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Abstract Surface plasmon polaritons (SPPs) in chains of plasmonic nanoparticles
have attracted significant attention due to potential applications in spectroscopy,
sensing, and subwavelength manipulation of electromagnetic energy. On aspect of
such waveguides that received relatively little attention is directionality. Here we
explore waveguides that are not invariant under the reflection of direction. We show
that, although the dispersion relations in such waveguides are still symmetric as is
required by the electromagnetic reciprocity, a localized excitation applied to a central
part of the chain can selectively couple to the SPPs propagating in only one of the
two possible directions.

1 Introduction

Linear periodic chains of metal nanoparticles have attracted significant attention
in the past twenty years or so with envisaged applications in spectroscopy and
sensing [1–4] as well as in waveguiding and information transfer [5–8]. In our
previous work, we investigated the electromagnetic properties of simple linear plas-
monic chains using the point dipole approximation [9–12]. Theories accounting for
higher-order multipole interactions have also been developed [13–15]. Topological
properties of Bloch modes in chains with a more complicated geometry were studied
in [16, 17]. Additional references can be found in the review articles [18, 19].

One aspect of plasmonic chains that received little attention so far is directionality.
The radiation pattern of an electrically-small antenna is symmetric with respect to the
coordinate inversion r → −r. If such an antenna illuminates a small central segment
of a chain that is invariant under the same transformation, the electromagnetic
excitation in the form of a surface plasmon polariton (SPP) will travel in both
directions with the same amplitude. However, if we give the chain a sense of direction,
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the inversion symmetry of the system “antenna+chain” would be broken. In this case,
it is possible to engineer the source antenna so that it would send the SPP in one
direction only. The direction can be switched by tuning the phase relations of the
elementary dipoles comprising the antenna. When placed in free space, the source
antenna of this type would radiate as a single dipole (in the radiation zone). However,
when placed in a close vicinity of a directional chain, it will send the SPP in only one
of the two possible directions, depending on its internal phase relations. Intuition
may suggests that such direction-selective coupling is possible only if non-reciprocal
materials are used in the chain. However, we will show that non-reciprocity is not
required. This is so because the operator of dipole sum, which plays a fundamental
role in the theory of discrete waveguides, is not generally symmetric, even if all the
materials involved are reciprocal.

This chapter contains the general theory of directional discrete waveguides in the
framework of the point dipole approximation and a numerical example demonstrating
the feasibility of direction-selective coupling. While under some conditions the
dipole approximation may not be accurate, the basic observation that the dipole
sum in chains with a sense of direction is not symmetric is not expected to change
if we account for the higher multipoles, or use a more general method for solving
the electromagnetic problem. In Section 2 we describe the geometry of a discrete
structured chain. Section 3 introduces the coupled-dipole equation and the dipole
sum. In Section 4 we derive the dispersion equation that is specific to metal particles
with the Drude dielectric function. In Section 5 we discuss some algebraic properties
of the dispersion equation, which will prove useful for understanding the direction-
selective coupling. In Section 7 we provide a simple example of a directional chain
and demonstrate that direction-selective coupling is possible. Section 8 contains
a discussion and further examples. Gaussian system of base dimensions and the
corresponding form of electromagnetic equations are used throughout.

2 Waveguide geometry

Consider a linear discrete waveguide consisting of periodically-arranged, electrically-
small particles of the same permittivity 𝜖 (𝜔) embedded in a host medium with the
constant dielectric permittivity 𝜖ℎ ≥ 1 where 𝜖ℎ = 1 corresponds to vacuum and
𝜔 is the frequency. We work in the dipole approximation, so that the only relevant
parameters of a particle are its location and the dipole polarizability tensor 𝛼̂(𝜔).
We will use the model of metal ellipsoids to obtain physically-accessible values of
𝛼̂(𝜔) while making sure that the dipole approximation is still valid. In this case, the
location coincides with the ellipsoid center and 𝛼̂(𝜔) can be expressed analytically
in terms of the ellipsoid semi-axes and 𝜖 (𝜔). While the ellipsoids comprising the
waveguide can have different shapes and orientations, we assume that the mate-
rial from which the particles are made is the same; otherwise, theory becomes too
complicated.
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Fig. 1 Schematic illustration of a discrete waveguide with 𝑝 = 6 particles per cell. Three unit cells
are shown including the reference cell C with the index 𝑛 = 0.

Geometry of a discrete waveguide is illustrated in Fig. 1. The system is periodic in
the 𝑍 direction with the lattice step ℎ, and we label the unit cells by 𝑛 = 0,±1,±2, ....
Each cell contains 𝑝 > 0 particles labeled by 𝜈 = 1, 2, ..., 𝑝. We introduce the
composite index (𝑛𝜈) to label the particles. The locations and dipole moments of all
particles are denoted by r𝑛𝜈 = (𝑥𝜈 , 𝑦𝜈 , 𝑧𝑛𝜈) and d𝑛𝜈 . Here 𝑥𝜈 and 𝑦𝜈 are independent
of 𝑛 due to periodicity and

𝑧𝑛+1,𝜈 = 𝑧𝑛𝜈 + ℎ . (1)

As the polarizabilities are also periodic, we write 𝛼̂𝜈 (𝜔) for 𝜈-th article in an arbitrary
cell. The set of points r0𝜈 together with the polarizabilities 𝛼̂𝜈 define the reference
unit cell C. Thus, the waveguide consists of three-dimensional rectangular cells
periodically repeated in the 𝑍-direction; however, there is no periodicity in 𝑋 or 𝑌 .
Note that the transverse dimensions of a unit cell Δ𝑥 and Δ𝑦 are ambiguous and do
not enter any equations; we have introduced these quantities in the figure only for
visual convenience.

3 Coupled dipole equation and the dipole sum

The frequency-domain coupled dipole equations in the discrete waveguide have the
form

𝜒̂𝜈 (𝜔) d𝑛𝜈 = e𝑛𝜈 +
∑︁
𝑚𝜇

(𝑚𝜇)≠(𝑛𝜈)

𝐺̂ (r𝑛𝜈 , r𝑚𝜇; 𝜔) d𝑚𝜇 , (2)

where



4 Vadim A. Markel

𝜒̂𝜈 (𝜔) = 𝛼̂−1
𝜈 (𝜔) (3)

is the inverse polarizability tensor, d𝑛𝜈 are the dipole moments, e𝑛𝜈 are the exter-
nal fields (e.g., generated by a source antenna), 𝜔 is the working frequency, and
𝐺̂ (r, r′; 𝜔) is the free-space Green’s tensor for the electric field. We have tacitly
assumed that 𝛼̂𝜈 (𝜔) are invertible, which is the case for ellipsoids with any realistic
dielectric function 𝜖 (𝜔) ≠ 𝜖ℎ. The condition (𝑛𝜈) ≠ (𝑚𝜇) ensures that the electric
field at the particle (𝑛𝜈) is the sum of the external field e𝑛𝜈 and the fields generated
by all other particles excluding the particle (𝑛𝜈) itself. Additional details pertaining
to the form of the coupled dipole equation (2), alternative forms of this equation,
and accounting for the radiative correction to the quasi-static polarizability can be
found in [20].

The expression for 𝐺̂ applicable to free space is given in the Appendix. What
is important for us now is that the Green’s tensor satisfies the following symmetry
properties:

𝐺̂ (r, r′; 𝜔) = 𝐺̂𝑇 (r′, r; 𝜔) , (4a)
𝐺̂ (r, r′; 𝜔) = 𝐺̂ (r + 𝑠ẑ, r′ + 𝑠ẑ; 𝜔) . (4b)

Here the superscript 𝑇 denotes matrix transposition and 𝑠 is an arbitrary real scalar
(translation along the 𝑍 axis). The first equation above is Lorentz reciprocity and
the second is a consequence of the translational invariance of the waveguide. If
the waveguide is embedded in an infinite homogeneous space, as we assume here,
the Green’s tensor possesses even stronger symmetries. We then have, additionally,
𝐺̂ (r, r′; 𝜔) = 𝐺̂𝑇 (r, r′; 𝜔) and 𝐺̂ (r, r′; 𝜔) = 𝐺̂ (r + s, r′ + s; 𝜔), where s is an
arbitrary translation vector. However, if the waveguide is placed in an external
cladding, the latter properties may be lost while the properties in (4) would survive.
Therefore, the theoretical results presented below are generalizable to the case of an
external cladding as they rely only on (4) and not on any of the stronger symmetries.

