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Abstract Although Beer-Lambert law has been known since eighteenth century,
the phenomenon of extinction (total attenuation) of electromagnetic waves is far
from trivial. At the root of all difficulties is the fact that extinction occurs as a
result of interference between the incident and the scattered fields. But the mea-
surable physical field is the sum of these two components. Historically, this led to
various misconceptions and paradoxes. Although the mathematical theory of elec-
tromagnetic extinction has roots in the work of Rayleigh, Lorentz and Mie, some
important questions were convincingly resolved only in the 21st century. Extinction
of complex and partially-coherent fields is still an active area of research, as is the
theory of measurements. In this chapter, we cover the theoretical underpinnings of
extinction by bounded (but not necessarily small or spherical) particles. While we
focus on extinction, absorption and scattering are also addressed. We do not discuss
solutions to specific electromagnetic problems. In particular, we do not derive the
Mie solution, which is amply covered elsewhere. In fact, the chapter does not contain
a single special function! We also do not cover numerical methods, although some
references are given. Rather, we focus on conceptual questions, general relations, and
approximations that are applicable to broad classes of targets (scattering objects) and
incident fields. We start with the definitions of absorbed, scattered and extinguished
powers in terms of volume and surface integrals. This material is very general as we
place only minimal restrictions on the form of the incident field and properties of the
target. Next, we consider in detail monochromatic fields, derive the optical theorem
and its generalizations, and state formal algebraic definitions of absorbed, scattered
and extinguished powers. Next we discuss in substantial detail non-monochromatic
partially-coherent fields. The chapter is concluded with the theory of measurements
(operational definition of extinction) and resolution of related paradoxes, including
the classical extinction paradox.
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1 Introduction

Electromagnetic scattering theory has been amply covered in the literature. In addi-
tion to the classical exposition by R. Newton [1], the well-known book by Bohren
and Huffman [2], a series of books by Mishchenko, Travis and Lacis [3, 4], the col-
lected works [5], we can mention the recent two-part tutorial by Frezza, Mangini and
Tedeschi [6, 7]. This chapter is different in several respects, as we do not consider
any particular shape of the target (the ubiquitous Mie solution is not covered) or
numerical approaches, but focus instead on conceptual underpinnings of extinction.
Our aim is simplicity and generality. We will, for example, not assume a priori that
the incident field is monochromatic or a plane wave, although these special cases are
considered separately. When we do introduce approximations and special cases, our
main condition for including a particular topic is broad applicability. Although all
relations we derive are amenable to computations, we do not veer off into numerical
analysis, as this is a separate large field. Rather, we aim to provide “actionable”
formulas, which can be evaluated by a variety of methods. However, we give some
references for the reader who wishes to implement some of the results numerically.

An important theoretical tool that we use throughout this chapter is the T-matrix
of the target. One difficulty facing us here is a rather narrow view of the T-matrix,
which is widespread in computational light scattering and adjacent fields. While the
T-matrix has been known for a long time in physics (and is in fact a mathemati-
cal embodiment of linearity of the underlying partial differential equations), it has
been introduced to the light scattering literature by Waterman in 1960-ies [8, 9]. In
Waterman’s formulation, the T-matrix is a matrix of coefficients, which couples the
expansions of the scattered and incident fields in vector spherical harmonics. This
understanding of the T-matrix became standard and is frequently confused with a
more fundamental definition. While it is fruitless to argue which quantity should be
called the T-matrix, it is important to recognize that linearity of Maxwell’s equations
guarantees that there exists a linear integral operator, which couples the induced
polarization in the target to the incident field. Waterman’s construct is a particular
representation of this operator in the orthonormal basis of vector spherical harmon-
ics. However, the operator itself exists regardless of any basis, and we refer to this
integral operator as the T-matrix. We are free of course to use the basis of vector
spherical harmonics to compute the T-matrix, but this is neither a requirement nor a
definition. There exist other convenient bases that can be used in computations such
as the basis of voxels (discrete dipoles).

Unlike many classical texts, we devote a substantial effort to cover extinction of
partially-coherent waves (Sec. 5). This topic attracted significant recent attention but
is not adequately covered in the textbooks. In the related sections, we follow the
standard partial coherence theory developed by Wolf [10–12] and followers [13–
15], but with some modifications. One such modification is that we express all
measurable quantities as explicit time averages and do not introduce ensembles or
ensemble averaging. Although, for ergodic processes, the two averaging approaches
are equivalent, time-averaging is conceptually simpler and more physically relevant
as measurements are performed on a particular physical system, not on an ensemble
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of such systems, which may not even exist. Second, we define the coherence matrix as
a correlation function of the real-valued physical field rather than an analytic signal.
In doing so, we trade mathematical convenience of working with analytic signals for
physical transparency. Besides, analytic signals of stationary stochastic processes is
a dubious concept even from the mathematical point of view. We therefore make
the choice to not introduce superfluous or non-existing entities for the sake of
convenience. Finally, a very minor departure from the conventional approach is our
use of the factor of 2𝜋 in the definition of cross spectral density. This is done for
consistency with other conventionally used temporal Fourier transforms.

The final part of the chapter (Sec. 6) is devoted to the operational definition of
extinction, that is, the definition of extinction cross section in terms of a measure-
ment performed with a single flat, power-integrating detector, and to the associated
paradoxes. We note that these topics continued to attract attention recently, with a
defining contribution to the operational definition theory made in 2009 [16] and the
classical extinction paradox revisited in 2011 [17].

We urge the reader to go through the opening section on notations (Sec. 2) before
reading any of the subsequent chapters. The very last section (Sec. 7) contains
auxiliary formulas and proofs, which can be of interest to some readers but are not
essential to the main developments of this chapter.

The author is deeply grateful to M.A.Yurkin for reading the manuscript and
making many valuable comments and suggestions.

2 Notations

(a) Physical units

Gaussian system of units is used throughout. Accordingly, the dielectric permittivity
and magnetic permeability of vacuum are equal to 1. For non-magnetic materials,
which are exclusively considered in this chapter, the magnetic induction and magnetic
field are identical. This is expressed as B(r, 𝑡) = H(r, 𝑡). We use the notation B(r, 𝑡)
to represent the magnetic field.

(b) Vector notations

Three-dimensional vectors are denoted by bold font, which can be straight as in E
or tilted as in E. The difference is that the straight bold letters denote real-valued
quantities while the tilted letters are reserved for vectors that might have complex
components. Physical (that is, measurable) fields are all real-valued by definition
and we use straight letters for them as in E, B and S. This does not apply to various
complex amplitudes, which are denoted using slanted bold fonts. In general, the
chapter makes a consistent distinction between real and complex quantities. In some
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instances we will denote real and imaginary parts of a quantity by superscripts (r)
and (i) as for example in W = W(r) + i W(i) .

Cartesian components of vectors are denoted as other scalars by the Italic font
as in 𝐸𝑖 , 𝑖 = 1, 2, 3 and sometimes as 𝐸𝑥 , 𝐸𝑦 and 𝐸𝑧 if a Cartesian reference frame
𝑋𝑌𝑍 has been introduced. The radius-vector (the vector of position) is denoted by
r and vectors of unit length indicating direction by s, n or u. The unit vectors along
the axes of a Cartesian reference frame 𝑋𝑌𝑍 are denoted by e𝑥 , e𝑦 and e𝑧 ,

(c) Tensor notations

Tensors acting in the physical three-dimensional space are denoted by a straight,
capital (sometimes, Greek), typewriter-style font as in G or T or Γ. Matrix elements
of tensors, as all scalars, are denoted by an Italic font, as in 𝐺𝑖 𝑗 . The unit tensor is
denoted by I3. Overhead decorations are not used to distinguish tensors from scalars.
The dot product of two vectors is denoted by a centered dot and the tensor product by
an ⊗ symbol. For example, f · g =

∑
𝑖 𝑓𝑖𝑔𝑖 and f ⊗ g is a tensor with the components

𝑓𝑖𝑔 𝑗 . Note that the dot product of two vectors is different from the scalar product of
two vector functions in a Hilbert space as defined in Paragraph (d) below. The dot
product, unlike the scalar product, does not involve complex conjugation of vector
elements.

Element-wise complex conjugation of a vector or a tensor is denoted by a star; if
B = A∗, then 𝐵𝑖 𝑗 = 𝐴∗

𝑖 𝑗
. Matrix transposition is denoted by a superscript T; if B = AT,

then 𝐵𝑖 𝑗 = 𝐴 𝑗𝑖 . Hermitian conjugation is denoted by a dagger symbol; if B = A†,
then 𝐵𝑖 𝑗 = 𝐴∗

𝑗𝑖
. Note that A† = (AT)∗ = (A∗)T.

(d) Operator notations

We will sometimes work with linear operators whose integral kernels are tensors
of the form T(r, r′; ·). Here · is a placeholder for an additional label on which the
operator may depend; it can be frequency 𝜔 or time 𝜏. The corresponding operator
acts on the Hilbert space H(V) of square-integrable vector functions supported in
the region V, which is occupied by the scattering target. If two functions f (r) and
g(r) are elements of H(V), the following expressions are equivalent:

f (r) =
∫
V

T(r, r′; ·)g(r′)d3𝑟 ′ , (2.1a)

𝑓𝑖 (r) =
3∑︁
𝑗=1

∫
V

𝑇𝑖 𝑗 (r, r′; ·)𝑔 𝑗 (r′)d3𝑟 ′ , (2.1b)

|f⟩ = T(·) |g⟩ . (2.1c)

The scalar product of two vectors in H(V) is defined as
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⟨g|f⟩ =
∫
V

g∗ (r) · f (r)d3𝑟 . (2.2)

Note the complex conjugation, which is used in the definition of the scalar product,
as above, but not in the definition of the dot product of two three-dimensional vectors,
f (r) · g(r) = ∑

𝑖 𝑓𝑖 (r)𝑔𝑖 (r).
To recount, the expression T(r, r′; ·) is a 3 × 3 tensor that depends on all its

arguments whereas T(·) is an integral operator acting on H(V), which depends on
one argument, whose label will appear in place of the centered dot.

Finally, we denote the unit operator in H(V) by IV.

(e) Averaging

Time averaging is denoted by angle brackets as in ⟨...⟩ and the average itself by an
overhead bar. Thus, if 𝑓 (𝑡) is a function of time, we write 𝑓 = ⟨ 𝑓 (𝑡)⟩. The distinction
here is important; overhead bar is not an operation of averaging and the quantity
under the bar is not time-dependent. Rather, 𝑓 denotes a special value of the function
𝑓 (𝑡). For a stationary stochastic process 𝑓 (𝑡), we define the time-average as

𝑓 = ⟨ 𝑓 (𝑡)⟩ = lim
𝑇→∞

1
𝑇

𝑇/2∫
−𝑇/2

𝑓 (𝑡)d𝑡 . (2.3)

(f) Fourier transforms

With the exception of the coherence matrix Γ and its temporal Fourier transform
known as the cross-spectral density W, functions that are Fourier transforms of each
other are denoted by the same symbol and distinguished only by the list of arguments.
For temporal Fourier transforms, the convention used is

𝑓 (𝜔) =
∞∫

−∞

𝑓 (𝑡)𝑒i 𝜔𝑡d𝑡 , 𝑓 (𝑡) =
∞∫

−∞

𝑓 (𝜔)𝑒−i 𝜔𝑡 d𝜔
2𝜋

. (2.4)

Variables of the dimensionality of time are denoted by 𝑡, 𝜏, sometimes 𝜂 and 𝜁 (in
nested time integrals). Frequency is denoted by 𝜔.

In the case of the coherence matrix and the cross-spectral density, we follow the
long-standing tradition and give the two quantities different names, even though they
are temporal Fourier transforms of each other.

For spatial Fourier transforms, the convention used is

𝑓 (q) =
∫
V

𝑓 (r)𝑒−i q·rd3𝑟 (2.5a)

https://doi.org/10.1007/978-3-031-29601-7_1
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for functions of position and

𝑓 (q, q′) =
∫
V

d3𝑟

∫
V

d3𝑟 ′ 𝑓 (r, r′)𝑒i (q′ ·r′ − q·r) (2.5b)

for kernels of integral operators. Integration in (2.5) is over the region occupied by
the target, V. We use the variables q and k as reciprocals to the radius-vector r. Note
that, unlike the temporal Fourier transforms (2.4), the spatial Fourier transforms used
in this chapter are not generally invertible.

(g) Current and flux

We refer to the time-averaged Poynting vector S(r) as the current of energy. Projec-
tion of this current onto a direction is the flux of energy through a surface that is
perpendicular to that direction. For example, S(𝑥, 𝑦, 𝑧 = 𝐿) · e𝑧 is the flux of energy
through the surface 𝑧 = 𝐿. An integral of the form∮

𝜕Ω

S(r) · n(r) 𝑑2𝑟 (2.6)

is the total outward flux of energy through the surface 𝜕Ω, which encloses the three-
dimensional region Ω. Here n(r) is the outward unit normal to 𝜕Ω at the point
r ∈ 𝜕Ω.

(h) Special notations

The region occupied by the scatterer (target) is denoted by V and the volume of this
region by 𝑉 [V]. Some other special notations used in the chapter include i for the
imaginary unit (not to be confused with the indexes 𝑖 and 𝑗 , which are used to label
Cartesian components of three-dimensional vectors), I3 for the 3 × 3 unit tensor
acting in the physical three-dimensional space, IV for the unit operator acting in the
Hilbert space H[V] of square-integrable in V vector functions, Θ(𝑥) for the unit step
function, 𝛿(𝑥) for the Dirac delta-function, and 𝛿𝑖 𝑗 for the Kronecker delta-symbol.
We denote Poynting vector by S(r, 𝑡) (a vector) and the power spectrum by 𝑆(r, 𝜔)
(a scalar). These quantities are not Fourier transforms of each other, and use the
same symbol due to a long-standing tradition. The implied physical meaning should
always be clear from the context. Speed of light in vacuum is denoted by 𝑐 and the
free-space wave number at the frequency 𝜔 by 𝑘 = 𝜔/𝑐.
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3 The scattering problem

3.1 Model and assumptions

In a typical formulation of the scattering problem, a stationary electromagnetic field
Einc (r, 𝑡), Binc (r, 𝑡) is incident onto a material object (the target) as illustrated
schematically in Fig. 1. Interaction of the incident field with the target produces
the scattered field Esca (r, 𝑡), Bsca (r, 𝑡), and the total field E(r, 𝑡), B(r, 𝑡) (denoted
without a subscript) is a superposition of the incident and scattered components, viz,

E(r, 𝑡) = Einc (r, 𝑡) + Esca (r, 𝑡) , B(r, 𝑡) = Binc (r, 𝑡) + Bsca (r, 𝑡) . (3.1)

We assume that, at sufficiently high frequencies that are of interest in scattering ex-
periments, the target is non-magnetic and completely characterized by the dielectric
permittivity function 𝜖 (r, 𝜔) or by the corresponding susceptibility function

𝜒(r, 𝜔) = 𝜖 (r, 𝜔) − 1
4𝜋

. (3.2)

Note that the susceptibility (3.2) is identically zero in vacuum.
We will now discuss the physical model of this chapter and the involved assump-

tions in more detail.
First, the electromagnetic field consists of the electric component E and the

magnetic component B. As the vacuum and the target are both non-magnetic, we
have, using the conventional notations, B = H at any point in space and time.
Although, under the assumptions made, there is no distinction between B and H,
we work with the physical field B, which appears in the expression for the Lorentz
force. Note however that B is customarily referred to as the magnetic induction and
H as the magnetic field.

Second, the incident fields Einc, Binc satisfy the free-space Maxwell’s equations

∇ × Binc =
1
𝑐

𝜕Einc
𝜕𝑡

, ∇ × Einc = −1
𝑐

𝜕Binc
𝜕𝑡

, ∇ · Einc = ∇ · Binc = 0 . (3.3)

These equations do not contain a source term. Therefore, applying physically-
reasonable boundary conditions at infinity, one can conclude that (3.3) have only the
trivial solution. For example, an infinite plane wave, although satisfies (3.3), is not a
physical solution since it does not satisfy the conditions at infinity and, in reality, such
infinite fields do not exist. To resolve the contradiction, we recall that the source-free
equations (3.3) hold only in a finite region of space denoted here by D. This region is
sufficiently large to contain the target and the measurement devices, but there must
necessarily exist non-zero source currents outside of D. Importantly, we assume no
back-action of the scattered field on the source current, so that the incident field
can be viewed as given and known. If this assumption does not hold, the scattering
problem becomes much less tractable. See [18] for additional considerations related
to the distinction between the external (source) and induced currents.

https://doi.org/10.1007/978-3-031-29601-7_1
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Fig. 1 Schematic illustration of the scattering problem. The incident field satisfies free-space
Maxwell’s equations in the regionD. The target occupies the regionV. Energy budgets are computed
on the surface 𝜕Ω, which is the boundary of the region Ω. It is assumed that Ω contains the target
completely. Note the relation V ∈ Ω ∈ D. The target is characterized by susceptibility 𝜒 (r, 𝜔) in
frequency domain or 𝜒 (r, 𝜏 ) in time domain and has the spatial support in V.

Third, we do not assume at the moment that the incident field is monochromatic
or a plane wave, although we consider these special cases below. However, we
require that it be stationary. If the target is passive (contains no external energy
sources), this assumption implies that the scattered and the total fields are also
stationary. By stationarity we mean that certain energy-related time averages exist
and are independent of the averaging interval as long as it is sufficiently large 1. For
example, we require that the time average of the Poynting vector at a point r ∈ D,

S(r) = 𝑐

4𝜋
⟨E(r, 𝑡) × B(r, 𝑡)⟩ = 𝑐

4𝜋
1
𝑇

𝑇/2∫
−𝑇/2

E(r, 𝑡 + 𝜏) × B(r, 𝑡 + 𝜏)d𝜏 , (3.4)

be a well-defined measurable quantity, which is independent of 𝑡 as long as 𝑇

is sufficiently large. For an additional explanation of the time averaging-related
notations, see Sec. 2(d). Note also that the average in (3.4) can be expressed in terms
of the field coherence matrix, which is introduced below in Sec. 5.2.

Fourth, we have introduced E(r, 𝑡) and B(r, 𝑡) as functions of position and time,
but the constitutive parameters 𝜖 (r, 𝜔) and 𝜒(r, 𝜔) as functions of position and

1 This condition is weaker than strict mathematical stationarity of a stochastic process but sufficient
in practice.
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frequency. These notations can be reconciled as follows. The permittivity and sus-
ceptibility can be viewed as either functions of frequency or time, with the two
representations related to each other by a Fourier transform. The time-domain rep-
resentation of the susceptibility is often referred to as the influence function, and we
denote it here by 𝜒(r, 𝜏). In general, we have

Jind (r, 𝑡) =
𝜕

𝜕𝑡
P(r, 𝑡) , P(r, 𝑡) =

∞∫
0

𝜒(r, 𝜏)E(r, 𝑡 − 𝜏)d𝜏 . (3.5)

This functional form is appropriate for isotropic, non-magnetic media without spatial
dispersion. The vector field P(r, 𝑡) in (3.5) is the electric polarization of the target.
The connection between the time-domain susceptibility (the influence function) and
the frequency-domain susceptibility is established by the relation

𝜒(r, 𝜔) =
∞∫

0

𝜒(r, 𝜏)𝑒i 𝜔𝜏d𝜏 . (3.6a)

Since integration in (3.6a) involves only positive 𝜏, the frequency-domain suscepti-
bility 𝜒(r, 𝜔) has no singularities in the upper half of the complex 𝜔-plane. We can
extend the integration in (3.6a) to the whole real axis by requiring that 𝜒(r, 𝜏) = 0
for 𝜏 < 0. With this additional condition, (3.6a) can be inverted as

𝜒(r, 𝜏) = 1
2𝜋

∞∫
−∞

𝜒(r, 𝜔)𝑒−i 𝜔𝜏d𝜔 =
1
𝜋

Re
∞∫

0

𝜒(r, 𝜔)𝑒−i 𝜔𝜏d𝜔 . (3.6b)

Note that 𝜒(r, 𝜏) is real whereas 𝜒(r, 𝜔) can be complex. The second equality in
(3.6b) was obtained by accounting for the symmetry property 𝜒(r,−𝜔) = 𝜒∗ (r, 𝜔),
which follows from (3.6a) and Im𝜒(r, 𝜏) = 0. An example of an invertible transfor-
mation between the time-domain and frequency-domain susceptibility functions is
given in Sec. 7.1.

Fifth, we assume that the target has a finite spatial support V, which means that
𝜒(r, ·) = 0 for r ∉ V and 𝜒(r, ·) ≠ 0 for r ∈ V. Here the centered dot is a place holder
for either 𝜏 or 𝜔. Note that V does not need to be connected and can consist of several
disjoint regions. In many applications, 𝜒(r, ·) is spatially-uniform in V. While we
do not make this assumption a priori, it will be used in Sec. 5.9 on quasi-static
approximation.

Finally, we have defined above two spatial regions, D and V. The incident field
satisfies the free-space Maxwell equations (3.3) in D and the sources of radiation are
located outside of D. The region V ∈ D is occupied by the target. In what follows,
we will also need to define another region of space, Ω, on the boundary of which
we compute energy budgets. We require that Ω contain the target completely, be
simply connected, convex, and that its boundary 𝜕Ω be smooth (except, perhaps,
for a set of points of zero measure); otherwise Ω is arbitrary. If V satisfies the
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convexity, smoothness and connectivity properties, we can, in principle, choose
Ω = V. However, it is often convenient to make Ω a sphere of a large radius 𝑅. This
may be inconsistent with Ω = V. In general, we require that V ∈ Ω ∈ D. All three
regions are illustrated schematically in Fig. 1.

