for computing the resolvent in (59)
and an estimate of computational complexity. For a three-
dimensional problem (without dimensionality reduction due
to continuity of inclusions), the latter scales as 𝑀𝐿4 where
𝐿 is the size of RLV box as defined above and 𝑀 is the
number of iterations (typically, 𝑀 = 16 is sufficient). This
complexity is a very significant reduction from 𝐿9 for direct

methods or 𝑀𝐿6 for iterative methods that do not account
for the special properties of the matrices involved.

9. Discussion
The method of computing dispersion relations in PCs

proposed in this paper is specialized but efficient for the nar-
row class of problems to which it applies. We have utilized
the specific geometry of the problem by choosing the ap-
propriate basis and exploiting variable separation. It should
be noted that variable separation can be used for solving
electromagnetic problems with many regular shapes. How-
ever, the only case when this works in three-dimensional
periodic media such as PCs is rectangular geometry (in two
dimensions, one can develop similar methods for triangular
lattices with triangular inclusions). Still, rectangular geom-
etry is frequently used in applications and PCs of this kind
are easy to manufacture. The method can be generalized to
several nested rectangular inclusions (with the same center)
and thus allow inclusion of more than two materials.

The main idea on which this paper is based in reducing
the eigenproblem of finding the Bloch wave vector to a
nonlinear equation. The interaction tensor that appears in
this procedure was introduced by us earlier in the context of
homogenization theory [23–25]. Here we have shown that
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Figure 13: Same as in Fig. 12 but for the imaginary part of the Bloch wave number.

the interaction tensor can be computed efficiently within the
iterative solver and that the iterations in many cases converge
to the correct solution.

We have used Fourier basis to expand the field in the
PC. This expansion is known to be only linearly converging.
However, in order to compute the Bloch wave vector by the
method of this paper, point-wise convergence of the field
is not required. It can be said that we rely on a weak for-
mulation of the eigenproblem. In many examples included
with the computational package, selecting 𝐿𝛼 = 8 (∼ 5000
plane waves) is sufficient for good accuracy as can be verified
by doubling this number. Roughly, 𝐿𝛼 = 16 is doable on
a laptop computer, 𝐿𝛼 = 32 and 𝐿𝛼 = 64 can be done
on a good workstation with parallelization and 𝐿𝛼 = 128
or 𝐿𝛼 = 256 requires a supercomputer. Large number of
plane waves is unlikely to be needed even in the case of
sharp electromagnetic resonances which can occur in metal-
dielectric PCs.

Of course, one can find cases when solution is difficult
to find or the method is slow. This is always true at suffi-
ciently high frequencies. It is clear intuitively that the higher
the frequency is, the faster are field variations inside the
material and the more basis functions one must utilize to
capture the field behavior with sufficient accuracy. However,
simulations shown in Section 6 indicate that the method is
quite stable in the first few pass bands and band gaps and
can capture complicated evanescent modes. We also note
that computations in the pass bands are almost always faster

than in band gaps or evanescent mode bands. If all that one
needs is the dispersion curves in the pass bands, these can
be computed efficiently by limiting the number of allowed
iterations to ∼ 5. This number can be controlled from the
parameter file in the computational package associated with
this paper.

We provide with this paper a complete computational
package that implements the methods described above. One
limitation of the current version of the codes is that they
find at most one 𝐪 (not counting its negative, −𝐪) for any
given frequency. In the first couple of pass bands and band
gaps, this is usually enough, but at higher frequencies there
can be multiple solutions (branching) [33]. Some of these
additional solutions are spurious modes, which appear due
to the so-called artificial band folding. In other words, these
modes can be found by standard eigenvalue-seeking codes
in an artificially-discretized homogeneous medium. Classi-
fication of the spurious mode is complicated and, at present,
we do not have a systematic method to address it. We believe
however that the method reported in this paper does not find
the spurious modes as we work under the assumption that the
amplitude of the fundamental Bloch harmonic𝐄𝟎 is not zero.
For this reason, spurious modes are not coupled to external
radiation and not excited in the actual PCs. Still, there can
exist multiple solutions at a given frequency that are not spu-
rious. Under most circumstances, such additional solutions
appear at the frequencies 𝑘ℎ∕𝜋 ≳ 1. If the proposed method
is used, an apparent loss of continuity of the dispersion curve
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(random jumps) can be an indication of multiple solution.
The high-frequency electromagnetic properties of PCs can
be complicated and the code users should be cautions when
working in the above spectral region. In the future releases,
we plan to include the capability of searching multiple non-
spurious solutions at any given frequency. One promising
approach is to use Pade approximants for Σ(𝐪) (the coeffi-
cients can be computed by sampling 𝐪 at a sufficient number
of points). Then the problem is reduced to a finite-number
polynomial equation in 𝐪; the solutions can be refined if
necessary to account for the imprecision of the Pade approx-
imation.