To find guided waves, we set external fields e𝑛𝜈 to zero and seek Bloch-periodic
solutions to (2) of the form

d𝑛𝜈 = d𝜈 𝑒
i (𝑞ℎ)𝑛 . (5)

Upon substituting this ansatz into (2), we obtain the equation

𝜒̂𝜈 (𝜔)d𝜈 =
∑︁
𝑚𝜇

(𝑚𝜇)≠(𝑛𝜈)

𝐺̂ (r𝑛𝜈 , r𝑚𝜇; 𝜔) 𝑒i (𝑞ℎ) (𝑚−𝑛) d𝜇 . (6)

Since summation in (6) is carried out over all integer 𝑚, the result does not depend
on 𝑛 and we can set 𝑛 = 0 in the right-hand side of (6). Using this observation, we
can re-write (6) as

𝜒̂𝜈 (𝜔) d𝜈 =

𝑝∑︁
𝜇=1

𝑆𝜈𝜇 (𝜔, 𝑞) d𝜇 , (7)
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where

𝑆𝜈𝜇 (𝜔, 𝑞) :=
∞∑︁

𝑚=−∞
(𝑚𝜇)≠(0𝜈)

𝐺̂ (r0𝜈 , r𝑚𝜇; 𝜔) 𝑒i (𝑞ℎ)𝑚 (8)

is known as the dipole sum. Here 1 ≤ 𝜈, 𝜇 ≤ 𝑝. Note also that r0𝜈 are in the reference
cell C.

Most previous investigations of discrete plasmonic waveguides were restricted
to simple periodic 1D chains or 2D lattices where all particles are equivalent [18],
although more complicated geometries have also been considered [16, 17]. In the
case of simple periodic 1D chains, the dipole sum is reduced to a 3×3 tensor 𝑆(𝜔, 𝑞),
which is diagonal in the reference frame of Fig. 1. It is straightforward to show that
𝑆(𝜔, 𝑞) = 𝑆𝑇 (𝜔, 𝑞) and 𝑆(𝜔,−𝑞) = 𝑆(𝜔, 𝑞). These symmetry relations are special
cases of the more general relation

𝑆𝜈𝜇 (𝜔,−𝑞) = 𝑆𝑇𝜇𝜈 (𝜔, 𝑞) , (9)

which is applicable to structured chains. And while it is possible, under some addi-
tional conditions, to have 𝑆𝜈𝜇 (𝜔,−𝑞) = 𝑆𝜈𝜇 (𝜔, 𝑞), the latter relation does not always
hold. This observation is the main difference between simple and structured chains,
and it will be exploited below to find localized excitation schemes that excite only the
SPPs propagating in a given direction along the chain. We refer to this phenomenon
as to the direction-selective coupling and to the resulting SPPs as uni-directional.

We can prove (9) by starting from the definition (8) and following the chain of
equalities

𝑆𝜈𝜇 (𝜔,−𝑞) =
∞∑︁

𝑚=−∞
(0𝜈)≠(𝑚𝜇)

𝐺̂ (r0𝜈 , r𝑚𝜇; 𝜔) 𝑒−i (𝑞ℎ)𝑚

=

∞∑︁
𝑚=−∞

(0𝜈)≠(−𝑚𝜇)

𝐺̂ (r0𝜈 , r−𝑚𝜇; 𝜔) 𝑒i (𝑞ℎ)𝑚

=

∞∑︁
𝑚=−∞

(0𝜈)≠(𝑚𝜇)

𝐺̂ (r𝑚𝜈 , r0𝜇; 𝜔) 𝑒i (𝑞ℎ)𝑚

=

∞∑︁
𝑚=−∞

(0𝜈)≠(𝑚𝜇)

𝐺̂𝑇 (r0𝜇, r𝑚𝜈; 𝜔) 𝑒i (𝑞ℎ)𝑚

= 𝑆𝑇𝜇𝜈 (𝜔, 𝑞) .

(10)

To derive the third expression above, we have used translational invariance of 𝐺̂,
Eq. (4b). In the fourth expression, we have used Lorentz reciprocity, Eq. (4a).
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4 Inverse polarizability and dispersion equation

Equation (6) is a set of linear homogeneous equations with a 3𝑝×3𝑝 matrix M(𝜔, 𝑞)
(we denote 3𝑝-dimensional quantities such as matrices and vectors by a straight
typewriter-style letters like M or f). Correspondingly, the dispersion equation has
the general form det[M(𝜔, 𝑞)] = 0. The set of complex pairs (𝜔, 𝑞) that satisfy
this equation is a rather complicated 4-dimensional algebraic variety. To simplify
the problem, we can apply various physically-motivated restrictions. For example,
we will consider below only real frequencies 𝜔. We will also use a more specific
expression for 𝜒̂𝜈 (𝜔), which will allow us to disentangle the material and geometric
properties of the chain in the expression for M(𝜔, 𝑞).

First, to ensure energy conservation and mathematical stability of numerical
results, we account for the first nonvanishing radiative correction to the quasi-static
polarizability of an ellipsoid [20] by writing

𝜒̂(𝜔) = 𝛼̂−1
qs (𝜔) − i

2𝑘3

3
𝐼 , 𝑘 =

√
𝜖ℎ
𝜔

𝑐
. (11)

Here 𝛼̂qs (𝜔) is the quasi-static polarizability, 𝐼 is the identity tensor, and 𝑘 is the wave
number in the host medium. In the case of ellipsoids, the quasi-static probability can
be conveniently written as

𝛼̂qs (𝜔) =
𝜖ℎ𝑣

4𝜋

3∑︁
𝑗=1

û 𝑗 ⊗ û 𝑗

𝜖ℎ/[𝜖 (𝜔) − 𝜖ℎ] + 𝜘 𝑗
, (12)

where û 𝑗 are three mutually-orthogonal unit vectors, which define the principal axes
of the ellipsoid, and 𝜘 𝑗 are the corresponding depolarization factors (𝜘1+𝜘2+𝜘3 = 1).
The ellipsoid volume 𝑣 is given in terms of the three semi-axes 𝑎 𝑗 by

𝑣 =
4𝜋
3
𝑎1𝑎2𝑎3 , (13)

and the depolarization factors 𝜘 𝑗 can be expressed as functions of the two independent
ratios 𝑎1/𝑎2 and 𝑎1/𝑎3. Now we can easily invert (12) and obtain for a generic
ellipsoid

𝜒̂(𝜔) = 4𝜋
𝜖ℎ𝑣


𝜖ℎ

𝜖 (𝜔) − 𝜖ℎ
𝐼 +

3∑︁
𝑗=1
𝜘 𝑗 û 𝑗 ⊗ û 𝑗

 − i
2𝑘3

3
𝐼 . (14)

It is notable that the scalar factor

𝑠(𝜔) :=
𝜖ℎ

𝜖 (𝜔) − 𝜖ℎ
(15)

is independent of the ellipsoid shape while the tensor
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𝐾̂ :=
3∑︁
𝑗=1
𝜘 𝑗 û 𝑗 ⊗ û 𝑗 (16)

is independent of the material properties. The function 𝑠(𝜔) defined in (15) is known
in the theory of composites as the Bergman-Milton spectral parameter. Further, the
radiative correction depends only on the frequency. We have therefore disentangled
the geometric and material properties of an ellipsoid. Returning to the problem at
hand, we can write for the 𝜈-th ellipsoid