The above physical model and assumptions set a convenient stage for theoret-
ical investigation of the phenomena of electromagnetic extinction, scattering and
absorption.

3.2 Absorption, scattering and extinction

Most textbooks characterize targets by absorption, scattering and extinction cross
sections. However, cross sections can be defined unambiguously only if the incident
field is a plane wave. Here we use a more general approach and define the absorbed,
scattered and extinguished powers. In the case of an incident plane wave, these
powers can be normalized by the incident energy flux to yield the conventional cross
sections.

The only quantity that is defined in terms of a physical energy flux is the absorbed
power, 𝑄abs. By physical we mean here the energy flux associated with the total
electromagnetic field E, B, which is a superposition of the incident and scattered
components according to (3.1). We have introduced above the region of space Ω,
which contains the target and, possibly, some empty space (see Fig. 1). As the
surface of this region 𝜕Ω is smooth almost everywhere, we can define the outward
unit normal to 𝜕Ω, n(r), at almost any point r ∈ 𝜕Ω. The absorbed power (energy
absorbed by the target per unit time) is then given by the following integral:

𝑄abs = −
∮
𝜕Ω

S(r) · n(r) d2𝑟 , (3.7)

where the time-averaged Poynting vector S(r) is defined in (3.4). Thus, the absorbed
power is equal to the electromagnetic energy that enters Ω through its surface per
unit time. Since the field is stationary, all this energy is absorbed by the target and
converted into heat and there is no other channel of energy dissipation in the model.

The definition of scattered power 𝑄sca contains only the scattered field:

𝑄sca =

∮
𝜕Ω

Ssca (r) · n(r) d2𝑟 , (3.8)

where

Ssca (r) =
𝑐

4𝜋
⟨Esca (r, 𝑡) × Bsca (r, 𝑡)⟩ (3.9)

is a hypothetical Poynting vector associated with the scattered field alone. According
to the intuitive understanding, the scattered power is the energy leaving the region Ω
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through its surface per unit time and computed under the assumption that only the
scattered field is present on 𝜕Ω. Although this assumption never holds precisely, we
can seek a measurement scheme in which it holds approximately or otherwise try to
access 𝑄sca in an indirect measurement.

Finally, the extinguished power 𝑄ext is, by definition, the sum of the absorbed
and scattered powers:

𝑄ext = 𝑄abs +𝑄sca . (3.10)

Using expressions (3.7), (3.8), the decomposition of the total field (3.1), and ac-
counting for the fact that the incident field has zero total energy flux through 𝜕Ω

(otherwise, empty space would absorb or generate energy), we obtain

𝑄ext = −
∮
𝜕Ω

Sext (r) · n(r) d2𝑟 , (3.11)

where

Sext (r) =
𝑐

4𝜋
⟨Einc (r, 𝑡) × Bsca (r, 𝑡) + Esca (r, 𝑡) × Binc (r, 𝑡)⟩ . (3.12)

Equation (3.12) indicates that extinction is an interference effect. The extinguished
power is the time-averaged total inward flux through 𝜕Ω of the peculiar (and, notably,
not directly measurable) energy current Sext (r) given by a quadratic combination of
the incident and the scattered fields.

We thus see that, if it was possible to spatially separate the incident and scattered
fields everywhere on 𝜕Ω, extinction would be zero, which implies zero absorption
and scattering (as both powers are defined as non-negative quantities). However,
extinction by passive particles is almost never zero 2. This means that the incident
and scattered fields always overlap somewhere on 𝜕Ω.

3.3 Local (volume) representation

Maxwell’s equations for the total field E, B are of the following form in D:

∇ × B =
1
𝑐

𝜕E
𝜕𝑡

+ 4𝜋
𝑐

Jind , ∇ × E = −1
𝑐

𝜕B
𝜕𝑡

; r ∈ D . (3.13)

Here Jind is the electric current induced in the target according to the constitutive
relation (3.5). Let us dot-multiply the first equation in (3.13) by B, the second

2 Here we do not discuss so-called electromagnetic cloaks whose extinction is, at least theoretically,
zero [19]. For a given illumination (say, with a tightly-collimated beam), vanishing extinction is
easy to achieve using several high-quality mirrors. The mirrors in this case must be included in the
definition of the target. It is much harder if at all possible to achieve vanishing extinction under all
possible external illuminations.
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equation by E, and subtract the latter from the former. Accounting for the vector
identity ∇(E × B) = B · ∇ × E − E · ∇ × B, we arrive at the Poynting theorem

𝑐

4𝜋
∇ · (E × B) + 1

8𝜋
𝜕

𝜕𝑡
(E · E + B · B) + Jind · E = 0 . (3.14)

At the next step, we time-average (3.14). Since all fields are assumed to be stationary,
averaging of the time derivative yields zero. Using the definition of S(r) (3.4), we
obtain the relation

∇ · S(r) + ⟨Jind (r, 𝑡) · E(r, 𝑡)⟩ = 0 . (3.15)

We then integrate (3.15) over the three-dimensional region Ω, use Gauss theorem
for the divergence term and, comparing to (3.7), find the volume-integral expression
for the absorbed power:

𝑄abs =

∫
V

⟨Jind (r, 𝑡) · E(r, 𝑡)⟩ d3𝑟 . (3.16)

Note that integration in (3.16) is overV ∈ Ω rather than overΩ because Jind (r, 𝑡) = 0
for r ∉ V.

From elementary mechanical considerations, we know that ⟨Jind (r, 𝑡) · E(r, 𝑡)⟩
is the time-averaged volume density of the work done by the electric field E(r, 𝑡) on
the charges of the medium whose motion makes up the induced current Jind (r, 𝑡).
Since we consider a stationary process, the average electromagnetic energy density
does not change anywhere in space, and the only way to reconcile this with the first
law of thermodynamics is to conclude that the mechanical work of the electric field
is entirely converted into heat. For this reason, the integrand in (3.16) is known as
Joule heat.

Equation (3.16) expresses the law of energy conservation and is well known. To
derive a similar volume integral representation for the extinguished power, we notice
that the scattered field, not unexpectedly, satisfies the same equations as the total
field, that is, (3.13). Indeed, substituting the decomposition (3.1) into (3.13) and
accounting for the fact that the incident field satisfies the homogeneous equations
(3.3) in D, we find that

∇ × Bsca =
1
𝑐

𝜕Esca
𝜕𝑡

+ 4𝜋
𝑐

Jind , ∇ × Esca = −1
𝑐

𝜕Bsca
𝜕𝑡

; r ∈ D . (3.17)

Of course, we should keep in mind that the induced current Jind in (3.17) is deter-
mined by the constitutive relations (3.5), which involve the total field, not just its
scattered component. For this reason, (3.17) is not closed. However, following the
same steps as above, and using (3.8), we arrive at

𝑄sca = −
∫
V

⟨Jind (r, 𝑡) · Esca (r, 𝑡)⟩ d3𝑟 . (3.18)
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Adding (3.16) with (3.18) together, we find that

𝑄ext =

∫
V

⟨Jind (r, 𝑡) · Einc (r, 𝑡)⟩ d3𝑟 . (3.19)

It follows that the extinguished power is the time-averaged total work done by the
incident field on the moving charges of the target.

Thus, we have shown that the absorbed, scattered and extinguished powers can
be represented either as total energy fluxes through the surface 𝜕Ω, which can be
arbitrarily far away from the target (equations (3.7), (3.8), (3.11)), or as volume
integrals over the target support V (equations (3.16), (3.18), (3.19)). We refer to
these representations as to global and local. Note that all the expressions derived
above hold for constitutive relations of a more general form than (3.5). In particular,
they hold for magnetic materials. In the latter case, the induced current should include
an additional term and be written as Jind = 𝜕P/𝜕𝑡 + 𝑐∇ × M, where M is the vector
of magnetization. A question may arise regarding the differential density of heat
produced in magnetic targets [20–24]. However, there is no ambiguity regarding the
total quantities that are defined in (3.16), (3.18) and (3.19). It can be concluded that
the derivations of this section are not affected by accounting for magnetization.

4 Monochromatic fields

4.1 Time averaging for monochromatic fields

Any real-valued, monochromatic field F(r, 𝑡) oscillating at the frequency 𝜔 can be
written in the form

F(r, 𝑡) = Re[F (r)𝑒−i 𝜔𝑡 ] = 1
2
[F (r)𝑒−i 𝜔𝑡 + F ∗ (r)𝑒i 𝜔𝑡 ] , (4.1)

where the time-dependent factor 𝑒−i 𝜔𝑡 is known as the phasor and F (r) can be
complex. The function in the square brackets is known as the analytic signal. From
(4.1), it is obvious that the analytic signal defines uniquely the physical field. Converse
is not always true. However, for monochromatic fields and for fields with a discrete
spectrum, which are considered in Sec. 4.8 below, there is no such difficulty. Indeed,
(4.1) is simply the most general from of a monochromatic field. We can substitute
this ansatz into the Maxwell’s equations and solve for F (r), at least in principle,
assuming the target geometry and properties at the working frequency are known.
The physical fields are then obtained by taking the real parts. We will therefore
represent all monochromatic fields in the form (4.1), i.e.,

E∗ (r, 𝑡) = Re[E∗ (r)𝑒−i 𝜔𝑡 ] , B∗ (r, 𝑡) = Re[B∗ (r)𝑒−i 𝜔𝑡 ] ; (4.2a)

P(r, 𝑡) = Re[P (r)𝑒−i 𝜔𝑡 ] , Jind (r, 𝑡) = Re[Jind (r)𝑒−i 𝜔𝑡 ] . (4.2b)
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Here the star in the subscript is a placeholder for either “inc”, “sca”, “ext”, or
for no subscript at all in the case of the total field. Using the above formalism, time
averaging can be performed easily, as all the quadratic combinations of interest can
be decomposed into time-independent and fast-oscillating components, and the latter
average to zero.

We will now show how the time averaging can be performed in the global and
local representations of the absorbed, scattered and extinguished powers.

4.1.1 Global representation

For the global representation, we need to compute the time averages of energy
currents S, Ssca and Sext, which are defined in equations (3.4), (3.9) and (3.12).
Using the representation (4.2) for the fields in the above formulas, and keeping only
the time-independent terms, we obtain

S(r) = 𝑐

8𝜋
Re[E (r) ×B∗ (r)] , (4.3a)

Ssca (r) =
𝑐

8𝜋
Re[Esca (r) ×B∗

sca (r)] , (4.3b)

Sext (r) =
𝑐

8𝜋
Re[Einc (r) ×B∗

sca (r) +Esca (r) ×B∗
inc (r)] . (4.3c)

Substituting these results into (3.7), (3.8) and (3.11), we can express the absorbed,
scattered and extinguished powers in terms of surface integrals. We will find expres-
sion (4.3b) particularly useful in Sec. 4.4.1 below. However, most of the theoretical
developments of this chapter are based on the local representation, which we consider
next.

4.1.2 Local representation

To perform time averaging in the local representations, we use the first equation in
(3.5) to write a relation between the complex amplitudes Jind (r) and P (r), namely,

Jind (r) = −i𝜔P (r) . (4.4)

We substitute this result into (3.16), (3.18) and (3.19), use (4.2) for the fields, keep
only time-independent terms, and arrive at

𝑄abs =
𝜔

2
Im

∫
V

P (r) ·E∗ (r) d3𝑟 , (4.5a)

𝑄sca = −𝜔

2
Im

∫
V

P (r) ·E∗
sca (r) d3𝑟 , (4.5b)
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𝑄ext =
𝜔

2
Im

∫
V

P (r) ·E∗
inc (r) d3𝑟 . (4.5c)

These expressions can be further developed by noting that

P (r) = 𝜒(r, 𝜔)E (r) = 𝜖 (r, 𝜔) − 1
4𝜋

E (r) . (4.6)

Using (4.6) in (4.5), we obtain

𝑄abs =
𝜔

8𝜋

∫
V

Im[𝜖 (r, 𝜔)] |E (r) |2 d3𝑟 , (4.7a)

𝑄sca = − 𝜔

8𝜋
Im

∫
V

[𝜖 (r, 𝜔) − 1]E (r) ·E∗
sca (r) d3𝑟 , (4.7b)

𝑄ext =
𝜔

8𝜋
Im

∫
V

[𝜖 (r, 𝜔) − 1]E (r) ·E∗
inc (r) d3𝑟 . (4.7c)

Thus, the extinguished power for monochromatic fields is given by the imaginary
part of the projection of the target susceptibility onto the interference pattern formed
by the total and the incident fields. For a single plane wave, expression (4.7c) is
equivalent to the optical theorem; see, for example [25] for discrete or [26] for
continuous targets. For more general incident fields, this expression was derived
in [27] where an additional term accounting for magnetization was also included.
We consider the optical theorem in much more detail in Sec. 4.4 below.

4.2 Green’s tensor and integral equations

There exists a simple mathematical technique to relate linearly the scattered field
everywhere in space to the electric polarization field inside the target. We start from
equations (3.17), which take the following form in the monochromatic case:

∇ ×Bsca = −i 𝑘Esca − 4𝜋i 𝑘P , ∇ ×Esca = i 𝑘Bsca ; (4.8)
𝑘 = 𝜔/𝑐 , r ∈ D .

Here 𝑘 is the free space wave number at the working frequency. Note that equations
(4.8) are written for the complex amplitudes. We have evaluated time derivatives of
the phasor 𝑒−i 𝜔𝑡 and accounted for the relation (4.4). We say that equations (4.8)
are written in frequency domain. Now it can be seen that the electric polarization P
serves as the source for the scattered field. Physically, this makes sense: the electric
oscillations induced in the target produce secondary waves. It is true that P is
determined by the total field according to (4.6) rather than by the scattered field alone.
For this reason, equations (4.8) are not closed, as was already mentioned. However,
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we can formally invert (4.8) by viewing P as a free term. From the linearity of (4.8)
and the uniqueness theorem for Maxwell’s equations solution (when supplemented
by the radiation-type boundary conditions at infinity), we conclude that the scattered
field can be written as

Esca (r) =
∫
V

G(r, r′;𝜔)P (r′)d3𝑟 ′ , Bsca (r) = −i∇ ×Esca (r) , r ∈ D . (4.9)

Here G(r, r′;𝜔) is the free-space, frequency-domain Green’s tensor. Its specific form
can be found by substitution of (4.9) into (4.8); see, e.g., [28] for a derivation. It is
also related by the temporal Fourier transform of the time-domain retarded Green’s
function, which is described in Sec. 5.3 below. The well-known expression for
G(r, r′;𝜔) is

G(r, r′;𝜔) = −4𝜋
3
I3𝛿(r − r′) + GR (r, r′;𝜔) , (4.10a)

where

GR (r, r′;𝜔) =
[(

𝑘2

|r − r′ | +
i 𝑘

|r − r′ |2
− 1

|r − r′ |3

)
I3

+
(
− 𝑘2

|r − r′ | −
3i 𝑘

|r − r′ |2
+ 3

|r − r′ |3

)
(r − r′) ⊗ (r − r′)

|r − r′ |2

]
𝑒i 𝑘 |r−r′ | . (4.10b)

Here I3 denotes the 3 × 3 identity matrix, the symbol ⊗ denotes tensor product of
two vectors, and GR is the “regular” part of the Green’s tensor, as is indicated by the
subscript. Regularity is understood as the property

lim
𝑎→0

∫
|r′ |<𝑎

GR (r, r + r′;𝜔) d3𝑟 ′ = 0 . (4.11)

We thus keep in mind that GR (r, r′;𝜔) still has a singularity when r′ → r; hence, we
wrote “regular” in quotes. However, according to (4.11), the singularity integrates
to zero over a small ball (but not necessarily over a small region of more general
shape). A more mathematically-rigorous derivation of the integral relation (4.9) and
and of the Green’s tensor singular part is given in [29].

The free-space Green’s tensor possesses a number of symmetries some of which
are inherited from the full Green’s tensor 3 and other are not. All these properties

3 The free-space Green’s tensor gives the field produced by a point-like dipole source of unit
magnitude in free space. The full Green’s tensor gives the same but in the presence of the target.
In the literature, the free-space and the full Green’s tensors are often denoted by G0 and G (we omit
the argument 𝜔 in this footnote). The two quantities satisfy the formal relation G = G0 + G0VG =
G0 + GVG0, which must be understood in the operator sense, where V is the interaction operator. The
relation to the T-matrix is VG = TG0 or GV = G0T. The kernel of V depends on whether we include
the singular part in the definition of G0. If G0 is the regular part of the free-space Green’s tensor as
given in (4.10b), then V(r, r′; 𝜔) is defined in Eq. (4.79) below. In this chapter, we do not use the
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are also obeyed by the regular part of the free-space Green’s tensor, GR. First, G is
translationally-invariant, which means that

G(r, r′;𝜔) = G(r + a, r′ + a;𝜔) (4.12a)

for any constant vector a. Thus, G(r, r′;𝜔) depends only on the shift r − r′. This
property is a consequence of the translational invariance of free-space and is lost
for the full Green’s tensor. Second, changing the sign of the frequency results in
element-wise complex conjugation of G, which is expressed as

G(r, r′;−𝜔) = G∗ (r, r′;𝜔) . (4.12b)

This property is, of course, general and is retained by the full Green’s tensor. Keep in
mind that the asterisk in (4.12b) is an element-wise operation of complex conjugation
without transposition. Third, G satisfies the relation

G(r, r′;𝜔) = GT (r′, r;𝜔) . (4.12c)

where the superscript T denotes matrix transposition. This property holds for the
full Green’s tensor and the T-matrix as well and is a mathematical expression of
the principle of electromagnetic reciprocity. This principle is applicable provided
that the constitutive relations for the target are reciprocal, which is, typically, the
case in scattering experiments. In particular, the constitutive relations considered in
the chapter are reciprocal. The property (4.12c) implies that any integral operator
with the kernel G(r, r′;𝜔) is symmetric but not Hermitian. Correspondingly, the
eigenvalues of such operators are complex, with imaginary parts describing radiative
relaxation [26, 30]. The corresponding eigenvectors form a complete basis under
typical circumstances, although a complex symmetric operator can be, in principle,
defective. The eigenvectors are however not orthonormal in the usual sense. Instead,
a slightly different orthogonality relation (not involving complex conjugation) holds.

The free-space Green’s tensor possesses some symmetries in addition to (4.12c),
viz,

G(r, r′;𝜔) = G(r′, r;𝜔) = GT (r, r′;𝜔) . (4.12d)

The properties (4.12a) and (4.12d) are not inherited by the full Green’s tensor
or the T-matrix. However, they can be useful in numerical analysis. In particular,
the translational invariance (4.12a) implies that a discretization of G(r, r′;𝜔) on a
rectangular grid is a block-Toeplitz matrix and the property (4.12d) implies that this
matrix is, in addition, symmetric [31].

For later reference, we will also write GR in the following form:

full Green’s tensor and work instead with the T-matrix and the free-space Green’s tensor. Therefore,
we use the symbol G without the subscript “0” for the latter. This is done, in particular, because the
notations G0, G1 and G2 are used in the expansion of the algebraic part of the free-space Green’s
tensor in powers of 𝑘 = 𝜔/𝑐 in frequency domain or 𝜕/𝜕𝜏 in time domain, see equations (4.13)
and (5.12) below. See Sec. 4.7 for formal algebraic relations between T, G and V.
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GR (r, r′;𝜔) =
[
G0 (r, r′) + i 𝑘 G1 (r, r′) − 𝑘2 G2 (r, r′)

]
𝑒i 𝑘 |r−r′ | , (4.13a)

where

G0 (r, r′) =
1

|r − r′ |3

(
−I3 + 3

(r − r′) ⊗ (r − r′)
|r − r′ |2

)
, (4.13b)

G1 (r, r′) =
1

|r − r′ |2

(
I3 − 3

(r − r′) ⊗ (r − r′)
|r − r′ |2

)
, (4.13c)

G2 (r, r′) =
1

|r − r′ |

(
−I3 + (r − r′) ⊗ (r − r′)

|r − r′ |2

)
. (4.13d)

Note that the tensors G0, G1 and G2 are independent of 𝜔 (or 𝑘 = 𝜔/𝑐). The form
(4.13) is convenient when used in time-frequency Fourier transforms.

From the general result (4.9), we can derive the integral equations for the electric
polarization field in a few simple steps. First, we recall thatEsca (r) = E (r)−Einc (r)
and re-write the first equation in (4.9) as

E (r) = Einc (r) +
∫
V

G(r, r′;𝜔)P (r′)d3𝑟 ′ ; r ∈ D . (4.14)

We then use the decomposition (4.10a) to account for the singularity of the Green’s
tensor. This yields

E (r) + 4𝜋
3
P (r) = Einc (r) +

∫
V

GR (r, r′;𝜔)P (r′)d3𝑟 ′ ; r ∈ D . (4.15)

Equations (4.14) and (4.15) are valid everywhere in D, including the target interior
and the free space. However, if we limit consideration to r ∈ V, where 𝜖 (r) ≠ 1,
then equation (4.6) can be inverted and we can express E in terms of P as E =

[4𝜋/(𝜖 − 1)]P . Substituting this result into the left-hand side of (4.15), we obtain

4𝜋
3

𝜖 (r, 𝜔) + 2
𝜖 (r, 𝜔) − 1

P (r) = Einc (r) +
∫
V

GR (r, r′;𝜔)P (r′)d3𝑟 ′ ; r ∈ V . (4.16)

Equation (4.16) is valid only in V. But this is sufficient since V is the support of
P (r) and (4.16) does not contain any other unknown functions. Now, assuming that
𝜖 (r, 𝜔) ≠ −2 4, we arrive at the final form of the integral equation:

P (r) = 𝜅(r, 𝜔)
Einc (r) +

∫
V

GR (r, r′;𝜔)P (r′)d3𝑟 ′
 ; r ∈ V , (4.17)

4 There are no materials in nature for which 𝜖 (𝜔) is equal to −2 exactly at any frequency. For
metals, the real part of 𝜖 (𝜔) can be equal to −2, but there is also a non-zero imaginary part.
Otherwise, we would obtain many inconsistencies such as, for example, infinite polarizability of a
small sphere.
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where

𝜅(r, 𝜔) = 3
4𝜋

𝜖 (r, 𝜔) − 1
𝜖 (r, 𝜔) + 2

(4.18)

is the coupling function.
It may seem that the transition from (4.15) to (4.16) requires that |𝜖 (r, 𝜔) − 1| be

bounded from below in V. This is actually not true. Derivation of equation (4.17)
does not require the above condition to hold. In particular, we can include in V a
region of empty space. The necessary and sufficient condition on V for (4.17) to
hold is that V contain the target completely. Although including empty space in V
seems to be superfluous, doing so can be useful in some numerical implementations
of electromagnetic solvers. A case in point is the numerical technique known as the
discrete-dipole approximation (DDA) [32–35] wherein a computationally-efficient
matrix-vector multiplication is achieved by using fast Fourier transforms. For this
to work, the target must be discretized on a rectangular box, which is not always
commensurate with the target shape. In such cases, the box must include some empty
space.