Finally, we note that the method of this paper can be used
directly to compute dispersion relations in two-dimensional
or one-dimensional PCs (in the latter case, an analytical
solution is available). Thus, to consider a two dimensional
PC that is continuous in the 𝑋-direction, set 𝑎𝑥 = ℎ𝑥∕2. We
emphasize that the third dimension is still present; the PC is
always a three-dimensional object, as is the case in reality. In
particular, we can consider propagation in the 𝑋𝑍 plane and
the two polarization modes associated with this direction.
In the case 𝑎𝑥 = ℎ𝑥∕2, it is sufficient to select 𝐿𝑥 = 0
and the code will run much faster. All these capabilities are
implemented in the computational package.

Authors are grateful for I. Tsukerman for useful discus-
sions.
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A. Numerical methods of solving (47)
Equation (47) is of the general form 𝐹 (𝑧) = 0, where 𝑧

is a complex variable and

𝐹 (𝑧) = 𝐴(𝑧)𝑧4 + 𝐵(𝑧)𝑧2 + 𝐶(𝑧) . (60)

The functions 𝐴(𝑧), 𝐵(𝑧) and 𝐶(𝑧) are defined by the re-
lations (48a) through (48e) with the substitution 𝑞𝑧 → 𝑧,
which is used here for convenience. By solving the above
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equation formally for 𝑧, we can transform it to the form
𝑧 = 𝑓 (𝑧), where

𝑓 (𝑧) =

√

−𝐵(𝑧) +
√

𝐵2(𝑧) − 4𝐴(𝑧)𝐶(𝑧)
2𝐴(𝑧)

. (61)

The special cases discussed in Sections 5.1 and 5.2 provide
several simplifications. For example, in the case of propaga-
tion in the 𝑋𝑍 plane and polarization along 𝑌 (𝑠-mode), we
have

𝐹 (𝑧) = 𝑧2 + 𝑘2𝑥 − 𝑘2𝜂𝑦(𝑧) , (62a)

𝑓 (𝑧) =
√

𝑘2𝜂𝑦(𝑧) − 𝑘2𝑥 . (62b)

Since 𝜂𝛼(𝑧) = 𝜂𝛼(−𝑧), the choice of square root branch in
(62) is insignificant. The same is true for the outer square
root branch in the general expression for 𝑓 (𝑧) (61). However,
the two branches of the inner square root give rise to two
different polarization modes. Thus, the simplified equation
for 𝑠-polarization (62) was obtained by choosing one partic-
ular branch for the inner square root in (60); the other branch
gives rise to the 𝑝-polarized mode, which is described by the
equation (49c).

In the fixed-point iteration, we start from the initial guess
𝑧0 and update it iteratively according to 𝑧𝑛+1 = 𝑓 (𝑧𝑛).
We can run the iteration until it converges with required
precision using the stop condition |𝐹 (𝑧𝑛)| ≤ 𝜖, where 𝜖 is
a predetermined small constant. Alternatively, we can use
fixed-point iteration to generate the initial three points for the
rational approximation method. The latter requires an initial
guess consisting of three values of the argument, 𝑧1, 𝑧2 and
𝑧3, and the corresponding values of 𝐹 (𝑧), 𝐹1, 𝐹2 and 𝐹3. We
then approximate 𝐹 (𝑧) as

𝐹 (𝑧) ≅ 𝐾 𝑧 − 𝑎
𝑧 − 𝑏

.