𝜒̂𝜈 (𝜔) =
1
𝛽𝜈

[
𝑠(𝜔) 𝐼 + 𝐾̂𝜈

]
− i

2𝑘3

3
𝐼 , (17)

where

𝛽𝜈 :=
𝜖ℎ𝑣𝜈

4𝜋
. (18)

Equation (17) is the expression we sought. Here only the geometric tensor 𝐾̂𝜈 and
the volume-related coefficient 𝛽𝜈 depend on the ellipsoid index. Note that all tensors
𝐾̂𝜈 are symmetric, so that 𝐾̂𝜈 = 𝐾̂𝑇

𝜈 .
Although equation (17) applies to any material of the ellipsoids, we will specialize

below to the case when this material is a Drude metal with the permittivity

𝜖 (𝜔) = 𝜖0 −
𝜔2

𝑝

𝜔(𝜔 + i 𝛾) , (19)

where 𝜔𝑝 is the plasma frequency and 𝛾 is the relaxation constant. We then have

𝑠(𝜔) = 𝜖ℎ
𝜔(𝜔 + i 𝛾)

(𝜖0 − 𝜖ℎ)𝜔(𝜔 + i 𝛾) − 𝜔2
𝑝

. (20)

This expression becomes particularly simple in the case 𝜖0 = 𝜖ℎ.
We now return to (7) and use the functional form (17) of 𝜒̂𝜈 (𝜔). This results in

the equation

𝑠(𝜔) d𝜈 = 𝛽𝜈


𝑝∑︁

𝜇=1
𝑆𝜈𝜇 (𝜔, 𝑞) d𝜇 + i

2𝑘3

3
d𝜈

 − 𝐾̂𝜈 d𝜈 . (21)

We need to find points in the two-dimensional region

D :=
{
−𝜋
ℎ
≤ 𝑞 ≤ 𝜋

ℎ
; 𝜔 > 0

}
(22)

of the (𝑞, 𝜔)-plane for which (21) has non-trivial solutions. Of course, this is possible
only if 𝛾 = 0 in the Drude formula and then only for 𝑞 > 𝑘 (above the light line). To
find the dispersion curves numerically, we will set 𝛾 = 0 in the expression for 𝑠(𝜔)
(20), so that
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𝑠(𝜔) −−−→
𝛾=0

𝑠0 (𝜔) :=
𝜖ℎ 𝜔

2

(𝜖0 − 𝜖ℎ)𝜔2 − 𝜔2
𝑝

. (23)

However, when simulating propagation due to an external excitation (e.g., by an
antenna), we will include finite losses in the model.

5 Algebraic considerations

For each pair of indexes (𝜈, 𝜇), the tensor 𝑆𝜈𝜇 (𝜔, 𝑞) is a 3×3 matrix. We can arrange
these matrices into a 3𝑝 × 3𝑝 matrix S(𝜔, 𝑞) as shown below:

S(𝜔, 𝑞) =


𝑆11 (𝜔, 𝑞) 𝑆12 (𝜔, 𝑞) ... 𝑆1𝑝 (𝜔, 𝑞)
𝑆21 (𝜔, 𝑞) 𝑆22 (𝜔, 𝑞) ... 𝑆2𝑝 (𝜔, 𝑞)

... ... ... ...

... ... ... ...

𝑆𝑝1 (𝜔, 𝑞) 𝑆𝑝2 (𝜔, 𝑞) ... 𝑆𝑝𝑝 (𝜔, 𝑞)


. (24)

We denote matrices of the size 3𝑝 × 3𝑝 by straight, typewriter-style letters such as
S. We can use (4) to show that

S(𝜔,−𝑞) = S𝑇 (𝜔, 𝑞) . (25)

We also introduce two block-diagonal matrices

B =


𝛽1𝐼 0 ... 0
0 𝛽2𝐼 ... 0
... ... ... ...

... ... ... ...

0 0 ... 𝛽𝑝 𝐼


, K =


𝐾̂1 0 ... 0
0 𝐾̂2 ... 0
... ... ... ...

... ... ... ...

0 0 ... 𝐾̂𝑝


. (26)

Then Eq. (21) takes the following form:

𝑠(𝜔) d = W(𝜔, 𝑞) d , (27)

where

W(𝜔, 𝑞) = B
[
S(𝜔, 𝑞) + i

2𝑘3

3
I

]
− K (28)

and d is a column-vector of dipole moments d𝜈 of the length 3𝑝:

d =
[
d1 d2 ... ... d𝑝

]𝑇
. (29)

Equation (27) has nontrivial solutions if and only if one of the eigenvalues of W(𝜔, 𝑞)
is equal to 𝑠(𝜔).
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5.1 Ellipsoids of equal volume

Let us first analyze the relatively simple case when B is proportional to the identity
matrix, B = 𝛽I. This happens if all ellipsoids are of the same volume (but not
necessarily of the same shape and orientation). Then the symmetry property (25) of
S(𝜔, 𝑞) is inherited by W(𝜔, 𝑞). Indeed, we have in the special case considered

W(𝜔, 𝑞) = 𝛽
[
S(𝜔, 𝑞) + i

2𝑘3

3
I

]
− K . (30)

Here I is the 3𝑝 × 3𝑝 identity matrix. Since K is symmetric and independent of 𝑞,
we have

W(𝜔,−𝑞) = W𝑇 (𝜔, 𝑞) (if 𝛽𝜈 = 𝛽 = const) . (31)

It immediately follows that W(𝜔, 𝑞) and W(𝜔,−𝑞) have the same eigenvalues. There-
fore, if a point (𝜔, 𝑞) is on the dispersion curve, then (𝜔,−𝑞) is also on the dispersion
curve (because 𝑠(𝜔) is independent of 𝑞). We thus have proved the following theo-
rem:

Theorem 1 (Eigenvalues of W(𝜔, 𝑞) for ellipsoids of fixed volume). For struc-
tured chains made of general ellipsoids of equal volume, the following state-
ments are true:

(i) W(𝜔, 𝑞) and W(𝜔,−𝑞) share the same set of eigenvalues𝜆𝑖 (𝜔, 𝑞). There-
fore, the eigenvalues are even functions of 𝑞, 𝜆𝑖 (𝜔,−𝑞) = 𝜆𝑖 (𝜔, 𝑞).

(ii) The dispersion curves 𝑞 = 𝑞(𝜔) are symmetric with respect to the line
𝑞 = 0.

Moreover, it is clear that, if f(𝜔, 𝑞) and f(𝜔,−𝑞) are the right eigenvectors of
W(𝜔, 𝑞) and W(𝜔,−𝑞), respectively, with the same eigenvalue 𝜆(𝜔, 𝑞), then f(𝜔,−𝑞)
is a left eigenvector of W(𝜔, 𝑞) and f(𝜔, 𝑞) is a left eigenvector of W(𝜔,−𝑞). Indeed,
start from the definitions

W(𝜔, 𝑞) f(𝜔, 𝑞) = 𝜆(𝜔, 𝑞) f(𝜔, 𝑞) ,
W(𝜔,−𝑞) f(𝜔,−𝑞) = 𝜆(𝜔, 𝑞) f(𝜔,−𝑞) .