Assuming Einc (r) is known, equation (4.17) defines P (r) uniquely in the sense
that, in principle, it can be solved for P (r), i.e., numerically, and the solution is
unique. Once P (r) is found, we can compute the extinguished power by applying
(4.5c). The absorbed power can be computed from (4.5a) by expressing E (r) in
terms of P (r). The resulting expressions are

𝑄abs = 2𝜋𝜔
∫
V

Im[𝜖 (r, 𝜔)]
|𝜖 (r, 𝜔) − 1|2

|P (r) |2 d3𝑟 , (4.19a)

𝑄ext =
𝜔

2
Im

∫
V

P (r) ·E∗
inc (r)d

3𝑟 . (4.19b)

Here we have repeated equation (4.5c) for completeness. The scattered power can
be computed as the difference between 𝑄ext and 𝑄abs.

Thus, solving to the integral equation (4.17) allows one to compute all three
powers considered above as quadratures. However, excluding the case of ellipsoidal
targets, analytical solutions to (4.17) are not known. In most cases, (4.17) must
be solved numerically. The approach of discrete dipole approximation (DDA) is to
discretize (4.17) on some grid and convert it to a set of algebraic equations, which
can be solved by the methods of linear algebra.

4.2.1 First Born approximation

Assuming that the second term in the right-hand side of (4.17) is in some sense small,
we can develop a perturbation expansion for P . Considering the latter equation as
an iterative definition of P (r) in terms of itself, we can write

https://doi.org/10.1007/978-3-031-29601-7_1
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P (r) = 𝜅(r, 𝜔)Einc (r) +
∫
V

𝜅(r, 𝜔)GR (r, r′;𝜔)𝜅(r′, 𝜔)Einc (r′)d3𝑟 ′ + . . .

(4.20)

Keeping only the first term in the right-hand side of (4.20) yields an especially simple
approximation for 𝑄abs and 𝑄ext. Indeed, substituting P = 𝜅Einc into (4.19) yields

𝑄abs = 𝑄ext ≈
𝜔

2

∫
V

Im[𝜅(r, 𝜔)] |Einc (r) |2d3𝑟 . (4.21)

This approximation is valid for small or low-contrast targets when scattering is
negligible; it is conventionally referred to as the first Born approximation. Note that
(4.21) is different from the naive first-order approximation in which we replace P
in (4.5c) with [(𝜖 − 1)/4𝜋]Einc. By comparing to (4.21), it can be seen that the two
approximations differ by the factor Im[3(𝜖−1)/(𝜖+2)]/Im(𝜖−1) inside the integral.
The difference is due to accounting in (4.21) for the singularity of the Green’s tensor,
and is known in various contexts as the Lorentz local field correction. The correction
is physically meaningful and allows one to obtain more accurate results. Thus, for
a small homogeneous sphere of radius 𝑎, (4.21) yields the exact result in the limit
𝑘𝑎 → 0. We should however keep in mind that spheres are special; for other shapes,
(4.21) is not exact even in the quasi-static limit.

We emphasize that scattering is zero in the approximation (4.21). The first non-
vanishing term in the expansion of 𝑄sca can be obtained at the next order of the
approximation (that is, quadratic in 𝜅); see Sec. 4.7 for second-order results and a
more formal development of the Born series.

4.3 Scattering amplitude

We now use the first equation in (4.9) and the asymptotic form of (4.10b) to derive
an expression for the scattered field far away from the target. Consider the geometry
illustrated in Fig. 2. Here the origin of a reference frame, 𝑂 ∈ V, is located inside
the target, and the region Ω is a sphere of radius 𝑅 with the center at 𝑂. We can
characterize the point of observation, 𝑃 ∈ 𝜕Ω, by the radius-vector r drawn from 𝑂

to 𝑃. We can write r = 𝑅s, where s is a unit vector (s · s = 1) specifying the scattering
direction.

We further assume that 𝑅 is large compared to the smallest radius of a sphere
that contains V completely 5. In other words, 𝑅 ≫ |r′ | for any r′ ∈ V. Under these
assumptions, we can develop the far-field approximation for GR (r, r′;𝜔). The exact
expression for GR (r, r′;𝜔) is given in (4.10b), and it contains the factor |r−r′ |, which
we will consider first. For r and r′ restricted as shown in Fig. 2, we have

5 We will state this condition more precisely towards the end of this section.



24 Extinction of Electromagnetic Waves, Springer Series in Light Scattering, Vol.9 (2023)

|r − r′ | =
√︁
𝑟2 − 2r · r′ + (𝑟 ′)2 =

√︁
𝑅2 − 2𝑅s · r′ + (𝑟 ′)2 ≈ 𝑅 − s · r′ . (4.22)

It is sufficient to use the first term in the above approximate expression in all algebraic
functions in (4.10b), but the second term must be retained inside the exponent. This
is so because the product 𝑘𝑟 ′ can be not small compared to unity even if 𝑅 ≫ 𝑟 ′.
At the same time, the higher-order terms in the expansion (4.22) can always be
neglected for sufficiently large 𝑅. We therefore proceed as follows. First, we keep
only far-field contributions (those decaying as 1/|r − r′ |) in the expression (4.10b).
Second, we replace all factors r−r′ by r = 𝑅s in the algebraic functions, but use both
terms of the approximation (4.22) inside the exponent. This results in the following
asymptotic expression:

GR (r, r′;𝜔) ∼ 𝑘2 𝑒
i 𝑘𝑅

𝑅
(I3 − s ⊗ s) 𝑒−i 𝑘s·r′ ; r = 𝑅s ∈ 𝜕Ω , 𝑅 → ∞ . (4.23)

We next substitute this expression into (4.9), which results in

Esca (s𝑅) ∼ f (s) 𝑒
i 𝑘𝑅

𝑅
, (4.24)

where

f (s) = 𝑘2 (I3 − s ⊗ s)P (𝑘s) , (4.25)

and we have introduced the spatial Fourier transform of the electric polarization field

P (q) =
∫
V

P (r)𝑒−i q·rd3𝑟 . (4.26)

In the generic definition (4.26), q is arbitrary whereas in (4.25) it is restricted as
q = 𝑘s so that |q| = 𝑘 (a constant for a fixed frequency). We say that the transform
involved in (4.25) is evaluated on shell.

The vector function f (s) is known as the scattering amplitude. In the notations
adopted above, the scattering amplitude depends on the direction of scattering,
s, which is included in the formal list of arguments. However, it also depends
implicitly on the incident field via the factor P (𝑘s), which, of course, also depends
on the incident field. In Secs. 4.4.2 and 4.5, we will consider this dependence more
explicitly.

To conclude this section, we note that, sufficiently far from the target, the scattered
field is always a spherical wave of the form (4.24). This result may seem counter-
intuitive. For example, a beam incident onto a small but macroscopic mirror is
reflected according to the laws of geometrical optics, and the reflected field is not a
spherical wave. The paradox can be resolved by noting that we have not quantified
yet how far is “sufficiently far”. Indeed, the radius 𝑅 of the sphere 𝜕Ω should be
large enough in order for the expansion (4.22) to yield an accurate approximation
when used inside the exponent. To derive a quantitative condition for this to hold, we
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Fig. 2 Scattering geometry employed in the far-field approximation. Here 𝑂 ∈ V is the origin of
the reference frame and Ω is a spherical region of the radius 𝑅 with the center at 𝑂.

note that the next term in the expansion (not shown in the formula) is of the order of
𝑂 ((𝑟 ′)2/𝑅). Let the characteristic size of the target be 𝐷 and therefore (𝑟 ′)2 ≤ 𝐷2.
We thus conclude that the next term in the expansion is of the order 𝑂 (𝐷2/𝑅).
Upon substitution into the exponent, this term is multiplied by 𝑘 . Therefore, the
expansion (4.22) truncated to the two first terms is an adequate approximation only
if 𝑘𝐷2/𝑅 ≪ 1. This means that the scattered field is a spherical wave only deep
in Fraunhofer diffraction zone, that is, when 𝑅 ≫ 𝑘𝐷2. Consider the following
example. For visible light of the wavelength 𝜆 = 500nm and a target with 𝐷 = 1cm,
the above condition is 𝑅 ≫ 103m. The inequality here must hold strongly. Such large
distances are rarely considered in laboratory experiments. And at smaller distances,
geometrical optics and then Fresnel diffraction theory are applicable. We thus see
that the description in terms of the scattering amplitude and the associated theories of
scattering are “natural” (in the sense that they agree with our intuitive expectations)
only for targets that are not very large compared to the wavelength and, otherwise,
only at very large distances. This observation is closely related to the so-called
extinction paradox, which is considered in Sec. 6.4 below.

4.4 Optical theorem

Derivation of the optical theorem is often attributed to Van De Hulst (1949) [36]
and Jones (1955) [37], although the basic ideas were fixed in the works of Sellmeier
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and Rayleigh as early as in 1871, and then by Mie in 1908 for the special case of
spherical particles. The relevant historical references can be found in [38]. It is not
surprising that the optical theorem first came to the fore in Rayleigh’s theory of the
color of the sky since the phenomenon of extinction is closely related to wavelength-
dependent attenuation of solar radiation in the atmosphere. The context in which
the optical theorem was developed is quite complicated and involves phenomena
that are outside of the scope of this chapter. It is worth mentioning however that
one important question related to extinction, which was intensely debated in the
beginning of 20-th century, was whether scattering from density fluctuations can
account for the observed attenuation of light in the atmosphere [39]. From the
contemporary point of view, the questions raised in this debate are addressed in
the theories of electromagnetic homogenization and radiative transport in complex
media.

The optical theorem has been originally derived for plane, monochromatic in-
cident waves, and the problem was considered in this physical setting for a long
time. For example, as late as in 1995, it came as a bit of a surprise that the optical
theorem (in its conventional form) does not hold for sufficiently narrow Gaussian
beams [40]. Various generalizations of the optical theorem to more complex inci-
dent fields were later developed [27,41–44]. Still, the average textbook derivation of
the theorem is quite convoluted; see for example [2], pp.71-73 where complicated
three-dimensional integrals and a “considerable amount of algebraic manipulation”
are involved. The complexity of these derivations grows from attempts to use the
global (surface integral) definition of the extinguished power. Here we will show that
the optical theorem is an elementary consequence of the local (volume integral) for-
mulas (3.19) or (4.5c), which were derived above independently and without much
effort.

4.4.1 Single plane wave

We start with the case of a single monochromatic, homogeneous plane wave. Assume
that the incident field Einc (r, 𝑡) is of the form (4.2) with the complex amplitude

Einc (r) = A𝑒i k·r , k = 𝑘u , 𝑘 = 𝜔/𝑐 . (4.27)

Here u is a real unit vector (u · u = 1) specifying the direction of propagation and
A is the wave amplitude. Some components of A can be complex depending on the
state of polarization. Since Einc (r, 𝑡) satisfies the free-space Maxwell’s equations
(3.3), the wave (4.27) is transverse so that A · u = 0. This relation holds even if A
is complex. The time-averaged current of energy associated with the incident wave
(4.27) is given by

Sinc =
𝑐

8𝜋
|A|2 u , (4.28)
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where |A|2 = A∗ · A. The factor 𝑐/8𝜋 (rather than 𝑐/4𝜋, which is found in the
expression for the Poynting vector) appears due to time averaging and is easy to
trace. Note that, for a homogeneous 6 incident wave, Sinc is independent of r.

Now we substitute (4.27) into (4.5c), which results in

𝑄ext =
𝜔

2
Im

∫
V

A∗ · P (r)𝑒−i k·r d3𝑟 . (4.29)

Recalling the definition of Fourier transform of the electric polarization field (4.26),
we can re-write the above equation identically as

𝑄ext =
𝜔

2
Im [A∗ · P (k)] . (4.30)

Now consider the expression for the scattering amplitude evaluated in the forward
direction. That is, let us replace the generic scattering direction s in (4.25) with u:

f (u) = 𝑘2 (I3 − u ⊗ u)P (k) . (4.31)

By dot-multiplying both sides of (4.31) by A∗ and accounting for the condition
A∗ · u = 0 7, we obtain the relation

A∗ · f (u) = 𝑘2A∗ · P (k) . (4.32)

Comparing (4.32) to (4.30), we conclude that

𝑄ext =
𝜔

2𝑘2 Im [A∗ · f (u)] . (4.33)

To obtain a more conventional form of the optical theorem, we define the extinction
cross section 𝜎ext as the ratio of the extinguished power and the incident energy
flux. The latter is given by the scalar pre-factor in (4.28). Therefore,

𝜎ext =
4𝜋

𝑘 |A|2
Im [A∗ · f (u)] . (4.34)

We thus have proved that the extinguished power is mathematically related to the
scattering amplitude evaluated in just one – forward – direction. This result is
quite remarkable. Note that it is specific to extinction. Neither the absorbed nor the
scattered power can be similarly expressed in terms of f (s) evaluated in a single
direction s = u.

In the case of scattering, it is more convenient to use the global representations
to express 𝑄sca in terms of f (s). The global representation of 𝑄sca is given by (3.8)
and the time-averaged energy current Ssca (r), which enters (3.8), is given by (4.3b).
We thus need to know the amplitudes Esca (r) and Bsca (r) for r ∈ 𝜕Ω. As above,

6 By this we mean that the wave is not evanescent or, equivalently, that u is a purely real vector.
7 Since u is purely real, we have (A · u)∗ = A∗ · u = 0.
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we work in the asymptotic regime wherein 𝜕Ω is a sphere of a large radius 𝑅, as
is illustrated in Fig. (2). In this case, Esca (r) at a point r = s𝑅 ∈ 𝜕Ω is given by
the asymptotic formula (4.24). Since s · f (s) = 0, the scattered field is transverse,
which means that s ·Esca (s𝑅) = 0. Same can be said about the magnetic field. For
the latter, we do not need a detailed derivation. It follows from the symmetry of
Maxwell’s equations that Bsca (s𝑅) is of the same magnitude as Esca (s𝑅) and is
orthogonal to both Esca (s𝑅) and s. Thus, Esca (s𝑅) and Bsca (s𝑅) are of the same
magnitude, mutually orthogonal, and lie in the tangential plane to 𝜕Ω touching the
latter at the point r = s𝑅. The vector product of Esca (s𝑅) ×Bsca (s𝑅) is therefore
aligned with s, which is also equal to the outward unit normal to 𝜕Ω, n. Putting
everything together, we have

𝑄sca =
𝑐

8𝜋

∫
4𝜋

|f (s) |2d2𝑠 , (4.35)

where integration is over the entire solid angle; for example, in spherical coordinates
(𝜃, 𝜙), the element of a solid angle is d2𝑠 = sin 𝜃d𝜃d𝜙. Similarly to (4.34), we
can normalize the scattered power to the incident flux to yield the scattering cross
section, 𝜎sca, viz,

𝜎sca =
1

|A|2

∫
4𝜋

|f (s) |2d2𝑠 . (4.36)

Comparing this result to (4.34), we see that the scattering amplitude for a plane wave
illumination satisfies the inequality

Im [A∗ · f (u)] ≥ 𝑘

4𝜋

∫
4𝜋

|f (s) |2d2𝑠 . (4.37)

Equality in the above relation holds only for non-absorbing targets.
We do not adduce here any expressions for the absorbed power or cross section

in terms of the scattering amplitude because these quantities can be expressed as
differences between (4.33) and (4.35) or between (4.34) and (4.36), and no simpler
expressions can be given without specifying the exact properties of the target.

4.4.2 Several plane waves

Now consider the case when the incident field consists of several homogeneous plane
waves of arbitrary amplitudes and directions but oscillating at the same frequency
𝜔. In this case, the complex amplitude of the incident electric field is given by

Einc (r) =
∑︁
𝑛

A𝑛𝑒
i k𝑛 ·r , k𝑛 = 𝑘u𝑛 , 𝑘 = 𝜔/𝑐 . (4.38)
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From the linearity of Maxwell’s equations, we know that the electric polarization
field excited by the incident wave (4.38) is a superposition of polarization fields that
would have existed if only one of the plane waves was present. Mathematically, this
is expressed by writing

P (r) =
∑︁
𝑛

P𝑛 (r) , (4.39)

where P𝑛 (r) is the polarization field that would have existed in the target if the
incident field consisted only of the 𝑛-th plane wave. Using the volume-integral
definition of the extinguished power (4.5c) and the Fourier transform definition
(4.26), we find that

𝑄ext =
𝜔

2
Im

∑︁
𝑛𝑚

∫
V

A∗
𝑛 · P𝑚 (r)𝑒−i k𝑛 ·r d3𝑟 =

𝜔

2
Im

∑︁
𝑛𝑚

A∗
𝑛 · P𝑚 (k𝑛) . (4.40)

The form of this equation indicates how to proceed; however, we now need slightly
more specialized notations. Recall that equation (4.25) defines the scattering ampli-
tude for a generic incident field. Dependence on the latter is implicit in the function
P (𝑘s) appearing in the right-hand side of (4.25) sinceP (r) and its Fourier transform
P (q) depend on the incident field. To make this dependence explicit, we introduce
a notation for the scattering amplitude for a single incident plane wave of the form
A𝑚𝑒

i k𝑚 ·r, where k𝑚 = u𝑚𝑘 , namely,

f (A𝑚, u𝑚; s) = 𝑘2 (I3 − s ⊗ s)P𝑚 (𝑘s) . (4.41)

Equation (4.41) is simply (4.25) re-written for a more specific illumination and using
a more explicit notation. The interpretation of f (A𝑚, u𝑚; s) is the following: if we
illuminate the target by the incident plane wave of the form A𝑚𝑒

i 𝑘u𝑚 ·r, the scattered
field in the asymptotic region far away from the target would be given by

Esca (𝑅s) = f (A𝑚, u𝑚; s) 𝑒
i 𝑘𝑅

𝑅
. (4.42)

Note that the scattering amplitude f (A𝑚, u𝑚; s) depends on both the polarization
vector A𝑚 and the propagation direction u𝑚 of the incident plane wave.

Now let us evaluate the scattering amplitude in the direction s = u𝑛 (the direction
of one of the plane waves in the expansion (4.38), where 𝑛 can coincide with 𝑚).
Using the same arguments as above, we find that

A∗
𝑛 · f (A𝑚, u𝑚; u𝑛) = 𝑘2A∗

𝑛 · P𝑚 (k𝑛) . (4.43)

But the expression in the right-hand side of (4.43) is exactly the term appearing in
the decomposition of the extinguished power (4.40). We therefore conclude that

𝑄ext =
𝜔

2𝑘2 Im
∑︁
𝑛𝑚

A∗
𝑛 · f (A𝑚, u𝑚; u𝑛) . (4.44)
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This is the generalized optical theorem for several incident plane waves oscillating
at the same frequency 𝜔. Note that it involves the scattering amplitude with the
incidence directions direction u𝑚 and outgoing directions u𝑛 for all combinations of
the indexes 𝑛 and 𝑚, which label the individual plane waves in the decomposition
of the total incident field (4.38). Thus, 𝑛 and 𝑚 in (4.44) run over the same set of
values.

The result (4.44) reinforces our previous observation that extinction is a compli-
cated interference phenomenon. In particular, (4.44) suggests that the extinction is
not additive in the sense that

𝑄ext ≠
𝜔

2𝑘2 Im
∑︁
𝑛

A∗
𝑛 · f (A𝑛, u𝑛; u𝑛) (strictly monochromatic fields) , (4.45)

where the right hand side is a sum of extinguished powers that would have existed if
only 𝑛-th incident plane wave was present (computed according to (4.33)). However,
this conclusion holds only for strictly monochromatic fields, which, as we know, do
not exist in nature. Then, what would happen if we account for a finite spectral width
of the incident fields, however tiny? Will the off-diagonal terms survive? The answer
to this question can be given by the theory of partial coherence, which is considered
in Sec. 5 below. For now, we can say on physical grounds that the off-diagonal
terms in (4.44) should indeed be neglected if the different plane waves in (4.38) are
generated by physically-independent sources, i.e., by several different lasers. Then,
no matter how monochromatic these lasers are, the off-diagonal terms will average to
zero over sufficiently long periods of time. Correspondingly, the extinguished power
is, in fact, additive in this case, and we can write

𝑄ext =
𝜔

2𝑘2 Im
∑︁
𝑛

A∗
𝑛 · f (A𝑛, u𝑛; u𝑛) (independent sources) . (4.46)

If, on the other hand, the different incident waves in (4.38) are generated by one
physical source with the use of beam splitters, mirrors, prisms and similar devices,
then the off-diagonal terms in (4.44) should be retained. However, the assumption of
source monochromaticity may in this case be insufficient and a more accurate theory
will involve statistical properties of the incident field.