From the initial guess, we find

𝑎 = N∕D ,

where

N = 𝐹2𝐹3𝑧1(𝑧2 − 𝑧3) + 𝐹1𝐹2𝑧3(𝑧1 − 𝑧2)
+ 𝐹1𝐹3𝑧2(𝑧3 − 𝑧1) ,

D = 𝐹1𝐹2(𝑧1 − 𝑧2) + 𝐹2𝐹3(𝑧2 − 𝑧3)
+ 𝐹1𝐹3(𝑧3 − 𝑧1) .

and then define the general four-point iteration

𝑧𝑛+1 =
N𝑛+1
D𝑛+1

,

where

N𝑛+1 = 𝐹𝑛−1𝐹𝑛𝑧𝑛−2(𝑧𝑛−1 − 𝑧𝑛) + 𝐹𝑛−2𝐹𝑛−1𝑧𝑛(𝑧𝑛−2 − 𝑧𝑛−1)
+ 𝐹𝑛−2𝐹𝑛𝑧𝑛−1(𝑧𝑛 − 𝑧𝑛−2) ,

D𝑛+1 = 𝐹𝑛−2𝐹𝑛−1(𝑧𝑛−2 − 𝑧𝑛−1) + 𝐹𝑛−1𝐹𝑛(𝑧𝑛−1 − 𝑧𝑛)

+ 𝐹𝑛−2𝐹𝑛(𝑧𝑛 − 𝑧𝑛−2) .

The rational approximation iteration appears to be converg-
ing in most cases we have considered. As is well known,
the convergence rate of this method is super-linear but not
as fast as that of Newton’s method (quadratic). We however
wish to avoid the additional uncertainty of computing the
derivative numerically. Therefore, we did not implement
Newton’s method for the simulations of this paper.

Note that application of the rational approximation
method does not require generation of the initial guess by
fixed-point iteration. Any three points 𝑧1, 𝑧2 and 𝑧3 can be
used to this end. For example, we can take 𝑧1 = 0, 𝑧2 = 𝛿 and
𝑧3 = 2𝛿, where 𝛿 is a small real-valued constant. However,
generation of the initial guess by fixed-point iteration is a
more advantageous approach.

Another comment that should be made is that the general
definition of 𝐹 (𝑧) (60) does not contain square roots and
therefore does not allow one to select a polarization mode by
selecting a square root branch. However, equation 𝐹 (𝑧) = 0
has two solutions in the first Brillouin zone, not one. These
solutions correspond to the different polarization modes. In
contrast, equation 𝑧 = 𝑓 (𝑧) where a particular branch of the
square root has been chosen 10 has only one root in the first
Brillouin zone.

Finally, we recall that the functions 𝑓 (𝑧) or 𝐹 (𝑧) are
defined for generic 𝑧 whose real part is not restricted to the
first Brillouin zone of the lattice. However, if 𝑧∗ is a solution
to 𝐹 (𝑧) = 0 (in this context, the star is not related to complex
conjugation), then, at least theoretically, 𝑧∗ + 2𝜋𝑛∕ℎ is also
a solution, with 𝑛 being an arbitrary integer. Let 𝑧 = 𝑥+ i 𝑦.
We are seeking solutions in the first Brillouin zone, that is,
satisfying

−𝜋∕ℎ < 𝑥 ≤ 𝜋∕ℎ . (63)

In general, a solution found numerically by one of the
methods described above is not guaranteed to satisfy (63).
At the frequencies above the first band gap, this is almost
never the case. We therefore employ the following correction
algorithm. Once a root 𝑧∗ is found, we check whether it
satisfies (63). If yes, no correction is needed. If no, we
translate the root to the first Brillouin zone by the operation
[𝑧∗]FBZ = 𝑧∗−(2𝑛+1)𝜋∕ℎ, where 𝑛 = f loor(𝑥ℎ∕2𝜋). If |𝑛|
is greater that some critical value (typically, 0 if strict preci-
sion is required or 1 if some small errors can be tolerated), we
check whether [𝑧∗]FBZ still satisfies the underlying equation
by applying the condition |

|

𝐹 ([𝑧∗]FBZ)|| ≤ 𝜖, where 𝜖 is the
same small constant that was used in the main iteration. In
some cases, we relax the condition by replacing 𝜖 with 2𝜖,
which has a minor effect on precision and allows one to
avoid an increase of the computation time. If however the
condition does not hold, we use [𝑧∗]FBZ as the initial guess
for yet another search, which almost always finds the solution
in the first Brillouin zone with the required precision. If this
algorithm fails to find the solution with required precision,

10We can fix the branch by requiring that 0 ≤ arg(
√

𝑧) ≤ 𝜋 for first
branch and 𝜋 < arg(

√

𝑧) ≤ 2𝜋 for the second branch.
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which can occur at high frequencies, we conclude that the
root searching algorithm has failed, and no dispersion point
is added to the data set.

V.A. Markel, M. Schöbinger and K. Hollaus: Preprint submitted to Elsevier Page 22 of 21