(32a)

Transposing the above equations and using (31), we obtain

f𝑇 (𝜔, 𝑞) W(𝜔,−𝑞) = 𝜆(𝜔, 𝑞) f𝑇 (𝜔, 𝑞) ,
f𝑇 (𝜔,−𝑞) W(𝜔, 𝑞) = 𝜆(𝜔, 𝑞) f𝑇 (𝜔,−𝑞) ,

(32b)

which proves the above statement.
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Theorem 2 (Eigenvectors of W(𝜔, 𝑞) for ellipsoids of fixed volume). Assume
that W(𝜔, 𝑞) has 3𝑝 distinct eigenvalues 𝜆𝑖 (𝜔, 𝑞) corresponding to the eigen-
vectors f𝑖 (𝜔, 𝑞), 𝑖 = 1, 2, ..., 3𝑝. Then W(𝜔,−𝑞) has 3𝑝 eigenvectors f𝑖 (𝜔,−𝑞)
corresponding to the same distinct eigenvalues and the two sets of eigenvectors
are mutually dual bases so that

f𝑇𝑗 (𝜔,−𝑞) f𝑖 (𝜔, 𝑞) = 𝑍𝑖 (𝜔, 𝑞) 𝛿 𝑗𝑖

with 𝑍𝑖 (𝜔, 𝑞) ≠ 0 and 𝑍𝑖 (𝜔,−𝑞) = 𝑍𝑖 (𝜔, 𝑞).

Note that there is no complex conjugation in the orthogonality relation of Theo-
rem 2. We can still normalize the eigenvectors by the conventional condition

f†
𝑖
(𝜔, 𝑞) f𝑖 (𝜔, 𝑞) = 1 . (33)

Here † denotes Hermitian conjugation (transposition and entry-wise complex con-
jugation).

Proof. The first statement of Theorem 2 is obvious. Eigenvectors of any non-
degenerate matrix form a basis, and W(𝜔, 𝑞) and W(𝜔,−𝑞) share the same set of
distinct eigenvalues. To show that the two bases are dual, we can consider the matrix
element

f𝑇𝑗 (𝜔,−𝑞) W(𝜔, 𝑞) f𝑖 (𝜔, 𝑞) (34)

and use the relations (32). Acting with W(𝜔, 𝑞) to the left and to the right, we obtain
the equality

𝜆𝑖 (𝜔, 𝑞) f𝑇𝑗 (𝜔,−𝑞) f𝑖 (𝜔, 𝑞) = 𝜆 𝑗 (𝜔, 𝑞) f𝑇𝑗 (𝜔,−𝑞) f𝑖 (𝜔, 𝑞) . (35)

If 𝑗 ≠ 𝑖, the above equality implies that f𝑇
𝑗
(𝜔,−𝑞) f𝑖 (𝜔, 𝑞) = 0. This proves mutual

orthogonality of the bases. It remains to show that 𝑍𝑖 (𝜔, 𝑞) ≠ 0. Assume that
𝑍𝑖 (𝜔, 𝑞) = 0 for some 𝑖. We know that f𝑇

𝑗
(𝜔,−𝑞) f𝑖 (𝜔, 𝑞) = 0 for all 𝑗 ≠ 𝑖.

Therefore, the set of f 𝑗 (𝜔,−𝑞) with 𝑗 ≠ 𝑖 forms the orthogonal complement to
f𝑖 (𝜔, 𝑞). If, in addition, f𝑖 (𝜔,−𝑞) has zero projection onto f𝑖 (𝜔, 𝑞), the set of all
vectors f 𝑗 (𝜔,−𝑞) is the same orthogonal complement and therefore does not form
a complete basis in contradiction to the assumption that W(𝜔, 𝑞) is non-degenerate.
Therefore, 𝑍𝑖 (𝜔, 𝑞) = 0 is not a possibility. ⊓⊔

We can now write the following spectral expansion for W(𝜔, 𝑞) (assuming it is
not degenerate)
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W(𝜔, 𝑞) =
3𝑝∑︁
𝑖=1

1
𝑍𝑖 (𝜔, 𝑞)

𝜆𝑖 (𝜔, 𝑞) f𝑖 (𝜔, 𝑞) f𝑇𝑖 (𝜔,−𝑞) . (36)

Remark 1 (Degeneracy of W(𝜔, 𝑞)). If W(𝜔, 𝑞) is degenerate but not defective
(this means that its eigenvectors still form a complete basis), we can always
construct dual bases of eigenvectors of W(𝜔, 𝑞) and W(𝜔,−𝑞) according to the
standard procedure. This case does not pose any difficulties and the statements
of Theorem (2) remain true. However, W(𝜔, 𝑞) is, in general, neither symmetric
nor Hermitian, and proving non-defectiveness for matrices with no special
symmetry is usually difficult. From the physical point of view, defectiveness
occurs due to random degeneracy with a probability close to 0 and therefore
almost never. In simulations, it is safe to ignore this possibility.

5.2 Ellipsoids of varying volume

It is clear on physical grounds that allowing the volume of ellipsoids to vary should
not cause any new effects. In fact, the spectral properties of W(𝜔, 𝑞) remain in this
case almost the same (with a slight modification), but the proofs are more difficult
because B is no longer proportional to the identity matrix and the symmetry relation
(31) does not hold.

We start from the definition (28) where B is not necessarily proportional to the
identity matrix, and write it in the form

W(𝜔, 𝑞) = B S(𝜔, 𝑞) + i
2𝑘3

3
B − K . (37)

Next we change the sign of 𝑞 in the previous formula. This yields

W(𝜔,−𝑞) = B S(𝜔,−𝑞) + i
2𝑘3

3
B − K . (38)

Using the symmetry property (25) of S(𝜔, 𝑞), we also have

W(𝜔,−𝑞) =
[
S(𝜔, 𝑞) B + i

2𝑘3

3
B − K

]𝑇
, (39)

where we accounted for the symmetry of B and K. Let us denote the matrix in the
square brackets by U(𝜔, 𝑞);
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U(𝜔, 𝑞) := S(𝜔, 𝑞) B + i
2𝑘3

3
B − K . (40)

We therefore have

W(𝜔,−𝑞) = U𝑇 (𝜔, 𝑞) . (41)

The matrices S(𝜔, 𝑞) and B do not generally commute. For this reason, U(𝜔, 𝑞) ≠
W(𝜔, 𝑞). We will however prove that U(𝜔, 𝑞) and W(𝜔, 𝑞) share the same eigenvalues.
To this end, we will use the special properties of B and K. It will then follow from
(41) that W(𝜔, 𝑞) and W(𝜔,−𝑞) share the same eigenvalues, even though these two
matrices are not transposes of each other.

Theorem 3 (Eigenvalues of W(𝜔, 𝑞) for ellipsoids of variable volume). Con-
clusions of Theorem 1 carry over to the case when the ellipsoids have variable
volume.

Proof. We can prove Theorem 3 by noticing that B is diagonal and all its elements
are positive and removed from zero (since the same is true for the volumes 𝑣𝜈). We
can therefore take the square root of B and, moreover, this operation is numerically
stable. Let B = D D. From the same arguments as above, D is invertible. We can use
these properties of B to write

W(𝜔, 𝑞) = D
[
D S(𝜔, 𝑞) D + i

2𝑘3

3
B − D−1 K D

]
D−1 ,

U(𝜔, 𝑞) = D−1
[
D S(𝜔, 𝑞) D + i

2𝑘3

3
B − D K D−1

]
D .

(42)

The key observation that we need is that D−1 K D = D K D−1 = K. This is easy to verify
directly. Denoting

W𝑠 (𝜔, 𝑞) := D S(𝜔, 𝑞) D + i
2𝑘3

3
B − K , (43)

we arrive at the result

W(𝜔, 𝑞) = D W𝑠 (𝜔, 𝑞) D−1 ,

U(𝜔, 𝑞) = D−1 W𝑠 (𝜔, 𝑞) D .
(44)

Here W𝑠 (𝜔, 𝑞) is the symmetrized form of W(𝜔, 𝑞) (compare to Eq. 37). In the case
when B = 𝛽I, the two matrices coincide. It is now easy to see that W𝑠 (𝜔, 𝑞), W(𝜔, 𝑞)
and U(𝜔, 𝑞) share the same eigenvalues. This proves Theorem 3. ⊓⊔
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Theorem 4 (Eigenvectors of W(𝜔, 𝑞) for ellipsoids of variable volume). Let
the symmetrized matrix W𝑠 (𝜔, 𝑞) have 3𝑝 distinct eigenvalues 𝜆𝑖 (𝜔, 𝑞), 𝑖 =
1, 2, ..., 3𝑝 with the corresponding eigenvectors f𝑖 (𝜔, 𝑞). Then Df𝑖 (𝜔, 𝑞) and
D−1f𝑖 (𝜔,−𝑞) are the right and left eigenvectors of W(𝜔, 𝑞) with the same
eigenvalues. These two sets of eigenvectors are mutually dual bases.