In the case of several incident plane waves, there is no well-defined forward
direction and therefore extinction cross section does not have the same simple inter-
pretation as in the case of a single plane wave. Still, we can formally divide (4.44) by
the sum of the energy fluxes of all incident plane waves. We then obtain a quantity
with a dimensionality of area,

𝜎ext =
4𝜋

𝑘
∑

𝑛 |A𝑛 |2
Im

∑︁
𝑛𝑚

A∗
𝑛 · f (A𝑚, u𝑚; u𝑛) . (4.47)

This quantity is not a “true” cross section; it is not possible to identify a flat region
of the area given by (4.47) such that the total incident energy flux through it is given
by (4.44).
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We can also adduce an expression for the scattered power although scattering
experiments are rarely conducted using several incident plane waves. Nevertheless,
the formal definitions of the scattered power remain applicable. Using the global
definition (3.8) and proceeding similarly to the case of a single plane wave, we
obtain

𝑄sca =
𝑐

8𝜋

∑︁
𝑛𝑚

∫
4𝜋

f ∗ (A𝑚, u𝑚; s) · f (A𝑛, u𝑛; s) d2𝑠 , (4.48)

The off-diagonal terms in this summation account for the interference of the scattered
fields produced by different incident plane waves. Just as in the case of extinction, the
double summation is retained if the incident plane waves are produced by the same
physical source. If the waves are physically independent, the off-diagonal terms in
(4.48) can be suppressed as they do not yield physically-measurable contributions
to the scattered power.

4.5 T-matrix and a symmetric form of the optical theorem

The mathematical form of the optical theorem derived by us so far is non-symmetric.
This is especially obvious for the case of multiple plane waves. Indeed, expression
(4.44) contains the terms A∗

𝑛 ·f (A𝑚, u𝑚; u𝑛) in the right-hand side. This is not very
satisfying. One can ask: why does the amplitude A𝑛 appear as a factor whereas A𝑚

shows up in the list of arguments of f? The answer is that we have not yet explored
linearity of the underlying equations to the fullest extent and therefore formulated
the optical theorem in terms of the scattering amplitude rather than in terms of the
T-matrix. We will now fix this shortcoming.

We start by observing that, from linearity of (4.17), we can write the formal
solution for the electric polarization field in the form

P (r) =
∫
V

T(r, r′;𝜔)Einc (r′)d3𝑟 ′ . (4.49)

Here T(r, r′;𝜔) is the integral kernel of the frequency-domain T-matrix 8. Impor-
tantly, the T-matrix is completely defined by the shape and properties of the target
but independent of the incident field. This is a manifestation of the electromagnetic
superposition principle. We state the equations from which the T-matrix can be
computed below in (4.57) and (4.63).

Now let the incident field be a superposition of plane waves of the form (4.38)
and P (r) be a superposition of corresponding solutions of the form (4.39). We have

8 The notation for the T-matrix (T) should not be confused with the notation for the interval over
which time averaging is performed (𝑇). The T-matrix is an operator acting in the Hilbert space of
vector functions that are square-integrable in V. It has a tensorial kernel. See Sec. 4.7 for a more
formal development.
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from (4.49):

P𝑚 (r) =
∫
V

T(r, r′;𝜔)A𝑚𝑒
i k𝑚 ·r′d3𝑟 ′ . (4.50)

We wish to use this result to develop the expression (4.41) for f (A𝑚, u𝑚; s). To this
end, we need to compute P𝑚 (𝑘s). Using the definition (4.26) and the formula (4.50),
we find that

P𝑚 (𝑘s) =
∫
V

d3𝑟 P𝑚 (r)𝑒−i 𝑘s·r =

∫
V

d3𝑟

∫
V

d3𝑟 ′ T(r, r′;𝜔)A𝑚𝑒
i (k𝑚 ·r′−𝑘s·r) .

(4.51)

It is convenient at this point to introduce the T-matrix in spatial Fourier representa-
tion, viz,

T(q, q′;𝜔) =
∫
V

d3𝑟

∫
V

d3𝑟 ′ 𝑒−i q·r T(r, r′;𝜔) 𝑒i q′ ·r′ . (4.52)

Here q and q′ are generic Fourier variables. According to the general convention
adopted in this chapter, we use the same letter for the T-matrix in the real-space and
Fourier-space representations. The particular representation used will be indicated
by the list of arguments. We can now re-write (4.51) as

P𝑚 (𝑘s) = T(𝑘s, k𝑚;𝜔)A𝑚 . (4.53)

Substituting (4.53) into (4.41), we obtain

f (A𝑚, u𝑚; s) = 𝑘2 (I3 − s ⊗ s) T(𝑘s, k𝑚;𝜔)A𝑚 . (4.54)

Finally, using this expression in (4.44) and accounting for A𝑛 · u𝑛 = A∗
𝑛 · u𝑛 = 0,

we arrive at the symmetric form of the optical theorem for multiple incident plane
waves:

𝑄ext =
𝜔

2
Im

∑︁
𝑛𝑚

A∗
𝑛 · T(k𝑛, k𝑚;𝜔)A𝑚 . (4.55)

We can divide this expression by the sum of all incident energy fluxes to obtain a
quantity of the dimensionality of area:

𝜎ext =
4𝜋𝑘∑
𝑛 |A𝑛 |2

Im
∑︁
𝑛𝑚

A∗
𝑛 · T(k𝑛, k𝑚;𝜔)A𝑚 . (4.56)

It should be kept in mind though that 𝜎ext given by the above equation cannot be
identified with any physical area. We also should keep in mind the conditions under
which the off-diagonal terms in (4.56) yield physically measurable contributions.
These conditions are discussed in Sec. 4.4.2 and then from a more fundamental
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point of view in Sec. 5.5 below. If the conditions do not hold, we can drop the
off-diagonal terms in (4.56) and the expression is simplified.

Thus, the extinguished power is a bilinear form of the plane wave amplitudes A𝑛

with the coefficients given by a Fourier transform of the T-matrix. While T(q, q′;𝜔) is
defined for generic Fourier variables q and q according to (4.52), the optical theorem
involves only a particular restriction of T(q, q′;𝜔) with q, q′ ∈ {k𝑛 : 𝑛 = 1, 2, . . .}.
We say that the Fourier transform T(k𝑛, k𝑚;𝜔) is on shell because the length of both
arguments is fixed to the free-space wave number 𝑘 .

It remains to state the equation from which T(k𝑛, k𝑚;𝜔) can be computed. We
first write the general integral equation, which defines the T-matrix in frequency
domain. This equation can be obtained by substituting the ansatz (4.49) into (4.17),
which results in

T(r, r′;𝜔) = 𝜅(r, 𝜔)𝛿(r − r′)I3 + 𝜅(r, 𝜔)
∫
V

d3𝑟 ′′ GR (r, r′′;𝜔)T(r′′, r′;𝜔) .

(4.57)

It follows from (4.57) that the T-matrix possesses the following symmetry properties:

T(r, r′;−𝜔) = T∗ (r, r′;𝜔) , (4.58a)
T(r, r′; 𝜔) = TT (r′, r;𝜔) . (4.58b)

The property (4.58a) is a reflection of the fact that T(r, r′;𝜔) is the temporal Fourier
transform of the real-valued, time-domain T-matrix T(r, r′; 𝜏), which is discussed
in more detail in Sec. 5.3 below. The second property (4.58b) is the mathematical
expression of the principle of electromagnetic reciprocity. Note that T is symmetric
but not Hermitian.

Applying transformation (4.52) to (4.57), we obtain

T(q, q′;𝜔) = 𝜅(q − q′, 𝜔)I3

+
∫
V

d3𝑟

∫
V

d3𝑟 ′
∫
V

d3𝑟 ′′ 𝜅(r, 𝜔)GR (r, r′′;𝜔)T(r′′, r′;𝜔)𝑒i (q′ ·r′−q·r) , (4.59)

where

𝜅(q, 𝜔) =
∫
V

𝜅(r, 𝜔)𝑒−i q·r d3𝑟 . (4.60)

Expression (4.59) may seem to be difficult to develop further since plane waves do
not generally form an orthogonal basis in V. However, we can make progress by
utilizing the translational invariance of GR (r, r′;𝜔). Since the latter depends only on
r − r′ and not on r and r′ separately, we can write
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GR (r, r′;𝜔) =
∫
KR (p, 𝜔)𝑒i p· (r−r′ ) d3𝑝

(2𝜋)3 . (4.61)

Here integration is over the entire space. Expression forKR (p, 𝜔) is rather simple [28]:

KR (p, 𝜔) =
4𝜋
3

(2𝑘2 + 𝑝2)I3 − 3p ⊗ p
𝑝2 − 𝑘2 . (4.62)

We now substitute the decomposition (4.61) into (4.59) and obtain

T(q, q′;𝜔) = 𝜅(q − q′, 𝜔)I3 +
∫

𝜅(q − p, 𝜔)KR (p, 𝜔)T(p, q′;𝜔) d3𝑝

(2𝜋)3 . (4.63)

Since KR (p, 𝜔) is known analytically and 𝜅(q, 𝜔) can be computed for any target ac-
cording to (4.60), equation (4.63) defines T(q, q′;𝜔) completely. Unlike the volume
integral equation (4.57), its Fourier-space counter-part (4.63) must be solved in the
entire space (of q). It helps however to know that KR (q, 𝜔) is sharply peaked near
|q| = 𝑘 . Therefore, numerically, the space of q can be truncated.

As before, we can iterate (4.63) and write the power-series expansion

T(q, q′;𝜔) = 𝜅(q − q′, 𝜔)I3 +
∫

𝜅(q − p, 𝜔)KR (p, 𝜔)𝜅(p − q′, 𝜔) d3𝑝

(2𝜋)3 + . . .

(4.64)

First Born approximation is obtained by truncating the expansion after the first term.
In this manner, we obtain a particularly simple form of the optical theorem:

𝑄ext ≈
𝜔

2
Im

∑︁
𝑛𝑚

𝜅(k𝑛 − k𝑚, 𝜔) A∗
𝑛 ·A𝑚 . (4.65)

It can be seen that the extinguished power in the first Born approximation is sensitive
to various spatial Fourier components of 𝜅(r, 𝜔). The Fourier variable k𝑛 − k𝑚 =

𝑘 (u𝑚 − u𝑛) is restricted to the ball of radius 2𝑘 centered at the origin and known as
the Ewald sphere . The finite radius of Ewald sphere sets the resolution limit of the
linearized inverse scattering problem (that is, determining properties of the target
from measurements of the scattering amplitude).

4.6 Single plane wave

The case of a single incident plane wave deserves a separate consideration. We
have already discussed this case in Sec. 4.4.1 above. However, the mathematical
formalism of T-matrix offers us convenient tools to make further progress. We
assume illumination of the form (4.27) and will work with the extinguished power
𝑄ext; the corresponding cross section𝜎ext can be obtained as𝜎ext = 8𝜋𝑄ext/𝑐 |A|2.
Specializing the general result (4.55) to a single plane wave, we obtain
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𝑄ext =
𝜔

2
Im [A∗ · T(k, k;𝜔)A] . (4.66)

While this formula is useful in its own right, we will write out the spatial Fourier
transform of the T-matrix (according to (4.52)) and the algebraic operations in (4.66)
as

𝑄ext =
𝜔

2
Im

∫
V

d3𝑟

∫
V

d3𝑟 ′
∑︁
𝑖 𝑗

𝐴∗
𝑖 𝐴 𝑗𝑒

i k· (r′−r) 𝑇𝑖 𝑗 (r, r′;𝜔) . (4.67)

Let

𝑤𝑖 𝑗 (r, r′) = 𝑤
(r)
𝑖 𝑗

(r, r′) + i 𝑤
(i)
𝑖 𝑗

(r, r′) = 𝐴∗
𝑖 𝐴 𝑗𝑒

i k· (r′−r) . (4.68)

Here the superscripts (r) and (i) indicate the real and imaginary parts. It can be
seen that 𝑤𝑖 𝑗 (r, r′) is a Hermitian kernel, that is, 𝑤𝑖 𝑗 (r, r′) = 𝑤∗

𝑖 𝑗
(r′, r). In fact,

𝑤𝑖 𝑗 (r, r′) is closely related to the cross spectral density of the incident field, which
has the same property (see Eqs. (7.28) through (7.30) in Sec. 7.2.2 below). Using
the notation introduced in (4.68), we can re-write (4.67) as

𝑄ext =
𝜔

2
Im

∫
V

d3𝑟

∫
V

d3𝑟 ′
∑︁
𝑖 𝑗

𝑤𝑖 𝑗 (r, r′) 𝑇𝑖 𝑗 (r, r′;𝜔) . (4.69)

Now, an important observation is that, from the Hermiticity of 𝑤𝑖 𝑗 (r, r′), it follows
that 𝑤 (r)

𝑖 𝑗
(r, r′) is symmetric and 𝑤

(i)
𝑖 𝑗

(r, r′) is anti-symmetric, that is,

𝑤
(i)
𝑗𝑖

(r′, r) = −𝑤 (i)
𝑖 𝑗

(r, r′) . (4.70)

On the other hand, according to (4.58b), the T-matrix is symmetric. Consequently,
the term with 𝑤

(i)
𝑖 𝑗

(r, r′) in (4.69) is zero. We therefore obtain

𝑄ext =
𝜔

2

∫
V

d3𝑟

∫
V

d3𝑟 ′
∑︁
𝑖 𝑗

𝑤
(r)
𝑖 𝑗

(r, r′) 𝑇 (i)
𝑖 𝑗

(r, r′;𝜔) . (4.71)

Restoring original notations, we obtain

𝑄ext =
𝜔

2
A∗ · Text (k, k;𝜔)A , (4.72)

where

Text (k, k;𝜔) =
∫
V

d3𝑟

∫
V

d3𝑟 ′ 𝑒−i k·r T(i) (r, r′;𝜔) 𝑒i k·r′ . (4.73)

Note that, although T(i) (r, r′;𝜔) is real by definition, Text (k, k;𝜔) is complex
Hermitian. For this reason, expression (4.72) defines a real-valued quantity and no
additional operation of taking the real part is necessary.
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We thus have shown that it is the imaginary part of the real-space T-matrix
that gives rise to extinction. The real part is unimportant. The notation introduced
in (4.73) is a reflection of this observation: it indicates that Text (k, k;𝜔) is the
spatial Fourier transform of the imaginary part of the T-matrix, which is responsible
for extinction. Note however that both real and imaginary parts of Text (k, k;𝜔)
are important because the amplitude A appearing in the expression (4.72) can be
complex, i.e., for a circularly-polarized wave. A generalization of the result (4.72) is
given in Sec. 4.7 below (Eq. (4.87)).

4.7 General results and formal relations

We have shown that the T-matrix appears naturally in the formulation of the optical
theorem. However, the latter requires that there exists some “forward direction” for
either one or several plane waves. We will now show that the T-matrix is also useful
for general incident fields even when the forward direction cannot be defined.

We start with the local representation (4.5) in which the polarization field P (r)
appears explicitly and express P (r) in terms of Einc (r) using (4.49). This results
in the expressions

𝑄abs =
𝜔

2
Im

∫
V

d3𝑟

∫
V

d3𝑟 ′ E∗ (r) · T(r, r′;𝜔)Einc (r′) , (4.74a)

𝑄sca = −𝜔

2
Im

∫
V

d3𝑟

∫
V

d3𝑟 ′ E∗
sca (r) · T(r, r′;𝜔)Einc (r′) , (4.74b)

𝑄ext =
𝜔

2
Im

∫
V

d3𝑟

∫
V

d3𝑟 ′ E∗
inc (r) · T(r, r

′;𝜔)Einc (r′) . (4.74c)

Thus, the absorption, scattering and extinction powers are matrix elements of the
T-matrix, viewed as an integral operator. This can be formalized by writing

𝑄abs =
𝜔

2
Im ⟨E|T(𝜔) |Einc⟩ , (4.75a)

𝑄sca = −𝜔

2
Im ⟨Esca |T(𝜔) |Einc⟩ , (4.75b)

𝑄ext =
𝜔

2
Im ⟨Einc |T(𝜔) |Einc⟩ . (4.75c)

Here T(𝜔) is a linear operator acting on the Hilbert space H(V) of square-integrable
vector function supported in V, and |Einc⟩, |Esca⟩ and |E⟩ = |Einc⟩ + |Esca⟩ are
elements of H(V).

In (4.75), only 𝑄ext is given by a diagonal matrix element. Also, 𝑄ext seems to
be the quantity most amenable to computations. Indeed, (4.75c) involves only |Einc⟩,
which we always assume to be known, and T(𝜔), which characterizes the target at
the frequency 𝜔 but is independent of |Einc⟩. Expressions (4.75a) and (4.75b) for
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𝑄abs and 𝑄sca appear to be more complicated as they contain, in addition, the total
and the scattered fields. This complication is however not conceptual as we will
demonstrate next.

We start with the scattered power. Recall that the T-matrix gives the polarization
field P (r) in terms of the incident field Einc (r) according to (4.49). This can be
written in the operator notations as |P⟩ = T(𝜔) |Einc⟩. Additionally, the Green’s tensor
gives the scattered field in terms of the polarization according to (4.9). Restricting
the point r to V (equation (4.9) is valid in the larger region D), we can write this
relation as |Esca⟩ = G(𝜔) |P⟩ 9. Combining the two equations, we obtain the linear
relation between the incident and scattered fields: |Esca⟩ = G(𝜔)T(𝜔) |Einc⟩. Now,
substituting this into (4.75b), we obtain the following expression for 𝑄sca:

𝑄sca = −𝜔

2
Im

〈
Einc |T† (𝜔)G† (𝜔)T(𝜔) |Einc

〉
=

𝜔

2
Im

〈
Einc |T† (𝜔)G(𝜔)T(𝜔) |Einc

〉
=

𝜔

2
Im

[
−4𝜋

3
〈
Einc |T† (𝜔)T(𝜔) |Einc

〉
+
〈
Einc |T† (𝜔)GR (𝜔)T(𝜔) |Einc

〉]
=

𝜔

2
Im

〈
Einc |T† (𝜔)GR (𝜔)T(𝜔) |Einc

〉
(4.76)

where † denotes Hermitian conjugation of an operator. In the last two lines of this
chain of equalities, we decomposed G(𝜔) into singular and regular parts according to
(4.10a) and then noted that Im⟨Einc |T† (𝜔)T(𝜔) |Einc⟩ = 0. It can be seen that 𝑄sca
is also a diagonal element, but of a different operator, Πsca (𝜔) = T† (𝜔)GR (𝜔)T(𝜔).
Thus, the scattered power can also be expressed in terms of the incident field and the
T-matrix. It is true that the definition of Πsca (𝜔) involves, in addition, GR (𝜔), but
this operator is known analytically and has a simple form.

The absorbed power can be obtained by subtracting𝑄sca from𝑄ext, which results
in

𝑄abs =
𝜔

2
Im

〈
Einc |T(𝜔) − T† (𝜔)GR (𝜔)T(𝜔) |Einc

〉
. (4.77)

To obtain a more symmetric expression, we will make use of the explicit form of the
T-matrix. It follows from (4.57) that

T(𝜔) = [IV − V(𝜔)GR (𝜔)]−1V(𝜔) = V(𝜔) [IV − GR (𝜔)V(𝜔)]−1 , (4.78)

where IV is the unit operator in H[V], V(𝜔) is defined by

V(r, r′;𝜔) = 𝜅(r, 𝜔)I3𝛿(r − r′) (4.79)

and 𝜅(r, 𝜔) is the coupling function introduced in (4.18). The two expressions in
(4.78) are equivalent. However, it might be easier to see the transitions when using
one of forms of T(𝜔). In particular, it follows immediately from the second expression

9 Here G(𝜔) includes both the singular and the regular parts, G(𝜔) = − 4𝜋
3 IV + GR (𝜔) .
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in (4.78) that

GR (𝜔)T(𝜔) = [IV − GR (𝜔)V(𝜔)]−1 − IV . (4.80)

This can be verified by replacing GR (𝜔) with GR (𝜔) − IV + IV in the left-hand side
of (4.80) and then using the second form in (4.78) for T(𝜔). We therefore have

𝑄abs =
𝜔

2
Im

〈
Einc |T(𝜔) + T† (𝜔) − T† (𝜔) [IV − GR (𝜔)V(𝜔)]−1 |Einc

〉
. (4.81)

The term Im⟨Einc |T(𝜔) + T† (𝜔) |Einc⟩ obviously vanishes, and we have

𝑄abs = −𝜔

2
Im

〈
Einc |T† (𝜔) [IV − GR (𝜔)V(𝜔)]−1 |Einc

〉
. (4.82)

Let us define the scattering operator

Σ(𝜔) = [IV − GR (𝜔)V(𝜔)]−1 . (4.83)

By comparing to (4.78), we see that T(𝜔) = V(𝜔)Σ(𝜔). Using this definition in
(4.82), we find that

𝑄abs =
𝜔

2
Im

〈
Einc |Σ† (𝜔)V(𝜔)Σ(𝜔) |Einc

〉
. (4.84)

This is the symmetric form we were looking for. It can be easily seen that, if
V† (𝜔) = V(𝜔), then 𝑄abs = 0.

We thus have the following general relations:

𝑄∗ =
𝜔

2
Im ⟨Einc |Π∗ (𝜔) |Einc⟩ , (4.85)

where ∗ stands for either abs, sca or ext, and

Πabs (𝜔) = Σ† (𝜔)V(𝜔)Σ(𝜔) , (4.86a)

Πsca (𝜔) = Σ† (𝜔)V† (𝜔)GR (𝜔)V(𝜔)Σ(𝜔) = T† (𝜔)GR (𝜔)T(𝜔) , (4.86b)
Πext (𝜔) = V(𝜔)Σ(𝜔) = T(𝜔) . (4.86c)

Note that only Πext (𝜔) is a symmetric operator whereas Πabs (𝜔) and Πsca (𝜔)
are not. We can, however, re-write the above expressions identically by moving the
operation of imaginary part inside the bracket as

𝑄∗ =
𝜔

2
⟨Einc |H∗ (𝜔) |Einc⟩ , (4.87)

where

Habs (𝜔) = Σ† (𝜔)V(i) (𝜔)Σ(𝜔) , (4.88a)

Hsca (𝜔) = T† (𝜔)G(i)R (𝜔)T(𝜔) , (4.88b)
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Hext (𝜔) = T(i) (𝜔) , (4.88c)

where the superscript (i) indicates imaginary part. Here all operators H∗ (𝜔) are
Hermitian and Hext (𝜔) is real symmetric. For this reason (4.87) defines a real-
valued quantity and can be viewed as a generalization of the result (4.72) derived
previously for an incident plane wave.

In the case of a non-absorbing target, we have V(i) (𝜔) = 0 and, consequently,
𝑄abs = 0. The extinguished and scattered powers in this case are the same. This
indeed follows from (4.88b) and (4.88c) as we have

T(i) (𝜔) = T† (𝜔) G(i)R (𝜔) T(𝜔) if V(i) (𝜔) = 0 . (4.89)

The easiest way to prove this identity is to compare the formal power expansions of
each operator term-by-term keeping in mind that, in the considered case, V is real
symmetric.

We have therefore expressed all powers of interest in terms of the incident field
and the scattering operator, which is closely related to the T-matrix. It should be
noted that computing the scattering operator is the most demanding part of solving
the scattering problem. However, this step is independent of the form of the incident
field. Therefore, once Σ(𝜔) is known, the solution for any incident field can be found
quickly, with the most complex operation being a matrix-vector multiplication. In
a practical implementation, a suitably truncated basis of functions in V is used to
represent |Einc⟩ as a vector of length 𝑁 and Σ(𝜔) as an 𝑁 × 𝑁 matrix. If Σ(𝜔),
the complexity of finding 𝑄∗ scales as 𝑂 (𝑁2) for any incident field. However, the
complexity of computing Σ(𝜔) scales as 𝑂 (𝑁3). If 𝑁 is too large, the complexity
of computing Σ(𝜔) may become prohibitive. In such cases, methods are used that
compute the field or polarization inside the target iteratively. The downside of such
methods is that the computationally-intensive part must be repeated for any new
incident field.

We finally adduce expressions for the Π-operators to second order in V(𝜔):

Πabs (𝜔) ≈ V(𝜔) + V(𝜔)GR (𝜔)V(𝜔) + V† (𝜔)G†R (𝜔)V(𝜔) , (4.90a)

Πsca (𝜔) ≈ V† (𝜔)GR (𝜔)V(𝜔) , (4.90b)
Πext (𝜔) ≈ V(𝜔) + V(𝜔)GR (𝜔)V(𝜔) . (4.90c)

It can be seen that, to first order in V, scattering is zero and extinction is equal to
absorption. The approximation in which only linear terms in V(𝜔) are kept is known
as the first Born approximation and it was already considered by us in Sec. 4.2.
Compared to the formulation based on the integral equations, the form (4.85) makes
it much easier to obtain higher-order approximations.
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4.8 Discrete spectrum

A straightforward generalization to the strictly monochromatic case is the discrete
spectrum. We can introduce an incident field containing several strictly monochro-
matic components in a manner similar to (4.2), viz,

Einc (r, 𝑡) = Re
𝑁∑︁
𝜇=1

E𝜇 (r)𝑒−i 𝜔𝜇𝑡 . (4.91)

Here {𝜔𝜇} is an ordered discrete set of 𝑁 positive frequencies, 0 < 𝜔1 < 𝜔2 < . . . <

𝜔𝑁 , and we require that

min
𝜇

(𝜔𝜇+1 − 𝜔𝜇) ≥ 𝛿 > 0 . (4.92)

The spatial and temporal properties of the field (4.91) can be quite complicated. In
particular, it does not have a single position-independent spectrum. We also cannot
assign to this field a state of polarization. Indeed, the electric field vector evaluated
at a given point r according to (4.91) is not generally confined to a plane 10 but rather
moves quasi-chaotically in three dimensions.

Under some additional conditions 11, the field (4.91) is stationary in the wide
sense [45, Sec.2.2.3]. In what follows, we will show that (4.91) satisfies the station-
arity condition as it was formulated in Sec. 3.1 above, namely, that the energy-related
quantities of interest, when averaged over the time window [𝑡 − 𝑇/2, 𝑡 + 𝑇/2] with
𝑇 ≫ 1/𝛿, are independent of 𝑡. We note that such averaging is possible only if (4.92)
holds and, therefore, this condition is important for stationarity.

It follows from the linearity of Maxwell’s equations that each spectral compo-
nent in (4.91) will excite in the target an electric polarization field oscillating at
the same frequency and, therefore, of the form Re[P𝜇 (r)𝑒−i 𝜔𝜇𝑡 ]. According to
(3.5), the corresponding component of the induced current is Re[J𝜇 (r)𝑒−i 𝜔𝜇𝑡 ] with
J𝜇 = −i𝜔𝜇P𝜇 (r). The total polarization field and induced current are given by the
superpositions of such terms,

P(r, 𝑡) = Re
∑︁
𝜇

P𝜇 (r)𝑒−i 𝜔𝜇𝑡 , Jind (r, 𝑡) = Im
∑︁
𝜇

𝜔𝜇P𝜇 (r)𝑒−i 𝜔𝜇𝑡 . (4.93)

Each spectral component in this decomposition satisfies its own integral equation of
the form (4.17) but with all frequency-dependent quantities evaluated at 𝜔 = 𝜔𝜇,
viz,
10 In the monochromatic case, the electric field vector evaluated at any given point in space as a
function of time is always confined to a plane and moves along an ellipse (a straight line segment
or a circle in the extreme cases of linear and circular polarizations).
11 These conditions mainly concern avoiding or pushing to infinity the special space-time points.
For example, if there is a point in space r0 such that E𝜇 (r0 ) > 0 for all 𝜇, then (r = r0, 𝑡0 = 0)
is a special space-time point where the field has a sharp maximum. However, special points do not
affect time-averaged power measurements, at least, not in the limit 𝑇 → ∞.
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P𝜇 (r) = 𝜅(r, 𝜔𝜇)
E𝜇 (r) +

∫
V

GR (r, r′;𝜔𝜇)P𝜇 (r′)d3𝑟 ′
 ; r ∈ V . (4.94)

We can now compute the extinguished power 𝑄ext by time averaging according
to the volume-integral definitions (3.19). Substituting the spectral decompositions
(4.93) for Jind (r, 𝑡) and (4.91) for Einc (r, 𝑡) into (3.19), we obtain

𝑄ext = Im
∑︁
𝜇,𝜈

𝜔𝜇

2

∫
V

[
P𝜇 (r) ·E𝜈 (r)⟨𝑒−i (𝜔𝜇+𝜔𝜈 )𝑡 ⟩

+P𝜇 (r) ·E∗
𝜈 (r)⟨𝑒−i (𝜔𝜇−𝜔𝜈 )𝑡 ⟩

]
d3𝑟 . (4.95)

The time averages in the above expression can be easily evaluated :

⟨𝑒−i (𝜔𝜇±𝜔𝜈 )𝑡 ⟩ = 1
𝑇

𝑇/2∫
−𝑇/2

𝑒−i (𝜔𝜇±𝜔𝜈 ) (𝑡+𝜏 )d𝜏

=
2
𝑇

sin[(𝜔𝜇 ± 𝜔𝜈)𝑇/2]
𝜔𝜇 ± 𝜔𝜈

𝑒−i (𝜔𝜇±𝜔𝜈 )𝑡 . (4.96)

All averages of the form (4.96) with the minus sign and 𝜇 = 𝜈 are equal to 1. The
rest are of the order of 𝑂 ((𝛿𝑇)−1) or smaller. Since we assume that 𝑇 ≫ 1/𝛿, these
terms are small compared to unity. It is true that there are many such small terms in
the double summation (4.95), but these terms have random signs and are expected to
average to zero. In any event, these “off-diagonal” terms uniformly go to zero when
𝑇 → ∞, and their sum can be made arbitrarily small. We therefore conclude that,
with sufficient averaging, only the “diagonal” terms contribute significantly to (4.95).
The remainder of the sum is not strictly zero but constitutes an unavoidable noise,
which, in a practical measurement, can be suppressed by increasing the measurement
time.

Keeping only the dominating terms in (4.95), we obtain

𝑄ext =
∑︁
𝜇

𝜔𝜇

2
Im

∫
V

E∗
𝜇 (r) · P𝜇 (r) d3𝑟 =

∑︁
𝜇

𝑄
(𝜇)
ext , (4.97a)

where, in the second equality, we have used equation (4.5c). According to this
equation, 𝑄 (𝜇)

ext (one term in the summation in (4.97a)) is the extinguished power
that would have existed if the target was illuminated by the strictly monochromatic
incident field Re[E𝜇𝑒

−i 𝜔𝜇𝑡 ]. Formulas for the latter quantity (in both global and
local representation) have been derived in Sec. 4 above. In particular, (4.5c) is
the local representation for 𝑄 (𝜇)

ext. Expressions for absorption and scattering can be
obtained in exactly the same manner:
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𝑄abs =
∑︁
𝜇

𝑄
(𝜇)
abs

, 𝑄sca =
∑︁
𝜇

𝑄
(𝜇)
sca . (4.97b)

Thus, every isolated monochromatic spectral component of the incident field is
absorbed, scattered and extinguished independently. If the spectrum is discrete, we
can solve the electromagnetic problem at any isolated frequency assuming that other
frequencies do not exist, compute 𝑄ext, 𝑄abs and 𝑄sca, and then just add the results
computed at each frequency together according to (4.97).

There are some implications of (4.97) that we should consider with caution. As
was mentioned in Sec. 4.4.2, realistic incident fields are not strictly monochromatic
but partially coherent with possibly narrow but continuous spectra. The result that
different spectral components are extinguished independently remains valid if the
spectra of these components do not overlap significantly. However, if such overlap
exists, the relevant consideration is whether the different components are generated
by physically-independent sources or, perhaps, by the same source whose output
is then split using beam splitters, mirrors and similar devices. In the former case,
the conclusion that extinction is additive remains valid. In the latter case, we must
consider explicitly the statistical properties of the incident field, and the conclusion
of spectral additivity (at least, in its naive form) may no longer hold. While in many
cases the intuitive idea of spectral additivity is correct (this includes, notably, the
case of an incident plane wave with many spectral components), the general formula
applicable to a partially-coherent incident field is more complicated. Even in the
simpler cases, when the additivity apparently works, the spectrum of the incident
field must be defined in a statistical sense and not as a Fourier transform. The relevant
theory is discussed in more detail below.

5 Partially-coherent fields

5.1 Motivation and review

Effects of partial coherence of the incident field on extinction, absorption and scat-
tering have been rarely considered in the literature until 1990-ies. There are many
reasons for this. Perhaps, the most important reason is that detailed consideration
of coherence is unnecessary in a typical application, which involves incident plane
waves and relatively small targets. Under these conditions, one can safely rely on
the intuitive idea of spectral additivity. To cite one of the early precursors of the
theory discussed below, “We consider here one frequency component in the partially
coherent field. This may be taken as a quasi-monochromatic field or used to pro-
duce a full polychromatic description in the usual way” (Carpenter and Pask [46]).
By “usual way” the authors of [46] mean using the quantities computed for one
frequency in a spectral integral. For example, we can compute the extinction cross
section of a sphere 𝜎ext (𝜔) using the Mie theory for monochromatic fields, multiply
it by the spectral density of the incident wave 𝑆inc (𝜔) (defined in Sec. 5.2 below),
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and integrate the product over frequencies. For non-spherical targets, one may need
to keep track of polarization, but this is accomplished with simple algebra.

In many practically-important problems, there is nothing wrong with this ap-
proach. In some other cases, one needs to develop a more nuanced theory. As
we will show in Sec. 5.4, the extinguished, absorbed and scattered powers can be
expressed as spectral integrals under most general conditions. However, these in-
tegrals contain the frequency-domain T-matrix or the relevant Π-operators of the
target (defined in (4.86) above). These mathematical objects are significantly more
complicated than optical cross sections or polarizabilities of small particles. Only
under special conditions the spectral integrals can be reduced to a form that contains
the latter quantities. If by the “usual way” we understand integrating the product
𝜎ext (𝜔)𝑆inc (𝜔) over frequencies, then this approach is not always correct.

The above difficulty, either directly or indirectly, has motivated a number of in-
vestigations in which statistical properties of the incident field were accounted for
explicitly [47–54]. Some of these papers derive general results such as the optical
theorem for partially-coherent fields [47, 48, 50] and others perform computations
for spherical targets [49,51,53,54] or for more complicated shapes [52]. A common
feature of these works is that they consider physical situations in which the quantity
of interest is not reducible to a simple spectral integral of 𝜎ext (𝜔)𝑆inc (𝜔) or of a
similar combination. More specifically, the mentioned references investigate illumi-
nation by quasi-monochromatic Gaussian Schell-model beams [55,56]. These fields
are different from plane waves and, unlike the latter, are characterized by a finite
transverse coherence length. Spectral width is not introduced explicitly and statistical
properties of the incident field are characterized in space-frequency domain using
the mathematical technique developed by Wolf in 1980-ies [10–12]. It is however
understood that, in the case of polychromatic fields, power-related quantities can be
obtained by spectral integration.

The goal of this section is not to reproduce the results of the above references
but to describe a general theoretical framework in which all such results can be
obtained as special cases. The T-matrix of the target and, more generally, the Π-
operators introduced in Sec. 4.7 and defined in equations (4.86) will be central
to this development. We have already demonstrated that these operators play an
important role in the case of monochromatic fields. For partially-coherent fields, this
role is even more fundamental. We will start with statistical description of partially
coherent fields and introduce the coherence matrix and the cross-spectral density. At
this point, we will depart slightly from the convention and define the above quantities
for real-valued physical fields rather than for analytic signals. This will allow us to
avoid ambiguities and make the material more physically transparent. Then, some
space will be devoted to the time-domain theory of the free-space Green’s tensor
and the T-matrix. Even though we will, eventually, express all quantities of interest
in terms of the frequency-domain T-matrix and Π-operators, this material is needed
to show that all derivations are mathematically consistent even though we work with
stationary stochastic fields, which do not have temporal Fourier transforms. We will
then state the general results for the extinguished, absorbed and scattered powers
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due to an arbitrary partially-coherent incident field. The remainder of this section is
devoted to special cases and approximations.

5.2 Statistical description of partially-coherent fields

The expression (4.91) used in Sec. 4.8 to represent a stationary non-monochromatic
field is not of the most general form. Indeed, (4.91) defines an analytical, infinitely-
differentiable function of time 12 at any point r. Whether the actual physical fields
possess this property is an open question. Indeed, Maxwell’s equations only require
existence of the first time derivative. Various models of radiation involve initial con-
ditions that are applied instantaneously at random moments of time (e.g., excitation
of an electronic state of a molecule by collision). Theoretically, fields produced by
such sources are only piece-wise analytical and cannot be written in the form (4.91).
Of course, instantaneous initial conditions is but a convenient approximation; more
fundamental models can still predict infinitely-differentiable fields. Whether this re-
flects physical reality is hard to tell, and the relevant considerations touch on the
origin of randomness in nature and the adequacy of PDE-based physical models.

Although all this can be viewed as fundamental for the theory of partially-coherent
optical fields, we do not have adequate answers to the questions vaguely posed above
and will sidestep them altogether. Instead, we will adopt a more phenomenological
approach of the conventional theory of partial coherence [15]. In particular, we
will not assume the exact knowledge of the incident field (or of any other field)
as a function of time. Moreover, we will not require the fields to have temporal
Fourier transforms or the associated analytic signals. In fact, contrary to the common
physical intuition, it is not possible to give a mathematically-rigorous definition of
Fourier transform for a general stationary stochastic process even with the use of
generalized functions, finite time windows, etc. 13 Instead, we will characterize the
fields by certain well-defined correlation functions, which are measurable and can
be understood as time averages similar to the one introduced in (3.4). We will show
that the absorbed, scattered and extinguished powers can be expressed in terms of
such correlation functions.

We start by fixing some definitions. The coherence matrix of the field E(r, 𝑡) is
defined as the time average of the form

Γ(r, r′; 𝜏) = ⟨E(r, 𝑡) ⊗ E(r′, 𝑡 + 𝜏)⟩ . (5.1)

12 There exist various conceptually different definitions of continuity of a stochastic process. The
process defined by (4.91) is said to be continuous in the sample path, but the regularity implied by
(4.91) is even stronger: the sample path is not only continuous but infinitely differentiable for all
(not just for most) realizations of the ensemble.
13 A simple example of a bounded, zero mean, stationary stochastic process without a Fourier
transform is the random telegraph signal [57]. A mathematically-consistent theory of power spectra
of stationary stochastic processes was developed by Wiener [58], and a detailed discussion in a
language that is more accessible to physicists was given by Wolf [11].
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Unlike the temporal Fourier transform of E(r, 𝑡), the average in (5.1) is well defined
and can be computed directly from measured samples of any particular realization
of the stochastic field. Note that E in the above definition is a real-valued measurable
field and not an analytic signal. Consequently, Γ is a real 3 × 3 matrix. Here we
depart from the conventional approach to define the coherence matrix in terms of the
complex analytic signal. We do so because the analytic signal is neither a measurable
quantity nor can be uniquely defined for a given realization of a stationary stochastic
field, which we assume to physically exist, even though we can measure only a
discrete finite set of its time samples. A detailed comparison of the definition adopted
here to the conventional definition for the case of monochromatic fields is given in
Sec. 7.2 below.

The coherence matrix satisfies the symmetry property

Γ(r, r′;−𝜏) = ΓT (r′, r; 𝜏) , (5.2)

where the superscript T indicates matrix transposition. When r and r′ are generic
points, it is common to refer to Γ(r, r′; 𝜏) as the mutual coherence matrix. In contrast,
the special restriction Γ(r, r; 𝜏) is frequently called the autocorrelation function or
matrix. Below, we refer to Γ simply as the coherence matrix. It will be clear from
the notations whether we consider two generic points r and r′ or a single point r.
We can also introduce similar coherence matrices Γinc and Γsca for the incident and
scattered field components in direct analogy to (5.1), which tacitly assumes that E is
the total field. In fact, we will typically work with Γinc since the statistical properties
of the incident field are assumed to be known or measurable and are therefore given
as a condition of the problem.

The intensity of the field at the point r is defined as

𝐼 (r) = Tr[Γ(r, r; 0)] . (5.3)

Note that 𝐼 (r) can be related (up to an overall constant) to the current of electro-
magnetic energy only under special conditions, i.e., for propagating plane waves. It
should be kept in mind that, in general, definition of the energy current (or density)
involves both electric and magnetic fields whereas (5.3) involves the electric field
only. Moreover, one can envisage a situation in which 𝐼 (r) > 0 at some point r but
the current of energy (time-averaged Poynting vector) at this point is zero. Therefore,
the word “intensity” should not be interpreted literally.

In most practical cases, the coherence matrix falls off with |𝜏 | sufficiently fast
so that its temporal Fourier transform exists 14. The cross-spectral density matrix is
defined as

W(r, r′;𝜔) =
∞∫

−∞

Γ(r, r′; 𝜏)𝑒i 𝜔𝜏d𝜏 , (5.4a)

14 In the case of fields with one or more strictly monochromatic components such as (4.91), the
coherence matrix is oscillatory and does not fall off with 𝜏. However, the temporal Fourier transform
can still be defined in these cases with the use of generalized functions, see Sec. 7.2.
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and the coherence matrix is related to the cross-spectral density by inverse Fourier
transform,

Γ(r, r′; 𝜏) =
∞∫

−∞

W(r, r′;𝜔)𝑒−i 𝜔𝜏 d𝜔
2𝜋

. (5.4b)

Here we have again departed from the convention and defined W in (5.4a) without the
factor of 1/2𝜋 in the right-hand side; this factor, of course, re-appears in the inverse
transform (5.4b). This was done to preserve consistency with other Fourier definitions
used in the chapter and elsewhere in physics. However, honoring the long-standing
tradition, we give the cross-spectral density the special name W whereas elsewhere
we use the same symbol for a function and its Fourier transform.

The cross-spectral density defined in (5.4) is a complex 3 × 3 matrix. It can be
non-zero for both positive and negative frequencies. Its symmetry properties are
derivable from those of Γ. From the definition (5.4), it is clear that the following
element-wise property holds

W(r, r′;−𝜔) = W∗ (r, r′;𝜔) . (5.5a)

Additionally, we can utilize (5.2) to show that

W(r, r′;−𝜔) = WT (r′, r;𝜔) . (5.5b)

Taken together, (5.5a) and (5.5b) imply that W(𝜔) has a Hermitian kernel:

W(r, r′;𝜔) = W† (r′, r;𝜔) , (5.5c)

where † indicates matrix transposition and complex conjugation of all elements
(Hermitian conjugation). Note that the symmetry of the cross-spectral density is
different from that of the T-matrix: the former is Hermitian while the latter is
complex symmetric.