The proof is obvious since W𝑠 (𝜔, 𝑞) satisfies the symmetry property (31) and all
conclusions of Theorem 2 hold for it verbatim. In particular, (36) holds for W𝑠 (𝜔, 𝑞).
We can therefore use (44) to write

W(𝜔, 𝑞) =
3𝑝∑︁
𝑖=1

1
𝑍𝑖 (𝜔, 𝑞)

𝜆𝑖 (𝜔, 𝑞) D f𝑖 (𝜔, 𝑞) f𝑇𝑖 (𝜔,−𝑞) D−1 . (45)

The statements of Theorem 4 can be verified directly by using this formula.

Remark 2 (Normalization). We assume that the vectors f𝑖 (𝜔, 𝑞) (for positive
and negative 𝑞) are normalized by the conventional condition

f†
𝑖
(𝜔, 𝑞) f𝑖 (𝜔, 𝑞) = 1 . (46)

Then the left and right eigenvectors of W(𝜔, 𝑞),

g𝑖 (𝜔, 𝑞) := Df𝑖 (𝜔, 𝑞) , g𝑖 (𝜔,−𝑞) := D−1f𝑖 (𝜔,−𝑞)

are not normalized. However, the overlap coefficients appearing in (45) are the
same for the normalized and not normalized bases, viz,

𝑍𝑖 (𝜔, 𝑞) = 𝑍𝑖 (𝜔,−𝑞) = f𝑇𝑖 (𝜔,−𝑞) f𝑖 (𝜔, 𝑞) = g𝑇𝑖 (𝜔,−𝑞) g𝑖 (𝜔, 𝑞) . (47)

6 Forced oscillations

6.1 Response to external field

We now consider the response to an external field, e.g., produced by a source antenna.
To this end, we return to the coupled-dipole equation (2) and seek the solution in the
form of a Fourier integral
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d𝑛𝜈 =
1

2𝜋

𝜋/ℎ∫
−𝜋/ℎ

d̃𝜈 (𝜉) 𝑒i 𝜉ℎ𝑛 d𝜉 , 𝜈 = 1, 2, ..., 𝑝 . (48)

Here d̃𝜈 (𝜉) is the Fourier coefficient to be determined. A similar decomposition can
be written for the incident field:

e𝑛𝜈 =
1

2𝜋

𝜋/ℎ∫
−𝜋/ℎ

ẽ𝜈 (𝜉) 𝑒i 𝜉ℎ𝑛 d𝜉 , 𝜈 = 1, 2, ..., 𝑝 . (49)

Using the 3𝑝-dimensional matrix notations introduced above and the expression (17)
for 𝜒̂(𝜔), the coupled-dipole equation (2) can be written as

[𝑠(𝜔) I − W(𝜔, 𝜉)] d̃(𝜉) = B ẽ(𝜉) , (50)

with the obvious solution

d̃(𝜉) = [𝑠(𝜔) I − W(𝜔, 𝜉)]−1 B ẽ(𝜉) . (51)

We then substitute this result back to the Fourier integral (48) and find the real-space
solution

d𝑛 =
1

2𝜋

𝜋/ℎ∫
−𝜋/ℎ

[𝑠(𝜔) I − W(𝜔, 𝜉)]−1 B ẽ(𝜉) 𝑒i 𝜉ℎ𝑛 d𝜉 . (52)

In this expression, d𝑛 is the 3𝑝-dimensional vector of dipole moments in the 𝑛-th
cell. The correspondence to the three-dimensional vectors d𝑛𝜈 , that is,

d𝑛 =
[
d𝑛1 d𝑛2 ... ... d𝑛𝑝

]𝑇
. (53)

Next, we use the spectral expansion (45) to write

[𝑠(𝜔) I − W(𝜔, 𝜉)]−1 =

3𝑝∑︁
𝑖=1

𝑍𝑖 (𝜔, 𝜉)
D f𝑖 (𝜔, 𝜉) f𝑇𝑖 (𝜔,−𝜉) D−1

𝑠(𝜔) − 𝜆𝑖 (𝜔, 𝜉)
. (54)

Substituting this result into (52), we obtain the spectral solution to the forced oscil-
lation problem:

d𝑛 =
1

2𝜋

𝜋/ℎ∫
−𝜋/ℎ

d𝜉 𝑒i 𝜉ℎ𝑛
3𝑝∑︁
𝑖=1

𝑍𝑖 (𝜔, 𝜉)
D f𝑖 (𝜔, 𝜉) f𝑇𝑖 (𝜔,−𝜉) D ẽ(𝜉)

𝑠(𝜔) − 𝜆𝑖 (𝜔, 𝜉)
. (55)

In the special case when all ellipsoids are of the same volume 𝑣, this expression
simplifies to
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d𝑛 =
𝜖ℎ𝑣

8𝜋2

𝜋/ℎ∫
−𝜋/ℎ

d𝜉 𝑒i 𝜉ℎ𝑛
3𝑝∑︁
𝑖=1

𝑍𝑖 (𝜔, 𝜉)
f𝑖 (𝜔, 𝜉) f𝑇𝑖 (𝜔,−𝜉) ẽ(𝜉)

𝑠(𝜔) − 𝜆𝑖 (𝜔, 𝜉)
. (56)

6.2 Localized excitation and the quasi-particle pole approximation

Of special interest is excitation that is localized and, ideally, restricted to the reference
cell. This means that

e𝑛𝜈 = e𝜈 𝛿𝑛0 . (57)

In this case,

ẽ𝜈 (𝜉) = ℎ e𝜈 (58)

is independent of 𝜉, as can be easily verified by substitution into (49). In practice,
the source antenna will illuminate all particles in the chain. However, by using
directional antennas or by placing them close to the reference cell, we can minimize
such effects. Mathematically, however, the approximation (58) is convenient as it
allows one to compute the response due to some elementary excitations whereas
more complex and realistic excitations can be considered by linear superposition.

Assuming (58) is true, we re-write (55)

d𝑛 =
ℎ

2𝜋

𝜋/ℎ∫
−𝜋/ℎ

d𝜉 𝑒i 𝜉ℎ𝑛
3𝑝∑︁
𝑖=1

𝑍𝑖 (𝜔, 𝜉)
D f𝑖 (𝜔, 𝜉) f𝑇𝑖 (𝜔,−𝜉) D e

𝑠(𝜔) − 𝜆𝑖 (𝜔, 𝜉)
, (59)

where e is the 3𝑝-dimensional vector whose elements are the electric fields created
by the source antenna at the particles of the reference cell,

e =
[
e1 e2 ... ... e𝑝

]𝑇
. (60)

Equation (59) seems to be a small modification of (55) (the dependence on 𝜉 and
the overhead tilde in ẽ(𝜉) are gone; note also the extra power of ℎ in the overall
coefficient), but it will allow us to make further analytical progress by applying the
quasi-particle pole approximation as described below.