From the Hermiticity of W, it follows that, for any sufficiently “nice” region V
and for a fixed value of 𝜔, we can expand W(r, r′;𝜔) into a basis of orthonormal
functions F𝑛 (r, 𝜔) as [11, 13]

W(r, r′;𝜔) =
∑︁
𝑛

𝑤𝑛 (𝜔) F𝑛 (r, 𝜔) ⊗ F ∗
𝑛 (r′, 𝜔) , r, r′ ∈ V , (5.6a)

where ∫
V

W(r, r′;𝜔)F𝑛 (r′, 𝜔) d3𝑟 ′ = 𝑤𝑛 (𝜔)F𝑛 (r, 𝜔) , r ∈ V , (5.6b)∫
V

F ∗
𝑚 (r, 𝜔) · F𝑛 (r, 𝜔) d3𝑟 = 𝛿𝑛𝑚 . (5.6c)
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Note that the eigenfunctions F𝑛 (r, 𝜔) can be complex. In operator notations, the
expansion (5.6a) can be written as

W(𝜔) =
∑︁
𝑛

𝑤𝑛 (𝜔) |F𝑛 (𝜔)⟩⟨F𝑛 (𝜔) | , ⟨F𝑛 (𝜔) |F𝑚 (𝜔)⟩ = 𝛿𝑛𝑚 . (5.6d)

It can be shown that the operator W(𝜔) is non-negatively definite. Consequently,

𝑤𝑛 (𝜔) ≥ 0 . (5.6e)

This property is proved in Sec. 7.3.
The significance of expansion (5.6b) will be explained below. For now, we note

that, in some special cases, this expansion has only a few non-zero terms regardless of
V. In particular, if the incident field is a plane wave, then there are no more than two
non-zero terms in the the expansion of the form (5.6a) for Winc (𝜔). As a result, the
extinction, absorption and scattering powers (or cross sections) are reduced in this
case to simple spectral integrals. This is an instance of the intuitive spectral additivity
that was discussed in Sec. 5.1 above. However, if (5.6b) has many non-negligible
terms, the spectral additivity holds only in a generalized sense.

Some additional remarks about the expansion (5.6) can be made. First, in view
of the symmetry properties (5.5), it is sufficient to know the expansion for positive
frequencies only. In fact, all physical quantities can be expressed as integrals over
positive frequencies. Secondly, it is important to keep in mind that the eigenfunctions
F𝑛 (r, 𝜔) and the eigenvalues 𝑤𝑛 (𝜔) depend not only on the statistical properties of
the field but also on the shape of the region over which the integral operator is
defined. While we can use to this end any sufficiently nice region of space, the
energy-related quantities discussed in this chapter involve integrals over the region
occupied by the target, V. This is reflected in the equations (5.6).

The power spectrum (or simply the spectrum) of the field at a point r is defined
as

𝑆(r, 𝜔) = Tr[W(r, r;𝜔)] . (5.7)

Here, due to another long-standing tradition, we have used the same symbol 𝑆 for
the power spectrum as for the Poynting vector. However, it should always be clear
which quantity we mean from the context and the font used: the Poynting vector is
always denoted by a bold letter S whereas the spectrum is a scalar and denoted by
the plain Italic letter 𝑆.

As follows from (5.5c), the diagonal elements 𝑊𝑖𝑖 (r, r;𝜔) are real-valued. More-
over, each diagonal element𝑊𝑖𝑖 (r, r;𝜔) is a power spectrum of some scalar stochas-
tic process; this quantity is known to be non-negative (see Sec. 7.3 for a proof).
Therefore, 𝑆(r, 𝜔) is also non-negative. Note that∫

V

𝑆(r, 𝜔)d3𝑟 =
∑︁
𝑛

𝑤𝑛 (𝜔) , (5.8)
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where 𝑤𝑛 (𝜔) are the eigenvalues of W(𝜔).
An additional quantity related to the coherence matrix is the degree of coherence.

It is defined in Sec. 7.2 below but is not used directly to compute any power-related
quantities.

5.3 Time-domain Green’s tensor and T-matrix

In Sec. 4, we have introduced the frequency-domain, free space Greens tensor G
and the T-matrix of the target, T. The Green’s tensor gives the scattered field Esca
produced by an arbitrary monochromatic polarization P according to (4.9) and the T-
matrix gives P in terms of an arbitrary incident field Einc according to (4.49). These
equations couple the complex amplitudes or, equivalently, the Fourier components
of the fields in question at a given oscillation frequency 𝜔. However, if the incident
field is stochastic and stationary, temporal Fourier transforms of Einc, P and Esca do
not exist. In this case, equations (4.9) and (4.49) are inapplicable and we must resort
to the time-domain equations. Naturally, these equations involve the time-domain
Green’s tensor and T-matrix.

Although the time- and frequency-domain G and T are related to each other by
the temporal Fourier transform, i.e.,

G(r, r′;𝜔) =
∞∫

−∞

G(r, r′; 𝜏)𝑒i 𝜔𝜏d𝜏 , G(r, r′; 𝜏) =
∞∫

−∞

G(r, r′;𝜔)𝑒−i 𝜔𝜏 d𝜔
2𝜋

, (5.9a)

T(r, r′;𝜔) =
∞∫

−∞

T(r, r′; 𝜏)𝑒i 𝜔𝜏d𝜏 , T(r, r′; 𝜏) =
∞∫

−∞

T(r, r′;𝜔)𝑒−i 𝜔𝜏 d𝜔
2𝜋

, (5.9b)

the time-domain operators are more fundamental: they are applicable to all
physically-realizable fields. We therefore can use the time-domain Green’s tensor
and T-matrix without restriction. If the fields are Fourier-transformable, then we
can convert the time-domain equations into frequency domain and work with each
Fourier component separately. But making this transition is not always possible,
at least, not using a naive approach, which assumes that all fields are Fourier-
transformable 15. Therefore, to derive all results in a mathematically consistent way,
we will start from the time-domain equations. In this subsection, we develop the
relevant mathematical formalism.

The time-domain counter-parts of equations (4.9) and (4.49) are

Esca (r, 𝑡) =
∫
V

d3𝑟 ′
∞∫

0

d𝜏 G(r, r′; 𝜏)P(r′, 𝑡 − 𝜏) , (5.10a)

15 Another important example where the frequency-domain equations should be used with caution
are amplifying media [59, 60].
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P(r, 𝑡) =
∫
V

d3𝑟 ′
∞∫

0

d𝜏 T(r, r′; 𝜏)Einc (r′, 𝑡 − 𝜏) . (5.10b)

While we state below a general closed-form expression for the Green’s tensor
G(r, r′; 𝜏), the T-matrix T(r, r′; 𝜏) depends on the target properties in a compli-
cated way. We can only write an integral equation, which, in principle, defines
T(r, r′; 𝜏). Solving this equation is a problem of numerical analysis.

The time-domain Green’s tensor (also known as the retarded Green’s tensor) can
be written concisely in the form [61, $ 72]

G(r, r′; 𝜏) = (∇ × ∇×) 1
|r − r′ | 𝛿 (𝜏 − |r − r′ |/𝑐) . (5.11)

Here the spatial derivatives are evaluated with respect to the radius-vector of the
point of observation, r. It can be easily verified that the Fourier transform of (5.11)
into the frequency domain yields (4.10). The expression (5.11) is, however, not very
convenient in practical computations. We can obtain a more manageable formula
either by computing the derivatives in (5.11) directly (in this case, we should be
careful not to lose the singular part) or by utilizing the Fourier transform (5.9a) and
the already derived frequency-domain expression (4.10) for G(r, r′;𝜔). However, if
we follow the latter route, it would be more convenient to start from the decom-
position (4.10a) of G(r, r′;𝜔) into the singular and regular parts and then use the
decomposition (4.13) for the regular part. A simple calculation performed along
these lines yields

G(r, r′; 𝜏) = −4𝜋
3
𝛿(r − r′)𝛿(𝜏)I3 + GR (r, r′; 𝜏) , (5.12a)

GR (r, r′; 𝜏) =
[
G0 (r, r′) − G1 (r, r′)

𝜕

𝑐𝜕𝑡
+ G2 (r, r′)

𝜕2

𝑐2𝜕𝜏2

]
𝛿(𝜏 − |r − r′ |/𝑐) .

(5.12b)

The time- and frequency-independent tensors G0, G1 and G2 are defined in (4.13b)
through (4.13d). Time derivatives of the delta-function should be interpreted in the
sense of integration by parts, i.e.,∫

𝑓 (𝜏) [𝜕𝛿(𝜏 − 𝜏0)/𝜕𝜏]d𝜏 = − 𝜕 𝑓 (𝜏)/𝜕𝜏 |𝜏=𝜏0 . (5.13)

Thus, similarly to the frequency-domain case, we have isolated the singular part
of G(r, r′; 𝜏); the regular part defined in (5.12b) integrates to zero over a small ball
|r−r′ | ≤ 𝑎 → 0 independently of time. This decomposition is useful for constructing
integral equations and perturbation expansions. Note that G(r, r′; 𝜏) is zero for 𝜏 < 0.
Also, we can evaluate the delta-functions and write the scattered field in terms of
polarization and its time derivatives as
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Esca (r, 𝑡) = −4𝜋
3

P(r, 𝑡) +∫
V

d3𝑟 ′
[
G0 (r, r′) + G1 (r, r′)

𝜕

𝑐𝜕𝑡
+ G2 (r, r′)

𝜕2

𝑐2𝜕𝑡2

]
P(r′, 𝑡 − |r − r′ |/𝑐) . (5.14)

The first term in (5.14) (due to the singularity of Green’s tensor) is zero in free space.
The time-domain integral equation for polarization is of the form

P(r, 𝑡) =
∞∫

0

d𝜏 𝜅(r, 𝜏)Einc (r, 𝑡 − 𝜏)

+
∞∫

0

d𝜏
∞∫

0

d𝜂
∫
V

d3𝑟 ′ 𝜅(r, 𝜏)GR (r, r′; 𝜂)P(r′, 𝑡 − 𝜏 − 𝜂) . (5.15)

The coupling function 𝜅(r, 𝜏) is the Fourier transform of the frequency-domain
coupling function 𝜅(r, 𝜔), which was defined in (4.18). We have

𝜅(r, 𝜏) =
∞∫

−∞

𝜒(r, 𝜔) 𝑒−i 𝜔𝜏

1 + 4𝜋
3 𝜒(r, 𝜔)

d𝜔
2𝜋

=
3

4𝜋

∞∫
−∞

𝜖 (r, 𝜔) − 1
𝜖 (r, 𝜔) + 2

𝑒−i 𝜔𝜏 d𝜔
2𝜋

. (5.16)

While it is easy to express 𝜅(r, 𝜔) in terms of 𝜒(r, 𝜔) or 𝜖 (r, 𝜔), a similar algebraic
relation cannot be given in time domain. Rather, the expression for 𝜅(r, 𝜏) in terms
of 𝜒(r, 𝜏) involves a quadrature. However, in many special cases, the integral can be
computed analytically. This includes the case of media with Lorentz dispersion, see
Sec. 7.1. Note that 𝜅(r, 𝜏) can be defined on the whole real axis of 𝜏. Just like the
susceptibility 𝜒(r, 𝜏), the coupling function 𝜅(r, 𝜏) is causal, which means that it is
zero for 𝜏 < 0.

We can further utilize the expression (5.12b) to simplify the double time integral
in (5.15). Using integration by parts and the asymptotic property 𝜅(r, 𝜏) → 0 as
|𝜏 | → ∞, (5.15) can be transformed into

P(r, 𝑡) =
∞∫

0

d𝜏 𝜘0 (r, 𝜏)Einc (r, 𝑡 − 𝜏) +
∫
V

d3𝑟 ′
∞∫

0

d𝜏
[
𝜘0 (r, 𝜏)G0 (r, r′)

+ 𝜘1 (r, 𝜏)G1 (r, r′) + 𝜘2 (r, 𝜏)G2 (r, r′)
]
P(r′, 𝑡 − 𝜏 − |r − r′ |/𝑐) , (5.17)

where

𝜘𝑛 (r, 𝜏) =
1
𝑐𝑛

𝜕𝑛𝜅(r, 𝜏)
𝜕𝜏𝑛

, 𝑛 = 0, 1, 2 . (5.18)

Thus, in the most general case, the integral equation for polarization contains no
more than one time integral.
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We can eliminate time integration in (5.18) altogether if the target is non-
dispersive in the frequency range of interest, i.e., in the case when the spectrum
of the incident field is supported in the transparency window of the target mate-
rial where 𝜖 (𝜔) is approximately real and constant. Assume for simplicity that the
target is also spatially uniform. These approximations often hold with good pre-
cision in scattering problems. Then the coupling function can be approximated as
𝜅(r, 𝜏) = 𝜅0𝛿(𝜏) for r ∈ V where 𝜅0 is a positive constant. In this case, the integral
equation (5.15) takes the form

P(r, 𝑡) = 𝜅0

Einc (r, 𝑡) +
∫
V

d3𝑟 ′
[
G0 (r, r′) + G1 (r, r′)

𝜕

𝑐𝜕𝑡

+ G2 (r, r′)
𝜕2

𝑐2𝜕𝑡2

]
P(r′, 𝑡 − |r − r′ |/𝑐)

}
(non-dispersive target) .

(5.19)

We are thus left with two time derivatives but no time integration.
We now turn to the T-matrix. The latter is, essentially, the linear operator yielding

the solution to the integral equation (5.15) in terms of the incident field. Substituting
the ansatz (5.10b) into (5.15), we obtain the equation

T(r,r′; 𝜏) = 𝜅(r, 𝜏)𝛿(r − r′)I3

+
∫
V

d3𝑟 ′′
∞∫

0

d𝜂
∞∫

0

d𝜁 𝜅(r, 𝜂)GR (r, r′′; 𝜁)T(r′′, r′; 𝜏 − 𝜂 − 𝜁) . (5.20)

Note that it follows from the causality of 𝜅(r, 𝜏) that T(r, r′; 𝜏) is also causal (is zero
for 𝜏 < 0). Equation (5.20) is rather complicated in general but it can be simplified
under various assumptions. Assuming, as above, that the target is non-dispersive
and spatially-uniform so that 𝜅(r, 𝜏) = 𝜅0𝛿(𝜏) for r ∈ V, we obtain the simplified
equation

T(r, r′; 𝜏) = 𝜅0

𝛿(r − r′)𝛿(𝜏)I3 +
∫
V

d3𝑟 ′′
[
G0 (r, r′′) + G1 (r, r′′)

𝜕

𝑐𝜕𝜏

+ G2 (r, r′′)
𝜕2

𝑐2𝜕𝜏2

]
T(r′′, r′; 𝜏 − |r − r′ |/𝑐)

}
. (5.21)

This equation is, in principle, amenable to numerical simulations. We emphasize that
inversion of large matrices is not required to solve a discretized version of (5.21).
Rather, we can update T(r, r′; 𝜏𝑘) at each new value of discretized time 𝜏𝑘 = (𝛿𝜏)𝑘
by evaluating the right-hand side directly. This approach however requires keeping
in memory sufficiently long histories of T(r, r′; 𝜏𝑙) with 𝑙 < 𝑘 . Appropriate initial
conditions are also required.
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5.4 General results

We now derive the results for extinguished, absorbed and scattered powers for inci-
dent fields of arbitrary form and state of coherence. The expressions obtained below
are amenable to numerical computations. One will need to know the T-matrix T(𝜔)
or the scattering operator Σ(𝜔) of the target as defined in Sec. 4.7 and the cross-
spectral density of the incident field Winc (𝜔) over a sufficiently wide frequency band.
The scattering operator (and, by extension, the T-matrix) can be computed by the
DDA or by any other method for solving volume integral equations 16. Regarding
Winc (𝜔), there exist various theoretical models for the cross-spectral density [55,56],
and, in principle, it can also be measured experimentally.

5.4.1 Extinguished, absorbed and scattered powers in terms of the incident
field

We start with extinction; results for absorption and scattering will be obtained by
direct analogy. The general expression for extinguished power under illumination by
a stationary, partially-coherent incident field can be obtained from the local repre-
sentation (3.19) and the constitutive relation (3.5). Combining the two equations, we
obtain

𝑄ext =

∫
V

〈
𝜕P(r, 𝑡)

𝜕𝑡
· Einc (r, 𝑡)

〉
d3𝑟 . (5.22)

Substituting into this expression P(r, 𝑡) from (5.10b), we find that

𝑄ext =

∫
V

d3𝑟

∫
V

d3𝑟 ′ 𝑞ext (r, r′) , (5.23)

where

𝑞ext (r, r′) =
〈 ∞∫

0

[
𝜕

𝜕𝑡
T(r, r′; 𝜏)Einc (r′, 𝑡 − 𝜏)

]
· Einc (r, 𝑡) d𝜏

〉
. (5.24)

Here, in order to shorten the formulas, we have introduced the density of extinction
𝑞ext (r, r′). The scope of differentiation with respect to 𝑡 in (5.24) is restricted to the
expression in the square brackets. Using the identity 𝜕 𝑓 (𝑡− 𝜏)/𝜕𝑡 = −𝜕 𝑓 (𝑡− 𝜏)/𝜕𝜏,
we can re-write (5.24) as

16 PDE-based solvers such as the finite difference or finite element methods can also be used,
but are not as convenient in this context since these methods do not account analytically for the
boundary conditions at infinity and may require modification of the physical model by introducing
perfectly-matched layers (PMLs) and similar artificial constructs.
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𝑞ext (r, r′) = −
∞∫

0

〈
T(r, r′; 𝜏) 𝜕

𝜕𝜏
Einc (r′, 𝑡 − 𝜏) · Einc (r, 𝑡)

〉
d𝜏 . (5.25)

Note that the T-matrix in the above expression is independent of the averaging
variable, 𝑡. Recalling the definition of the coherence matrix (5.1), we obtain the
following expression for the density of extinction:

𝑞ext (r, r′) = −Tr
∞∫

0

T(r, r′; 𝜏) 𝜕

𝜕𝜏
Γinc (r′, r; 𝜏) d𝜏 . (5.26)

Here Γinc is the coherence matrix of the incident field.
Equation (5.26) is the most general expression for the density of extinction. It

depends on the properties of the target (encoded mathematically in its T-matrix) and
on the statistical properties of the incident field (encoded in the coherence matrix).
Notably, all functions of 𝜏 in (5.26) have well-defined Fourier transforms. We can
therefore re-write (5.26) in terms of the frequency-domain quantities. The easiest
way to accomplish this is to take into account causality of the T-matrix (it is zero for
𝜏 < 0) and expand integration over 𝜏 in (5.26) to the whole real axis; then substitute
the Fourier representations (5.4b) and (5.9b) for Γ and T into the integrand and
compute the derivative 𝜕/𝜕𝜏. This results in the following expression:

𝑞ext (r, r′) = i Tr
∞∫

−∞

𝜔d𝜔
2𝜋

∞∫
−∞

d𝜔′

2𝜋

∞∫
−∞

d𝜏 𝑒−i (𝜔+𝜔′ )𝜏 T(r, r′;𝜔′) Winc (r′, r;𝜔) .

(5.27)

We can now compute the integral over 𝜏 using the Fourier representation of the
delta-function

∞∫
−∞

𝑒−i (𝜔+𝜔′ )𝜏 d𝜏 = 2𝜋 𝛿(𝜔 + 𝜔′) . (5.28)

Substituting this back into (5.27), we obtain

𝑞ext (r, r′) = − i
2𝜋

Tr
∞∫

−∞

T(r, r′;𝜔) Winc (r′, r;−𝜔) 𝜔d𝜔 . (5.29)

The same result can be obtained without extending integration in (5.26) to the whole
real axis, but the derivation in this case is more tedious and based on the analytical
properties of Winc (r′, r;𝜔). Next, we use the symmetry properties (4.58a) and (5.5a)
to transform (5.29) to an integral over positive frequencies only. We thus arrive at
the expression
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𝑞ext (r, r′) =
1
𝜋

Im Tr
∞∫

0

T(r, r′;𝜔) Winc (r′, r;−𝜔) 𝜔d𝜔 . (5.30)

We can further re-write this equation using the additional (less trivial) symmetry
properties of T and W (4.58b) and (5.5b) and the matrix identity Tr(ATBT) = Tr(BA)

𝑞ext (r, r′) =
1
𝜋

Im Tr
∞∫

0

T(r, r′;𝜔) WTinc (r, r
′;𝜔) 𝜔d𝜔 (5.31a)

=
1
𝜋

Im Tr
∞∫

0

Winc (r, r′;𝜔) T(r′, r;𝜔) 𝜔d𝜔 . (5.31b)

The second expression is particularly simple. Both expressions can be viewed as
statements of generalized spectral additivity of extinction. Indeed, these formulas
contain an integral over positive frequencies of a product of two functions. The first
function is a quadratic combination of the incident field, which characterizes in the
most general way its spectrum. The second function characterizes linear response of
the target in frequency domain. Note that (5.31) gives the density of extinction, which
is a non-local quantity. To obtain the total extinguished power, we must integrate
the density according to (5.23). However, in many special cases including the case
of an incident plane wave (Sec. 5.8) and the quasi-static approximation (Sec. 5.9)
this complicated integration can be carried out analytically and the result for 𝑄ext
is significantly simplified.

The spatial integrals in (5.23) can be computed analytically if we know the
representation of the operators W(𝜔) and T(𝜔) in the same orthonormal basis. A
convenient basis is formed by the eigenfunctions F𝑛 (r, 𝜔), which appear in the
expansion of W(𝜔) (5.6a). Substituting this expansion into (5.31b), we obtain for the
density of extinction

𝑞ext (r, r′) =
1
𝜋

Im
∞∫

0

𝜔d𝜔
∑︁
𝑛

𝑤𝑛 (𝜔)F ∗
𝑛 (r′, 𝜔) · T(r′, r;𝜔)F𝑛 (r, 𝜔) . (5.32)

Recalling that the total extinguished power is an integral of 𝑞ext (r, r′), we obtain

𝑄ext =
1
𝜋

∞∫
0

𝜔d𝜔
∑︁
𝑛

𝑤𝑛 (𝜔) Im ⟨F𝑛 (𝜔) |T(𝜔) |F𝑛 (𝜔)⟩ , (5.33)

where

⟨F𝑛 (𝜔) |T(𝜔) |F𝑛 (𝜔)⟩ =
∫
V

d3𝑟1

∫
V

d3𝑟2 F
∗
𝑛 (r1, 𝜔) · T(r1, r2;𝜔)F𝑛 (r2, 𝜔) .

(5.34)
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The result (5.33) is remarkable because the expression

𝒬
(𝑛)
ext (𝜔) =

𝜔

2
Im ⟨F𝑛 (𝜔) |T(𝜔) |F𝑛 (𝜔)⟩ (5.35)

formally coincides with the extinguished power for an incident monochromatic field
of the form Einc (r, 𝑡) = Re[F𝑛 (r, 𝜔)𝑒−i 𝜔𝑡 ]. This can be seen by comparing (5.33)
to (4.85) and (4.86). We have used the curly font in 𝒬

(𝑛)
ext (𝜔) because F𝑛 (r, 𝜔), as

defined, does not have the units of electric field; correspondingly, 𝒬 (𝑛)
ext (𝜔) does not

have the units of power. In fact, the units of 𝒬 (𝑛)
ext (𝜔) are those of frequency. The

total extinguished power is given by

𝑄ext =
2
𝜋

∑︁
𝑛

∞∫
0

𝑤𝑛 (𝜔)𝒬 (𝑛)
ext (𝜔)d𝜔 . (5.36)

The overall factor 2/𝜋 originates from the definitions of Fourier transform and the
way complex amplitudes of monochromatic fields are related to the real-valued
quantities. Focusing on a fixed frequency, we can say that (2/𝜋)𝑤𝑛 (𝜔) quantifies
how much energy (per unit frequency) the incident field has in the 𝑛-th mode whereas
𝒬

(𝑛)
ext (𝜔) quantifies how much of this energy is extinguished by the target.

The above results illustrate physical significance of the expansion (5.6b). We
see that every eigenfunction F𝑛 (r, 𝜔) is equivalent (up to a constant factor of the
dimensionality of electric field divided by square root of volume) to the complex
amplitude of some strictly monochromatic field oscillating at the frequency 𝜔. This
field is extinguished by the target independently of any other mode at any other
frequency, and the total extinguished power is a sum over 𝜔 and 𝑛. We can say that
the two modes F𝑛 (r, 𝜔) and F𝑚 (r, 𝜔′) are mutually incoherent and do not exhibit
any interference effects in extinction if the pairs (𝑛, 𝜔) and (𝑚, 𝜔′) are distinct. Of
course, there could be several or many modes F𝑛 (r, 𝜔) with non-negligible weights
𝑤𝑛 (𝜔) at any given frequency. This is so because, in general, a partially-coherent field
is not a superposition of monochromatic fields oscillating at different frequencies;
in other words, a partially-coherent field is not a Fourier transform of some function
of frequency.

Similar results for the absorbed and scattered powers can be obtained by replacing
Πext (𝜔) = T(𝜔) with the appropriate Π-operator or H-operator defined in (4.86) and
(4.88). The general result for the density (power per unit volume squared) can be
stated as

𝑞∗ (r, r′) =
1
𝜋

Im Tr
∞∫

0

Winc (r, r′;𝜔) Π∗ (r′, r;𝜔) 𝜔d𝜔 (5.37a)

=
1
𝜋

Re Tr
∞∫

0

Winc (r, r′;𝜔) H∗ (r′, r;𝜔) 𝜔d𝜔 , (5.37b)
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where ∗ stands for either abs, sca or ext. Note that the operator of real part in (5.37b)
can be omitted. As both W(𝜔) and H∗ (𝜔) are Hermitian, imaginary part of the right-
hand side of (5.37b) integrates to zero when used in (5.23). However, without the
real part, the formula (5.37b) would define a complex density of extinction, which
we wish to avoid.

For the total powers, we have

𝑄∗ =
1
𝜋

Im
∞∫

0

𝜔d𝜔
∑︁
𝑛

𝑤𝑛 (𝜔)⟨F𝑛 (𝜔) |Π∗ (𝜔) |F𝑛 (𝜔)⟩ (5.38a)

=
2
𝜋

∑︁
𝑛

∞∫
0

𝑤𝑛 (𝜔)𝒬 (𝑛)
∗ (𝜔)d𝜔 . (5.38b)

where

𝒬
(𝑛)
∗ (𝜔) = 𝜔

2
Im ⟨F𝑛 (𝜔) |Π∗ (𝜔) |F𝑛 (𝜔)⟩ . (5.39)

5.4.2 Extinction in terms of imaginary part of the T-matrix

Here we adduce one more general expression for 𝑄ext in which the imaginary part
of the T-matrix appears explicitly but its real part is not present. Following the same
approach as in Sec. 4.6, we can account for the symmetries of Winc and T as follows.
Let us write

Winc (r, r′;𝜔) = W(r)inc (r, r
′;𝜔) + i W(i)

inc
(r, r′;𝜔) , (5.40)

where W(r)
inc

(r, r′;𝜔) and W(i)
inc

(r, r′;𝜔) are purely real. Note that the first kernel is
symmetric and the second is anti-symmetric:

[W(r)
inc

(r, r′;𝜔)]𝑖 𝑗 = [W(r)
inc

(r′, r;𝜔)] 𝑗𝑖 , (5.41a)

[W(i)
inc

(r, r′;𝜔)]𝑖 𝑗 = −[W(i)
inc

(r′, r;𝜔)] 𝑗𝑖 . (5.41b)

This follows from the Hermiticity of W(𝜔) as expressed in (5.5c). On the other hand,
the T-matrix is symmetric:

[Tinc (r, r′;𝜔)]𝑖 𝑗 = [Tinc (r′, r;𝜔)] 𝑗𝑖 . (5.41c)

It can be seen that

Tr
∫
V

d3𝑟

∫
V

d3𝑟 ′ W(i)
inc

(r, r′;𝜔) T(r′, r;𝜔) = 0 . (5.42)

Consequently,

https://doi.org/10.1007/978-3-031-29601-7_1
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𝑄ext =
1
𝜋

Tr
∫
V

d3𝑟

∫
V

d3𝑟 ′
∞∫

0

W
(r)
inc

(r, r′;𝜔) T(i) (r′, r;𝜔) 𝜔d𝜔 . (5.43)

This expression is similar to (4.87), (4.88c) and, in the case of illumination by a
monochromatic field, is reduced to the latter.

Thus, what matters for extinction is the real part of the cross-spectral density
and imaginary part of the T-matrix. While the densities (5.31) and (5.43) yield the
same 𝑄ext when used in the double integral (5.23), the form (5.31) is often more
convenient or easier to handle mathematically. However, we will find the form (5.43)
useful in Sec. 5.7 below where we cover quasi-monochromatic field.

5.4.3 Absorption in terms of the total field

Above, we have expressed the absorbed, scattered and extinguished powers in terms
of statistical properties of the incident field. In the case of absorption, we can also
obtain an expression in terms of the total field. Such a result may be less practically-
relevant as, typically, properties of the incident field are given as conditions of
the problem. However, there exist numerical solvers of Maxwell’s equations that
compute the total field rather than the T-matrix or the scattering operator. If statistical
properties of the total field are known, a very simple expression for the absorbed
power can be written.

We start with the local representation of the absorbed power (3.16) and, using the
constitutive relation (3.5), obtain after a few simple manipulations the expression

𝑄abs = −Tr
∫
V

d3𝑟

∞∫
0

d𝜏 𝜒(r, 𝜏) 𝜕

𝜕𝜏
Γ(r, r; 𝜏) . (5.44)

Note that Γ in the above formula is the coherence matrix for the total field. We can
convert this expression to frequency domain using essentially the same steps as in
Sec. 5.4.1 above. The resulting expression is

𝑄abs =
1
𝜋

Im
∫
V

d3𝑟

∞∫
0

𝜔d𝜔 𝜒(r, 𝜔)𝑆(r, 𝜔) , (5.45)

where 𝑆(r, 𝜔) is the power spectrum of the total field defined in (5.7). Thus, to apply
(5.45), we need a numerical solver, which computes the power spectrum of the total
field given statistical properties of the incident field and the properties of the target.
This is not what most existing computational packages do, but is possible in principle
because the coherence matrix satisfies, essentially, the same equations as the field.

The expression (5.45) is one of the many faces of the fluctuation-dissipation
theorem [62]. It looks much simpler than the corresponding expression in terms of
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the incident field (5.38). However, the complexity of any practical computation is
hidden in the task of computing 𝑆(r, 𝜔).

We can show for consistency that (5.45) agrees with the previously-derived result
for monochromatic fields. Indeed, for the total electric field of the form (4.2) oscil-
lating at the frequency 𝜔0, we have 𝑆(r, 𝜔) = (𝜋/2) |E (r) |2 [𝛿(𝜔−𝜔0) +𝛿(𝜔+𝜔0)]
(see (7.27) in Sec. 7.2). We therefore obtain

𝑄abs =
𝜔

8𝜋

∫
V

Im[𝜖 (r, 𝜔0)] |E (r) |2d3𝑟 (for monochromatic field) , (5.46)

where we have used Im[𝜒(r, 𝜔)] = Im[𝜖 (r, 𝜔)]/4𝜋. As expected, this expression is
identical to the previously-derived formula (4.7a).

5.5 Independent sources

Consider the case when the incident field is produced by two physically-independent
sources. By this we mean that each source emits radiation independently of existence
or nonexistence or properties of other sources. We can write

Einc (r, 𝑡) = E1 (r, 𝑡) + E2 (r, 𝑡) . (5.47)

Importantly, no matter how close to being monochromatic the two sources are, they
are always uncorrelated. To see this, consider the expression ⟨𝐸1𝑖 (r1, 𝑡)𝐸2 𝑗 (r2, 𝑡+𝜏)⟩.
The key observation here is that the time 𝑡 can be arbitrarily large compared to
the characteristic time scale of oscillations of each field. Even if the fields start
off as completely correlated at some instance in the past, small deviations from
monochromaticity will eventually make the probably distribution of the averaged
quantity to be symmetric about the origin. In other words, there is no physical reason
why the product 𝐸1𝑖 (r1, 𝑡)𝐸2 𝑗 (r2, 𝑡 + 𝜏) would be positive rather than negative at
large times 𝑡 when the memory of any initial conditions has vanished. Consequently,
the above average is zero. The only exception from this conclusion is the case of
strict monochromaticity, which is not achievable in practice. Of course, the more
monochromatic the two sources are, the longer one needs to wait until any initial
correlation dies off. However, in the optical spectral range, this wait time is no larger
than fraction of a second, even for the most monochromatic sources that are currently
available. We will therefore proceed under the assumption that the coherence matrix
of the incident field is

Γinc (r1, r2; 𝜏) = Γ1 (r1, r2; 𝜏) + Γ2 (r1, r2; 𝜏) , (5.48)

where Γ1 and Γ2 are the coherence matrices for E1 and E2. It immediately follows
from (5.37) that absorption, scattering and extinction of independent incident fields
are additive:

https://doi.org/10.1007/978-3-031-29601-7_1
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𝑄∗ = 𝑄
(1)
∗ +𝑄

(2)
∗ . (5.49)

Here 𝑄
(1)
∗ is the absorbed, scattered or extinguished power that would have existed

if only source 1 was on, etc.
We can expand this analysis to any number of independent sources. In this case,

additivity can be expressed as

𝑄∗ =
∑︁
𝜇

𝑄
(𝜇)
∗ . (5.50)

The quantities labeled by 𝜇 correspond to the case when only 𝜇-th source is on.
This formula is similar to (4.97), which was obtained under the assumption that
different sources have non-overlapping spectra. Now we have shown that additivity
of extinguished, absorbed and scattered powers holds in a more general setting.
What is required for additivity is that the sources of different field components are
physically independent, which includes the case of non-overlapping spectra as a
special case.

Note that it is possible to use the same physical source to create two completely
uncorrelated incident fields. For this to be possible, the source must have a finite and
sufficiently wide spectrum. Then we can split the incident field using beam splitters
and pass each resulting beam through spectral filters with non-overlapping windows.
In this case, the analysis of Sec. 4.8 will apply. Therefore, the condition of physical
independence of sources is sufficient but not required for additivity.

Notwithstanding what is written above, there exist no fundamental laws prohibit-
ing interference of fields produced by independent sources. It is definitely possible
to observe beats of two quasi-monochromatic narrow spectral lines generated by two
different sources. The idea was published as early as in 1947 by Forrester, Parkins and
Gerjuoy [63] and independently by Gorelik 17, and an experimental demonstration
was published in 1955 [64]. With modern experimental techniques, it is relatively
easy to observe interference fringes from two different lasers [65], but the pattern is
not stable and must be observed or photographed over sufficiently short periods of
time. These effects however have no influence on absorbed, scattered or extinguished
powers as long as they are properly time-averaged.

5.6 Weak scattering

The weak scattering regime is obtained when the target has a low contrast relative
to vacuum as quantified by the coupling function 𝜅(r, 𝜔), and is also in some sense
small. The requirements of small contrast and small size counter-balance each other.
That is, the smaller is the contrast, the larger is the size for which the approximation
is still accurate, although stating the exact relation between the two parameters is
difficult. If the contrast is sufficiently small, the target size can be considerably larger

17 Doklady Akademii Nauk (DAN), 43, 46 (1947). Not translated.



60 Extinction of Electromagnetic Waves, Springer Series in Light Scattering, Vol.9 (2023)

than what is required for the quasi-static approximation to set in. Therefore, the
weak scattering regime is not inherently quasi-static. Formally, the weak scattering
approximation can be obtained as an expansion in powers of the operator V(𝜔),
which is defined in terms of 𝜅(r, 𝜔) in (4.79). Keeping only the first-order term in
this expansion is known as the first Born approximation. We have already stated this
approximation for monochromatic fields in Sec. 4.2.1 and more formally in Sec. 4.7
where we have also derived the second-order terms. In this subsection we state the
first Born approximation for partially-coherent fields. We will derive the result for
extinction only, as scattering is zero and absorption is equal to extinction to first
order in V(𝜔).

The first Born approximation for the T-matrix is obtained by keeping only the
first term in the right-hand side of (5.20), which yields

T(r, r′;𝜔) ≈ 𝜅(r, 𝜔)𝛿(r − r′)I3 , (5.51)

where 𝜅(r, 𝜔) is defined in (4.18). Using this approximation, we can simplify (5.31b)
as

𝑞ext (r, r′) ≈
𝛿(r − r′)

𝜋

∞∫
0

[Im 𝜅(r, 𝜔)] 𝑆inc (r, 𝜔) 𝜔d𝜔 . (5.52)

The density of extinction in the above expression is local. We therefore have for the
total extinguished power

𝑄ext ≈
1
𝜋

∞∫
0

𝜔d𝜔
∫
V

d3𝑟 𝑆inc (r, 𝜔) Im[𝜅(r, 𝜔)] . (5.53)

The expression is especially simple if the target is homogeneous inV so that 𝜅(r, 𝜔) =
𝜅0 (𝜔). We then have

𝑄ext ≈
1
𝜋

∞∫
0

𝑈inc (𝜔) Im[𝜅0 (𝜔)] 𝜔d𝜔 , (5.54)

where

𝑈inc (𝜔) =
∫
V

𝑆inc (r, 𝜔)d3𝑟 =
∑︁
𝑛

𝑤𝑛 (𝜔) , (5.55)

and 𝑤𝑛 (𝜔) are the eigenvalues of the operator W(𝜔) defined in (5.6b). We can say
that 𝑈inc (𝜔) is the integral spectral density of the incident field in V.

As mentioned above, within the first Born approximation we have

𝑄abs ≈ 𝑄ext , 𝑄sca ≈ 0 . (5.56)
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This makes physical sense as the approximation is based on the assumption of
negligible scattering. Non-vanishing scattered power can be obtained to second
order in V(𝜔). However, computing this correction is only justified if it is in some
sense small. Otherwise, accounting for the second-order term may not be a useful
approximation. The reason is that, typically, there exists only a small region of
parameters in which the first Born approximation is significantly inaccurate (and
therefore can be corrected) but the expansion of the T-matrix in powers of V(𝜔)
converges. Only if parameters of the problem are in this region, accounting for the
second-order term is meaningful. But this is rarely known a priori without solving
the problem non-perturbatively.

5.7 Quasi-monochromatic field

We can assume that the field is quasi-monochromatic if it is sufficient to compute the
T-matrix T(𝜔) or the scattering operator Σ(𝜔) at just one frequency 𝜔0. In this sub-
section, we will examine the conditions of applicability of the quasi-monochromatic
approximation and derive expressions for the absorbed, scattered and extinguished
powers assuming these conditions hold.

Consider the case when the spectrum of the incident field is narrow and con-
centrated around some frequency 𝜔0. Let the essential support of the cross-spectral
density lie in the interval [𝜔0 − Δ/2, 𝜔0 + Δ/2] where 𝜔0 > 0. This means that, for
any 𝜔 > 0 outside of this interval and r, r′ ∈ V, W(r1, r2;𝜔) is negligibly small 18.
A more quantitative definition of the essential support is given in Sec. 5.9.1 below.
We require that T(𝜔) be almost independent of 𝜔 in the above interval of frequen-
cies. Whether this condition holds depends on many factors and is harder to satisfy
when the target has narrow spectral features known as electromagnetic resonances.
However, one heuristic condition of applicability that we can state is

𝐷 ≪ ℓcoh = 𝜋𝑐/Δ , 𝐷 = max
r,r′∈V

|r − r′ | . (5.57)

Here 𝐷 is the spatial extent of the target and ℓcoh is the coherence length (sometimes
defined with the factor of 2𝜋 rather than 𝜋).

The condition (5.57) is neither sufficient nor necessary for the quasi-monochro-
matic approximation to hold, but is rather a heuristic rule of thumb. In a practical
computation, one should verify that T(𝜔) is almost constant and has no obvious spec-
tral features in the interval [𝜔0 −Δ/2, 𝜔0 +Δ/2]. We proceed under the assumption
that

𝜔 T(r1, r2;𝜔) ≈ 𝜔0 T(r1, r2;𝜔0) if 𝜔0 − Δ/2 ≤ 𝜔 ≤ 𝜔0 + Δ/2 (5.58)

18 The cross-spectral density, as defined in this chapter, satisfies W(−𝜔) = W∗ (𝜔) . Therefore, there
is also a spectral peak at 𝜔 = −𝜔0. However, we express all measurable quantities as integrals
over positive frequencies.



62 Extinction of Electromagnetic Waves, Springer Series in Light Scattering, Vol.9 (2023)

is a sufficiently accurate approximation. To compute 𝑄ext, it is convenient to use the
formulas of Sec. 5.4.2 where we have explicitly isolated the imaginary part of the
T-matrix. Specifically, applying the approximation (5.58) to (5.43), we obtain

𝑄ext ≈
𝜔0
𝜋

Tr
∫
V

d3𝑟

∫
V

d3𝑟 ′
[
W (r)
inc

(r, r′) T(i) (r′, r;𝜔0)
]
. (5.59)

where

W (r)
inc

(r, r′) =
∞∫

0

W
(r)
inc

(r, r′;𝜔) d𝜔 . (5.60)

Since the cross-spectral density and the coherence matrix are Fourier transforms of
each other, we know that

∞∫
−∞

Winc (r, r′;𝜔) d𝜔 = 2𝜋 Γinc (r, r′; 0) , (5.61)

which implies that

W (r)
inc

(r, r′) = 𝜋 Γinc (r, r′; 0) . (5.62)

We therefore have

𝑄ext ≈ 𝜔0 Tr
∫
V

d3𝑟

∫
V

d3𝑟 ′ Γinc (r, r′; 0) T(i) (r′, r;𝜔0) . (5.63)

Here Γinc is purely real and the operation of taking the imaginary part has been
applied only to T.

Note that similar results cannot be obtained for the absorbed and scattered powers
without additional assumptions or approximations. The reason is that neither of the
operators Πsca (𝜔) and Πabs (𝜔) or Hsca (𝜔) and Hsca (𝜔) are symmetric. The latter
two operators are complex Hermitian, but this is insufficient for our purposes. Con-
sequently, we cannot compute the positive frequency integral of the type (5.43) as
easily. Extinction is in this respect unique as the operator Hext (𝜔) is real symmet-
ric, which is what has really facilitated the above mathematical development. The
forthcoming discussion is, therefore, focused on extinction.

Expression (5.63) is, in general, different from the corresponding result for the
strictly monochromatic field, i.e., (4.74c) or (4.75c). In particular, it allows for
different Cartesian component of the field to be partially coherent or even completely
uncorrelated. For example, a quasi-monochromatic plane wave can be unpolarized
whereas a strictly monochromatic plane wave is always polarized. Unlike its strictly
monochromatic counter-parts, formula (5.63) allows for consideration of unpolarized
light. However, (5.63) can describe strictly monochromatic waves as a limiting case.

https://doi.org/10.1007/978-3-031-29601-7_1
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Indeed, assume that the incident field is of the form Einc (r, 𝑡) = Re[Einc (r)𝑒−i 𝜔0𝑡 ]
where Einc (r) is a time-independent complex amplitude. We have in this case (i.e.,
see (7.22) below)

Γinc (r, r′; 0) = 1
2

Re
[
E∗
inc (r) ⊗ Einc (r′)

]
. (5.64)

Substituting this expression into (5.63) we obtain after a few straightforward algebraic
manipulations

𝑄ext ≈
𝜔0
2

Re
∫
V

d3𝑟

∫
V

d3𝑟 ′ E∗
inc (r) · T

(i) (r, r′;𝜔0)Einc (r′) . (5.65)

This result is equivalent to (4.74c). To see that this is indeed so, we must take the
symmetry T(r, r′;𝜔0) into account, as it was done in Sec. 5.4.2 above. In the case
of an incident plane wave described mathematically by Einc (r) = A𝑒i k·r, (5.65) is
reduced to the previously-derived expression (4.72).