For each 𝜔, the dominant input to the integral (59) is given by the values of 𝜉
such that the denominator 𝑠(𝜔) − 𝜆𝑖 (𝜔, 𝜉) is small. If the denominator could turn
to zero, the integral would be ill-defined. However, it cannot turn to zero if there
is some absorption in the particle material. The approach therefore is to compute
the dispersion curves by solving the equation 𝑠(𝜔) = 𝜆𝑖 (𝜔, 𝜉) with zero absorption;
then evaluate the integral (59) for some small but nonzero absorption. We write

𝑠(𝜔) = 𝑠0 (𝜔) + i𝜎(𝜔) , (61)
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where 𝜎(𝜔) > 0 and 𝑠0 (𝜔) = lim𝛾→0 𝑠(𝜔). A particular expression for 𝑠0 (𝜔),
which can be used conveniently in numerical simulations, is given in (23). Then the
dispersion curves are obtained by finding all real-valued solutions to

𝑠0 (𝜔) = 𝜆𝑖 (𝜔, 𝜉) (dispersion equation for 𝑖-th mode) , (62)

where 𝜔 > 0 and −𝜋/ℎ < 𝜉 ≤ 𝜋/ℎ.
Not all modes may have such solutions at a given frequency 𝜔. Let us fix 𝜔 and

assume for simplicity that real values of 𝜉 that satisfy (62) exist only for 𝑖 = 𝑟 (the
resonant mode). If such solutions exist for several values of 𝑖, a generalization is
easily obtained by summation over all resonant modes. Assuming for now that a
solution exists only for 𝑖 = 𝑟 , we may keep only one term in the summation of (59),
viz,

d𝑛 =
ℎ

2𝜋

𝜋/ℎ∫
−𝜋/ℎ

d𝜉 𝑒i 𝜉ℎ𝑛 𝑍𝑟 (𝜔, 𝜉)
D f𝑟 (𝜔, 𝜉) f𝑇𝑟 (𝜔,−𝜉) D e

𝑠(𝜔) − 𝜆𝑟 (𝜔, 𝜉)
. (63)

Due to the symmetry of 𝜆𝑖 (𝜔, 𝜉), roots of (62) always come in pairs. Consider
the simplest case when there are only two roots, 𝜉 = ±𝑞(𝜔), where 𝑞(𝜔) > 0 for
definitiveness. The set of all points (𝜔, 𝑞(𝜔)) defines the dispersion relation of the
chain. We can expand 𝜆𝑟 (𝜔, 𝜉) for 𝜉 near the roots ±𝑞(𝜔) as

𝜆𝑟 (𝜔, 𝜉) ≈ 𝑠0 (𝜔) − 𝜎(𝜔) ℓ(𝜔) ×
{
𝑞(𝜔) − 𝜉 , 𝜉 ≈ 𝑞(𝜔)

𝑞(𝜔) + 𝜉 , 𝜉 ≈ −𝑞(𝜔)
. (64)

Here the factor 𝜎(𝜔) has been introduced for convenience and ℓ(𝜔) is a new inde-
pendent coefficient. It may be computed numerically as

ℓ(𝜔) :=
1

𝜎(𝜔)
𝜕𝜆𝑟 (𝜔, 𝜉)

𝜕𝜉

����
𝜉=𝑞 (𝜔)

. (65)

Although we do not prove this statement here, 𝜆𝑖 (𝜔, 𝜉) are real-valued for 𝜉 > 𝑘

(where the solutions to the dispersion equation exist), and therefore ℓ(𝜔) is also real.
The physical interpretation is that, below the light line, the SPPs propagate without
radiative losses. However, ℓ(𝜔) can be positive or negative. We say that dispersion
is positive at 𝜔 if ℓ(𝜔) > 0 and negative otherwise.

We can now use (64) to re-write (63), approximately, as

d𝑛 =
ℎ 𝑍𝑟 (𝜔, 𝑞(𝜔))
2𝜋 𝜎(𝜔) ℓ(𝜔)

×
∞∫

−∞

[
d− (𝜔)

𝜉 + 𝑞(𝜔) + i /ℓ(𝜔) −
d+ (𝜔)

𝜉 − 𝑞(𝜔) − i /ℓ(𝜔)

]
𝑒i 𝜉ℎ𝑛 d𝜉 . (66)

In this expression,
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d+ (𝜔) := P𝑟 (𝜔) e , d− (𝜔) := P𝑇𝑟 (𝜔) e , (67a)

where

P𝑟 (𝜔) := D f𝑟 (𝜔, 𝑞(𝜔)) f𝑇𝑟 (𝜔,−𝑞(𝜔)) D . (67b)

Note that we have expanded the integration in (66) to the real axis. It remains therefore
to compute the integrals in (66). Consider first the case of positive dispersion,
ℓ(𝜔) > 0. Accounting for the general condition 𝜎(𝜔) > 0, we arrive at

d𝑛 =
ℎ 𝑍𝑟 (𝜔, 𝑞(𝜔)) 𝑒 [i 𝑞 (𝜔)−1/ℓ (𝜔) ]ℎ |𝑛 |

i𝜎(𝜔) ℓ(𝜔)


d+ (𝜔) , 𝑛 > 0
1
2
[d+ (𝜔) + d− (𝜔)] , 𝑛 = 0

d− (𝜔) , 𝑛 < 0

. (68)

We thus see that, for a generic point (𝜔, 𝑞(𝜔)) on the dispersion curve, the propagates
to the right and left of the excitation site with the wave numbers +𝑞(𝜔) and −𝑞(𝜔),
respectively. The coefficient ℓ(𝜔) is the characteristic propagation distance, which
describes the exponential decay of the SPPs due to Ohmic losses. The amplitudes
of propagation to the right and to the left are in general not the same and given by
d+ (𝜔) and d− (𝜔) for positive dispersion, and vice versa for negative dispersion.

7 Direction-selective coupling

Here we demonstrate direction-selective coupling of SPPs to local excitation (con-
fined to the reference cell C). The question we are asking is whether it is possible
to achieve direction-selective coupling by illuminating only the dipoles in the small-
est periodic element of the cell. The latter qualifier is important. There are other
means to excite SPPs propagating in a given direction only, but they require a
spatially-extended source antenna with the length of many periods of the chain.
For example, the smallest cell in a simple linear periodic chain consists of just one
particle, and local direction-selective coupling in such chains is impossible. More
generally, local direction-selective coupling is not possible in chains that are in-
variant under the reflection 𝑍 → −𝑍 . Indeed, if the chain has this property, the
matrix 𝑊 (𝜔, 𝑞), in addition to the fundamental relation (31), is also symmetric, so
that W(𝜔, 𝑞) = W𝑇 (𝜔, 𝑞) = W(𝜔,−𝑞). It is easy to see from (43) that, in this case,
d+ = d− .

However, in a chain without the reflection symmetry, W(𝜔, 𝑞) is not symmetric.
We can exploit this property to achieve direction-selective coupling with a fairly good
precision. Indeed, at a frequencies corresponding to positive dispersion, direction-
selective coupling to SPPs propagating to the right of the reference cell (in the
positive 𝑍 direction) occurs if d+ ≠ 0 but d− = 0. It can be seen from (68) that,
within the precision of the quasi-particle pole approximation, the dipole moments in
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the cells with 𝑛 < 0 are in this case zero. Similarly, the SPP would propagate to the
left of the reference cell if d− ≠ 0 but d+ = 0. For negative dispersion, the directions
are reversed.

7.1 Directional chain with three particles per cell

There are several simple geometries of the reference cell that we can investigate for
the purpose of providing examples. Here we illustrate how the direction-selective
coupling can be achieved using the simple geometry illustrated in Fig. 2. Assume
that the polarization is out-of-plane (along the 𝑌 -axis) and the particles are identical
prolate spheroids whose major axis is aligned with 𝑌 . Fig. 2 can be regarded as
the “top view” of the waveguide. Below, we provide some analytical results for this
geometry and illustrate the accuracy of the quasi-particle pole approximation.

Fig. 2 Schematic illustration of the discrete waveguide for which direction-selective coupling is
possible.

Since the Cartesian components of the dipole moments along 𝑋 and 𝑍 are zero
in the considered geometry and only the 𝑌 -components enter the equations, the size
of W is effectively 3× 3. The algebraic structure of W(𝜔, 𝑞) is (regardless of 𝜔 and 𝑞)

W =


𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

 =

𝑎 𝑏 𝑐

𝑑 𝑎 𝑑

𝑐 𝑏 𝑎

 . (69)

Here we accounted for the symmetry relations
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𝑤11 = 𝑤22 = 𝑤33 =: 𝑎 ,
𝑤12 = 𝑤32 =: 𝑏 ,
𝑤13 = 𝑤31 =: 𝑐 ,
𝑤21 = 𝑤23 =: 𝑑 ,

(70)

which are specific to the considered geometry. It is possible to prove that, for 𝑞 > 𝑘 ,
𝑎 and 𝑐 are real while 𝑑 = 𝑏∗. Therefore, W is neither symmetric nor Hermitian.
This fact will allow us to achieve direction-selective coupling. The matrix has three
distinct eigenvalues

𝜆1 = 𝑎 − 𝑐 , 𝜆2 = 𝑎 + 𝑐 −
√
𝑐2 + 8𝑏𝑑
2

, 𝜆3 = 𝑎 + 𝑐 +
√
𝑐2 + 8𝑏𝑑
2

. (71)

It can be seen that for 𝑞 > 𝑘 all eigenvalues are real. The dual bases of right and left
eigenvectors, f𝑖 and g𝑖 , are

f1 =
[
−1 0 1

]𝑇
, f2 =

[
1
−
√
𝑐2 + 8𝑏𝑑 − 𝑐

2𝑏
1
]𝑇
, f3 =

[
1
√
𝑐2 + 8𝑏𝑑 − 𝑐

2𝑏
1
]𝑇

;

g1 =
[
−1 0 1

]𝑇
, g2 =

[
1
−
√
𝑐2 + 8𝑏𝑑 − 𝑐

2𝑑
1
]𝑇
, g3 =

[
1
√
𝑐2 + 8𝑏𝑑 − 𝑐

2𝑑
1
]𝑇
.

(72)

The orthogonality relations are, as expected, f𝑇
𝑖
g 𝑗 = 𝑍𝑖 𝛿𝑖 𝑗 with

𝑍1 = 2 , 𝑍2 = 𝑍3 = 4 +
𝑐

(
𝑐 +

√
𝑐2 + 8𝑏𝑑

)
2𝑏𝑑

. (73)

In addition, we have the following relations

f𝑇2 f3 = 2(1 − 𝑑/𝑏) , g𝑇2 g3 = 2(1 − 𝑏/𝑑) . (74)

We now have all the ingredients to build a source that couples only to the SPPs
that propagate in a given direction. Assume that the pair (𝜔, 𝑞) is on the dispersion
curve for the 2-nd mode, in other words, satisfy the equation 𝑠0 (𝜔) = 𝜆2 (𝜔, 𝑞). Then
we can apply the theory of Sec. 6.2. In particular, we have

d+ = f2 g
𝑇
2 e , d− = g2 f

𝑇
2 e , (75)

where all quantities should evaluated at the selected dispersion point (𝜔, 𝑞). If we
choose e = f3, we will have d+ = 0 and d− = 2(1 − 𝑑/𝑏)g2 ≠ 0. If we choose
e = g3, then d− = 0 and d+ = 2(1 − 𝑏/𝑑)f2 ≠ 0. Therefore, by using the right phase
relations for the incident field, we can send the wave in either direction.
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7.2 Numerical example

To illustrate the effect numerically, we take the lattice period of the chain shown
in Fig. 2 to be ℎ = 25.3nm and the spheroid semi-axes 𝑎𝑥 = 𝑎𝑧 = 6.325nm and
𝑎𝑦 = 42.166...nm, so that the proportions are 𝑎𝑥 = 𝑎𝑧 = 0.25ℎ = 0.15𝑎𝑦 . The
transverse width of the waveguide is 𝐻 = 2ℎ = 50.6nm and the shift of the central
dipole is 𝛿 = 0.25ℎ = 6.325nm. Particles are made of a Drude metal with 𝜖0 = 5.0 and
the wavelength at the plasma frequency in vacuum 𝜆𝑝 = 2𝜋𝑐/𝜔𝑝 = 136.1nm, which
is characteristic of silver. The host medium is assumed to be a transparent dielectric
with 𝜖ℎ = 2.5. These parameters and the geometry shown in Fig. 2 characterize the
waveguide completely.

Mode 3
Mode 2
Mode 1

Simple Linear Chain
Light Line

kh/π

qh/π

10.750.50.250

0.18

0.12

0.06

0

Fig. 3 Dispersion curves for the chain shown in Fig. 2 with the parameters described in the text.
The thin red curve for a simple linear chain of the same spheroids and with the same period is
shown for comparison.

We have solved the dispersion equations 𝑠0 (𝜔) = 𝜆𝑖 (𝜔, 𝑞) by the method of
bisection. The dispersion curves for all three modes of the waveguide are shown
in Fig. 3. The 𝑖 = 1 mode does not involve the central dipole (which is identically
zero for this mode) and therefore it is not very different from the mode of a simple
linear chain made of the same spheroids. The dispersion curve for the latter case is
shown by a thin red line for comparison. As the eigenvectors f1 = g1 are orthogonal
to all other eigenvectors, the 𝑖 = 1 mode cannot be used for direction-selective
coupling. However, we can use to this end the 𝑖 = 2 and 𝑖 = 3 modes. Without loss
of generality, we choose 𝑖 = 2. The point (𝑘ℎ/𝜋, 𝑞ℎ/𝜋) = (0.12, 0.5) belongs to the
𝑖 = 2 dispersion curve as is shown by the arrows in Fig. 3. Note that, at the normalized
frequency 𝑘ℎ/𝜋 = 0.12, there exist two solutions to the dispersion equation, one with
𝑖 = 1 and another with 𝑖 = 2. However, the 𝑖 = 1 mode is antisymmetric and will not
be excited. We can therefore focus on the 𝑖 = 2 mode alone.

Having fixed a point on the dispersion curve (𝑘ℎ/𝜋, 𝑞ℎ/𝜋) = (0.12, 0.5), we
have used numerical summation to compute the matrix elements 𝑤11 = 𝑎, 𝑤12 = 𝑏,
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𝑤13 = 𝑐, and 𝑤21 = 𝑑. We then used (72) to find the eigenvectors. In this manner, we
arrived at the numerical result

f3 =
[
1 −(1.37131 + 0.471286 i ) 1

]𝑇
,

g3 =
[
1 −(1.37131 − 0.471286 i ) 1

]𝑇
.

(76)

The theory predicts that, if we use e = f3 or e = g3 at the normalized frequency
𝑘ℎ/𝜋 = 0.12, the resulting SPPs will propagate only in one direction from the
excitation site. We show that this is indeed the case by finding the solution to
the coupled-dipole equation (2) directly. We have solved the equations in a chain
consisting of 8, 000 unit cells with the small relaxation constant 𝛾/𝜔𝑝 = 0.0005
(smaller than in realistic metals). Only three dipoles in the central (reference) cell
were illuminated, and the incident field amplitudes were given either by f3 or by g3
whose components are listed in (76).

The results are shown in Fig. 4. When interpreting Fig. 4, it should be kept in
mind that dispersion at 𝑘ℎ/𝜋 = 0.12 is negative. Therefore, when we take e = g3,
we have d− = 0 and d+ ≠ 0 but the excitation propagates to the left (in the negative 𝑍
direction). In any event, we have demonstrated that, by changing the phase relations
of the localized source, we can send the excitation either to the right or to the left,
with a high efficiency. We note that the quantities shown in the figure are linear
in dipole moments; the energy-related quantities are quadratic. Therefore the ratio
of energy propagating to the left and right in any of the two excitation schemes
illustrated in the figure is of the order of 104, which quantifies the directionality of
excitation.

8 Discussion

Several aspects of the above numerical demonstration require additional discussion.
First, we have used an unrealistically small value of the Drude relaxation constant,
𝛾/𝜔𝑝 = 0.0005. This was done to demonstrate the accuracy of the quasi-particle
pole approximation. In Fig. 5 we show the same computation with 𝛾/𝜔𝑝 = 0.002,
which is the characteristic value for silver. It can be seen that in this, more realistic
case, the SPP can still propagate unidirectionally over 100 unit cells (about 2.5𝜇m
for the parameters used in the simulation) without significant decay of the amplitude.

In the geometry considered above (discrete waveguide made of relatively small
particles embedded in infinite free space or a transparent dielectric), the material of
the waveguide must be metal. Otherwise, the dispersion relation 𝑠0 (𝜔) = 𝜆𝑖 (𝜔, 𝑞)
does not have real-valued solutions. If we relax the assumptions that the particles
are small and the surrounding space is infinite and homogeneous, it may be possible
to use other materials such as transparent dielectrics. Familiar examples include
optical fibers and dielectric slab waveguides. In the conventional implementation,
these waveguides are not directional and therefore do not allow direction-selective
coupling. However, we can give the dielectric waveguides a sense of direction by
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ν = 2
ν = 1

e = f3

|dnν |

n
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1
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n

10005000−500−1000
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1
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Fig. 4 Unidirectional propagation of SPPs in the chain shown in Fig. 2 at the dimensionless
frequency 𝑘ℎ/𝜋 = 0.12 and for the Drude relaxation constant 𝛾/𝜔𝑝 = 0.0005. Only three dipoles
in the reference cell 𝑛 = 0 are illuminated either with the amplitudes e = f3 or e = g3, as labeled.
Only the central part of the chain consisting of 8, 000 cells is shown. Dipole moments for 𝜈 = 3 are
identical to those with 𝜈 = 1 and are not shown.

corrugating them (i.e., by introducing voids) so that the inversion symmetry is lost.
It is therefore possible to reproduce the effect described above in waveguides with
very low losses, although numerical demonstration of this possibility is much harder
as the dipole approximation is no longer applicable to such waveguides.

In the metallic discrete waveguides described above, low losses may in fact be
problematic. If the SPP reaches the physical end of the chain without significant
decay, it may be reflected. Transient pulses can traverse the chain several times
reflecting back and forth from the chain ends creating noise. In Fig. 6, we show that
the problem can be ameliorated by introducing absorbing traps at the physical ends
of the chain. One may think of these traps as detectors. The simulation of Fig. 6 was
performed in a very long chain with zero absorption (𝛾 = 0) everywhere except at
the chain ends where it increases exponentially from 0 to 0.05𝜔𝑝 over the length of
100 cells. It can be seen that reflections in this case are completely suppressed.

Finally, it may seem that the excitation scheme used above where the source
antenna illuminates only particles in the reference cell is artificial. A real antenna
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Fig. 5 Same as in Fig. 4 but for 𝛾/𝜔𝑝 = 0.002.

would illuminate all particles in the chain, albeit with a variable amplitude. The
excitation scheme however is physical and in fact quite natural as we will now
explain. Let us assume that the external fields e𝑛𝜈 in (2) are localized according to
(57) and therefore are zero for all 𝑛 ≠ 0. We can iterate (2) once by writing

d𝑛𝜈 = 𝛼𝜈 (𝜔)e𝑛𝜈 + d′
𝑛𝜈 . (77)

In the adopted excitation scheme, we have d𝑛𝜈 = d′
𝑛𝜈 for all 𝑛 ≠ 0, the difference

being limited to the reference cell. By substituting (77) into (2), we find that the
dipole moments d′

𝑛𝜈 satisfy

𝜒̂𝜈 (𝜔) d′
𝑛𝜈 = e′𝑛𝜈 +

∑︁
𝑚𝜇

(𝑚𝜇)≠(𝑛𝜈)

𝐺̂ (r𝑛𝜈 , r𝑚𝜇; 𝜔) d′
𝑚𝜇 , (78)

where
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Fig. 6 Unidirectional SPPs in a chain of 8, 000 unit cells made mostly of nonabsorbing particles
but with absorbing traps at both ends. The Drude relaxation constant increases exponentially near
the chain ends as 𝛾0 exp(−𝛽𝑚) where 𝛾0/𝜔𝑝 = 0.05, 𝛽 = 0.01 and 𝑚 is the distance to the chain
end in units of ℎ. The traps prevent SPP reflections that would occur otherwise.

e′𝑛𝜈 =

𝑝∑︁
𝜇=1

(0𝜇)≠(𝑛𝜈)

𝐺̂ (r𝑛𝜈 , r0𝜇; 𝜔) 𝛼̂𝜇 (𝜔)e𝜇 . (79)

Equation (78) is similar to (2) but has a different source term, e′𝑛𝜈 . This modified
term is the field of an antenna consisting of the particles of the reference cell whose
active (that is, externally-controlled) dipole moments are d(source)

𝜈 = 𝛼̂𝜈 (𝜔)e𝜈 . Thus,
for all dipoles except those of the reference cell, the localized excitation scheme
considered above is equivalent to the excitation scheme in which the particles of
the reference cell are themselves an active source of radiation (the antenna). This
alternative excitation scheme is illustrated in Fig. 7. We conclude that the direction-
selective coupling can be achieved if the reference cell (located arbitrarily inside a
chain) is an externally-controlled active antenna.
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Fig. 7 Discrete waveguide similar to that of Fig. 2 but here the particles of the reference cell
comprise an active antenna (the source of electromagnetic field) and have the externally controlled
dipole moments d(source)

𝜈 . This excitation scheme is equivalent to the localized excitation scheme
considered elsewhere in this chapter for all cells wth 𝑛 ≠ 0 provided that d(source)

𝜈 = 𝛼̂𝜈 (𝜔)e𝜈 .
The relation must hold at the working frequency for a monochromatic excitation or point-wise in
Fourier domain for transient excitation.

Appendix

The Green’s tensor for Maxwell’s equations is singular. The singular part appears
implicitly in the definition of the polarizability tensor 𝛼̂𝜈 (𝜔) but not in the coupled-
dipole equation (2) or the definitions of the dipole sum (8). We therefore focus on
the regular part of the Green’s tensor, which gives the correct expression as long
as r ≠ r′. In terms of the scaled coordinates, the dimensionless Green’s tensor
appearing in (2) is given by

𝐺̂ (r, r′;𝜔) =
[(
𝜔2

𝜌
+ i𝜔
𝜌2 − 1

𝜌3

)
𝐼 +

(
−𝜔

2

𝜌
− 3i𝜔

𝜌2 + 3
𝜌3

)
𝝆 ⊗ 𝝆

𝜌2

]
𝑒i 𝜔𝜌 , (80)

where

𝝆 = r − r′ =
r − r′

ℎ
, (81)

the symbol ⊗ denotes tensor product, and 𝐼 is the identity tensor.
Let 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧 label the Cartesian components of vectors in a rectangular

frame. Then we can re-write the above expression in components as

𝐺𝛼𝛽 (r, r′;𝜔) =
[(
𝜔2

𝜌
+ i𝜔
𝜌2 − 1

𝜌3

)
𝛿𝛼𝛽 +

(
−𝜔

2

𝜌
− 3i𝜔

𝜌2 + 3
𝜌3

)
𝜌𝛼𝜌𝛽

𝜌2

]
𝑒i 𝜔𝜌 ,

(82)

Here 𝜌2 =
∑

𝛼 𝜌
2
𝛼 = 𝜌2

𝑥 + 𝜌2
𝑦 + 𝜌2

𝑧 .
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