5.8 Plane wave

A plane wave can be characterized completely by two scalar functions of a single
scalar variable. As a result, the general expressions for the absorbed, scattered and
extinguished powers are greatly simplified. In the case of incident plane waves,
it is common to consider the scattering problem in frequency domain assuming
monochromatic illumination; then the result is extended to non-monochromatic
fields as a spectral integral. For example, the total power of the solar radiation 19

extinguished by a water droplet in the atmosphere can be computed as an integral of
the solar spectrum multiplied by the extinction spectrum of the droplet, where the
latter is computed from the Mie theory for monochromatic fields. In this section, we
will give a rigorous mathematical justification for this approach paying particular
attention to the effects of polarization and to precise definitions of the quantities that
should be used in the spectral integrals. In particular, we will demonstrate rigorously
the principle of spectral additivity of extinction, which is used implicitly in the above
example.

5.8.1 Polychromatic plane wave

An incident plane wave propagating along the 𝑍-axis can be written in the most
general form as

19 Strictly speaking, solar radiation is not a plane wave since the solid angle subtended by the Sun
when viewed from Earth is not vanishingly small.
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Einc (𝑧, 𝑡) = e𝑥E𝑥 (𝑡 − 𝑧/𝑐) + e𝑦E𝑦 (𝑡 − 𝑧/𝑐) , (5.66)

where e𝑥 and e𝑦 and e𝑧 are unit vectors along the 𝑋 and𝑌 -axes and E𝑥 (𝑡), E𝑦 (𝑡) are
two arbitrary real, scalar, stationary stochastic processes. The statistical properties
of the plane wave are completely characterized by the following three correlation
functions:

𝑔𝑥 (𝜏) = ⟨E𝑥 (𝑡)E𝑥 (𝑡 + 𝜏)⟩ , (5.67a)
𝑔𝑦 (𝜏) = ⟨E𝑦 (𝑡)E𝑦 (𝑡 + 𝜏)⟩ , (5.67b)
ℎ(𝜏) = ⟨E𝑥 (𝑡)E𝑦 (𝑡 + 𝜏)⟩ . (5.67c)

It follows from the above definitions that 𝑔𝑥,𝑦 (−𝜏) = 𝑔𝑥,𝑦 (𝜏). However, there is no
such requirement for ℎ(𝜏). Note that all functions in (5.67) are real.

The incident wave (5.66) can be linearly polarized, have a mixed polarization or be
completely unpolarized. If the electric field is confined entirely to one plane, the wave
is linearly polarized. We can assume without loss of generality that E𝑦 = 0 in this
case and the plane of polarization is 𝑋𝑍 . We can also envisage a situation in which
the field is not confined to one plane and 𝑔𝑥 (𝜏) ≠ 𝑔𝑦 (𝜏). In this case, polarization is
mixed. The 𝑋- and 𝑌 -polarized components of the wave can have different spectra
and the off-diagonal correlation function ℎ(𝜏) can be rather arbitrary subject to the
constraints that follow from the Schwartz inequality such as ℎ2 (𝜏) ≤ 𝑔𝑥 (0)𝑔𝑦 (0).
Finally, if 𝑔𝑥 (𝜏) = 𝑔𝑦 (𝜏) and ℎ(𝜏) = 0, we have the case of completely unpolarized
wave. Note that the statistical properties of an unpolarized wave are invariant under
rotation of the reference frame about the 𝑍-axis. Circular (more generally, elliptic)
polarization is only possible for a quasi-monochromatic wave with a well-defined
central frequency 𝜔0. This case is considered in Sec. 5.8.2 below.

In the reference frame 𝑋𝑌𝑍 introduced above, the coherence matrix of the incident
plane wave (5.66) is of the form

Γinc (𝑧, 𝑧′; 𝜏) =
[
𝑔𝑥 (𝜉) ℎ(𝜉)
ℎ(−𝜉) 𝑔𝑦 (𝜉)

]
, 𝜉 = 𝜏 + 𝑧 − 𝑧′

𝑐
. (5.68)

Since the field (5.66) is transverse (has zero projection onto the 𝑍-axis), we can work
with Γinc as with a 2 × 2 matrix. The corresponding cross-spectral density can be
expressed in terms of temporal Fourier transforms of 𝑔𝑥 (𝑡), 𝑔𝑦 (𝑡) and ℎ(𝑡) as

W(𝑧, 𝑧′;𝜔) = 𝑒i 𝑘 (𝑧′−𝑧) J(𝜔) , 𝑘 = 𝜔/𝑐 , (5.69)

where

J(𝜔) =
[
𝑔𝑥 (𝜔) ℎ(𝜔)
ℎ∗ (𝜔) 𝑔𝑦 (𝜔)

]
(5.70)

is the polarization matrix, sometimes referred to (in a somewhat different context)
as the Jones matrix . The factorization of the spatial dependence of the cross spec-
tral density, as expressed by the product of exponents 𝑒i 𝑘𝑧′𝑒−i 𝑘𝑧 , is a significant
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simplification, which is specific to plane waves. It is important to keep in mind that
the statistical properties of the incident field are characterized by the function J(𝜔);
knowledge of a single sample of this function such as J(𝜔0) is insufficient.

We can now compute the extinguished power. To this end, we substitute the
cross-spectral density (5.69) into (5.31), integrate the result over r and r′ according
to (5.23) and recall the definition of spatial Fourier transform of the T-matrix (4.52).
These steps result in

𝑄ext =
1
𝜋

Im Tr
∞∫

0

[
T(k, k;𝜔) JT (𝜔)

]
𝜔d𝜔 (5.71a)

=
1
𝜋

Im Tr
∞∫

0

[
J(𝜔)TT (k, k;𝜔)

]
𝜔d𝜔 , (5.71b)

where

k = e𝑧 𝜔/𝑐 . (5.72)

Here k is the wave vector of a hypothetical monochromatic plane wave of frequency
𝜔 propagating in the 𝑍-direction. Thus, T(k, k;𝜔) is the temporal and spatial Fourier
transform of the time-domain, real-space T-matrix:

T(k, k;𝜔) =
∞∫

0

𝑒i 𝜔𝜏d𝜏
∫
V

d3𝑟

∫
V

d3𝑟 ′ 𝑒−i k·r T(r, r′; 𝜏) 𝑒i k·r′ . (5.73)

Note that k depends on 𝜔 as indicated in (5.72). The expression (5.71a) was obtained
from (5.31a) and (5.71b) was obtained from (5.31b). The two formulas are equivalent
since Tr[ABT] = Tr[ATB]. However, note that, in order to derive (5.71b), we used the
symmetry property

T(k, k;𝜔) = TT (−k,−k;𝜔) , (5.74a)

which follows directly from the definition (5.73). In particular, the diagonal elements
of T(k, k;𝜔) are invariant with respect to reverting the propagation direction of the
incident wave:

𝑇𝑥𝑥 (k, k;𝜔) = 𝑇𝑥𝑥 (−k,−k;𝜔) , 𝑇𝑦𝑦 (k, k;𝜔) = 𝑇𝑦𝑦 (−k,−k;𝜔) , (5.74b)

whereas the off-diagonal elements obey

𝑇𝑥𝑦 (k, k;𝜔) = 𝑇𝑦𝑥 (−k,−k;𝜔) . (5.74c)

Equations (5.71) provide the most general result for extinction of a plane, partially-
coherent wave. Similar expressions can be obtained for absorption and scattering
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by replacing Πext (𝜔) = T(𝜔) with Πabs (𝜔) or Πsca (𝜔), where the Π-operators are
defined in (4.86).

It is also instructive to derive an expression for𝑄ext using the eigen-decomposition
of W(𝜔) defined in equations (5.6) of Sec. 5.2. The eigenfunctions and eigenvalues
of Winc (𝜔) can be easily found due to separability of the kernel (5.69). We have

F𝑛 (𝑧, 𝜔) =
1√︁

𝑉 [V]
𝑒−i 𝑘𝑧 f𝑛 (𝜔) , 𝑤𝑛 (𝜔) = 𝑉 [V] 𝜆𝑛 (𝜔) , (5.75a)

where f𝑛 (𝜔) and 𝜆𝑛 (𝜔) are the eigenvectors and eigenvalues of the matrix J(𝜔),
viz,

J(𝜔)f𝑛 (𝜔) = 𝜆𝑛 (𝜔)f𝑛 (𝜔) , f ∗
𝑚 (𝜔) · f𝑛 (𝜔) = 𝛿𝑚𝑛 . (5.75b)

As J(𝜔) is a 2 × 2 Hermitian matrix, it has two real eigenvalues 𝜆± (𝜔) and two
orthogonal eigenvectors f± (𝜔) at each frequency:

𝜆± (𝜔) =
𝑔𝑥 (𝜔) + 𝑔𝑦 (𝜔)

2
±

√︄(
𝑔𝑥 (𝜔) − 𝑔𝑦 (𝜔)

2

)2
+ |ℎ(𝜔) |2 , (5.76a)

f± (𝜔) =
1

𝑍± (𝜔)

[
ℎ(𝜔)

𝜆± (𝜔) − 𝑔𝑥 (𝜔)

]
, (5.76b)

where

𝑍2
± (𝜔) = |ℎ(𝜔) |2 + [𝜆± (𝜔) − 𝑔𝑥 (𝜔)]2 . (5.76c)

We can use this eigen-decomposition to write J(𝜔) as a sum of two separable and
therefore zero-determinant matrices

J(𝜔) = J+ (𝜔) + J− (𝜔) , (5.77a)

where

J± (𝜔) = 𝜆± (𝜔) f± (𝜔) ⊗ f ∗
± (𝜔) . (5.77b)

A straightforward algebraic manipulation yields the following result for J± (𝜔):

J± (𝜔) =
𝜆± (𝜔)

2𝜆± (𝜔) − 𝑔𝑥 (𝜔) − 𝑔𝑦 (𝜔)

[
𝜆± (𝜔) − 𝑔𝑦 (𝜔) ℎ(𝜔)

ℎ∗ (𝜔) 𝜆± (𝜔) − 𝑔𝑥 (𝜔)

]
. (5.78)

Note that (5.78) has a well-defined limit when 2𝜆± (𝜔) − 𝑔𝑥 (𝜔) − 𝑔𝑦 (𝜔) → 0. The
above singularity occurs if 𝑔𝑥 (𝜔) = 𝑔𝑦 (𝜔) = 𝑔(𝜔) and ℎ(𝜔) = 0. In this case,

J+ (𝜔) =
[

1 0
0 0

]
, J− (𝜔) =

[
0 0
0 1

]
. (5.79)
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It can be seen that, in all cases, det[J± (𝜔)] = 0. This follows from the definition
(5.77b) and can be verified directly by observing that the eigenvalues 𝜆± (𝜔) satisfy
the characteristic equation

[𝑔𝑥 (𝜔) − 𝜆(𝜔)] [𝑔𝑦 (𝜔) − 𝜆(𝜔)] − |ℎ(𝜔) |2 = 0 . (5.80)

Substituting F𝑛 (r, 𝜔) from (5.75a) into (5.34) and the result into (5.33) yields

𝑄ext =

∞∫
0

[𝒬 (+)
ext (𝜔) +𝒬

(−)
ext (𝜔)]d𝜔 , (5.81a)

where

𝒬
(±)
ext (𝜔) =

𝜔

𝜋
Im Tr

[
T(k, k;𝜔)JT± (𝜔)

]
(5.81b)

=
𝜔

𝜋
Im Tr

[
J± (𝜔) TT (k, k;𝜔)

]
. (5.81c)

As above, we have used the curly symbol 𝒬 to indicate that the respective quantity is
not power (in this instance,𝒬 has the units of energy). The result (5.81) is very similar
to (5.71), the only difference being that we have decomposed J(𝜔) as J+ (𝜔)+J− (𝜔).
There exist, of course, an infinite number of ways in which a 2 × 2 matrix can be
decomposed into a sum of two matrices. The decomposition (5.77) is however
special (and unique) because J± (𝜔) have zero determinants. As a result, each of
these matrices is equal to the Jones matrix of some hypothetical monochromatic
plane wave. We emphasize that this equivalence cannot hold for J(𝜔) itself as its
determinant is, in general, non-zero, whereas the Jones matrices of monochromatic
plane waves have zero determinants. This observation is conceptually important and
it sheds additional light onto the physical significance of the eigen-decomposition of
W(𝜔).

To elaborate further on this point, consider a monochromatic incident plane wave
of the form

Einc (r, 𝑡) = Re[A 𝑒i (k·r−𝜔𝑡 ) ] . (5.82)

The polychromatic incident wave (5.66) is not a superposition of such monochromatic
waves. However, we will show momentarily that the extinguished power due to
(5.66) can be written as a spectral integral involving extinguished powers due to
monochromatic incident fields of the form (5.82). In fact, (5.81b) is a spectral
integral of this kind. Indeed, the extinguished power for an incident wave of the form
(5.82) is given by

𝑄ext =
𝜔

2
Im [A∗ · T(k, k;𝜔)A] . (5.83)

The is a special case of the more general result (4.55), which was derived in Sec. 4.5
above. We can re-write (5.83) identically as
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𝑄ext (𝜔) =
𝜔

2
Im Tr

[
T(k, k;𝜔) JTmon

]
(5.84a)

=
𝜔

2
Im Tr

[
Jmon T

T (k, k;𝜔)
]
. (5.84b)

where

Jmon =

[
𝐴∗
𝑥𝐴𝑥 𝐴∗

𝑥𝐴𝑦

𝐴∗
𝑦𝐴𝑥 𝐴∗

𝑦𝐴𝑦

]
. (5.85)

is the Jones matrix for the monochromatic plane wave (5.82). As mentioned above,
det[Jmon (𝜔)] = 0, which is a general property of all monochromatic plane waves.
Consequently, we can always find such an amplitude A that Jmon = J± (𝜔) (for both
choices of sign). The solution to this problem is

A± =
√︁
𝜆± (𝜔)f ∗

± (𝜔) . (5.86)

Thus, we can interpret 𝒬 (±)
ext (𝜔) in (5.81) as the power extinguished by the target due

to an incident plane wave of the form

E± (r, 𝑡;𝜔) = Re[
√︁
𝜆± (𝜔)f ∗

± (𝜔) 𝑒i 𝜔 (𝑧/𝑐−𝑡 ) ] , (5.87)

where we have used k · r = 𝜔𝑧/𝑐. Here the extra label 𝜔 in the notation E± (r, 𝑡;𝜔)
indicates that we consider a family of two monochromatic waves (two polarization
modes at each frequency corresponding to+ or− sign in the index) whose amplitudes
depend on 𝜔. Note that E± (r, 𝑡;𝜔) is a hypothetical incident wave. In particular, it
does not have the units of electric field. However, the total extinguished power for the
polychromatic incident wave (5.66) is given by a spectral integral of extinguished
powers for such hypothetical waves, summed over the polarization states at each
frequency.

5.8.2 Quasi-monochromatic plane wave

In Sec. 5.7, we considered general quasi-monochromatic incident field for which the
essential support of the power spectrum lies in the interval [𝜔0 − Δ/2, 𝜔0 + Δ/2].
The main formula derived in that section is (5.63). However, using this without
a specific model for the coherence matrix Γinc (r, r; 0) is problematic. We need to
know something about the spatial coherence of the incident field to apply (5.63). One
approach is to use various physical models for the coherence matrix. For example,
the Lorentz model of power spectrum, which is, essentially, a perturbation over the
monochromatic limit, is of the form

𝑔𝑥,𝑦 (𝜏) = 𝐼𝑥,𝑦 cos(𝜔0𝜏)𝑒−𝛾 |𝜏 | , (5.88)

where 𝛾 ≪ 𝜔0. In addition, we need the function ℎ(𝜏). The Lorentz model has
little to say about the latter. To describe elliptic polarization, we can assume, for
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example, that E𝑦 (𝑡) = 𝛽E𝑥 (𝑡 − 𝑠), where 𝑠 is a fixed time shift. This would result
in ℎ(𝜏) = 𝛽𝑔𝑥 (𝜏 + 𝑠) and 𝑔𝑦 (𝜏) = 𝛽2𝑔𝑥 (𝜏). With these assumptions, it is possible
to develop the expression (5.63) and obtain a number of useful approximations.
However, the above model for ℎ(𝜏) is not general and the results will depend explicitly
on the mathematical form of the spectrum (not only on the assumption that it is
narrow).

Here we will follow a more general and a more phenomenological approach
by postulating that the Jones matrix in (5.70) can be approximated for quasi-
monochromatic field as

J(𝜔) ≈ 2𝜋 J0 𝛿(𝜔 − 𝜔0) . (5.89)

Substituting this approximation into (5.71), we obtain

𝑄ext = 2𝜔0 Im Tr
[
T(k0, k0;𝜔0) JT0

]
= 2𝜔0 Im Tr

[
J0 T

T (k0, k0;𝜔0)
]
, (5.90)

where k0 = (𝜔0/𝑐)e𝑧 . The matrix J0 is often expressed in terms of the Stokes
parameters of the incident wave (𝐼, 𝑄,𝑈,𝑉) as follows:

J0 =

[
𝐼 +𝑄 𝑈 + i𝑉
𝑈 − i𝑉 𝐼 −𝑄

]
. (5.91)

The Stokes parameters can be introduced in a less formal manner as follows. Let the
functions E𝑥,𝑦 (𝑡) describing a quasi-monochromatic plane wave be of the form

E𝑥,𝑦 (𝑡) = Re[𝐴𝑥,𝑦 (𝑡)𝑒−i 𝜔0𝑡 ] , (5.92)

where 𝐴𝑥,𝑦 (𝑡) are “slow” functions of time, by which we mean that they change on
time scales much larger than 2𝜋/𝜔0. In practice, the separation of time scales can be
of many orders of magnitude. We then have for the coherence matrix

Γinc (𝑧, 𝑧′; 𝜏) ≈
[
⟨𝐴∗

𝑥 (𝑡)𝐴𝑥 (𝑡 + 𝜉)⟩ ⟨𝐴∗
𝑥 (𝑡)𝐴𝑦 (𝑡 + 𝜉)⟩

⟨𝐴∗
𝑦 (𝑡)𝐴𝑥 (𝑡 + 𝜉)⟩ ⟨𝐴∗

𝑦 (𝑡)𝐴𝑦 (𝑡 + 𝜉)⟩

]
𝑒−i 𝜔0 𝜉 , (5.93)

where, as before, 𝜉 = 𝜏 + (𝑧 − 𝑧′)/𝑐 and we have assumed that the time-averages of
fast-oscillating terms are zero. Now we compute the power spectrum as

Winc (𝑧, 𝑧′;𝜔) =
∞∫

−∞

[
⟨𝐴∗

𝑥 (𝑡)𝐴𝑥 (𝑡 + 𝜉)⟩ ⟨𝐴∗
𝑥 (𝑡)𝐴𝑦 (𝑡 + 𝜉)⟩

⟨𝐴∗
𝑦 (𝑡)𝐴𝑥 (𝑡 + 𝜉)⟩ ⟨𝐴∗

𝑦 (𝑡)𝐴𝑦 (𝑡 + 𝜉)⟩

]
𝑒i (𝜔𝜏−𝜔0 𝜉 )d𝜏

= 𝑒i (𝑧′−𝑧)/𝑐
∞∫

−∞

[
⟨𝐴∗

𝑥 (𝑡)𝐴𝑥 (𝑡 + 𝜉)⟩ ⟨𝐴∗
𝑥 (𝑡)𝐴𝑦 (𝑡 + 𝜉)⟩

⟨𝐴∗
𝑦 (𝑡)𝐴𝑥 (𝑡 + 𝜉)⟩ ⟨𝐴∗

𝑦 (𝑡)𝐴𝑦 (𝑡 + 𝜉)⟩

]
𝑒i (𝜔−𝜔0 )𝜏d𝜏 . (5.94)

Since 𝐴𝑥,𝑦 (𝑡) are slow functions of 𝑡, their correlators also change on time scales
much larger than 2𝜋/𝜔0. Correspondingly, we can set 𝜉 = 0 inside the matrix. The
approximation used here is to assume that the integral (5.94) converges (to a delta



70 Extinction of Electromagnetic Waves, Springer Series in Light Scattering, Vol.9 (2023)

function) while we still have ⟨𝐴∗
𝑖
(𝑡)𝐴 𝑗 (𝑡 + 𝜉)⟩ ≈ ⟨𝐴∗

𝑖
(𝑡)𝐴 𝑗 (𝑡)⟩. We thus obtain

Winc (𝑧, 𝑧′;𝜔) = 2𝜋 𝑒i (𝑧′−𝑧)/𝑐
[

⟨|𝐴𝑥 (𝑡) |2⟩ ⟨𝐴∗
𝑥 (𝑡)𝐴𝑦 (𝑡)⟩

⟨𝐴∗
𝑦 (𝑡)𝐴𝑥 (𝑡)⟩ ⟨|𝐴𝑦 (𝑡) |2⟩

]
𝛿(𝜔 − 𝜔0) . (5.95)

Comparing to (5.69) and (5.89), we see that (5.95) agrees with these two equations
if we set

J0 =

[
⟨|𝐴𝑥 (𝑡) |2⟩ ⟨𝐴∗

𝑥 (𝑡)𝐴𝑦 (𝑡)⟩
⟨𝐴∗

𝑦 (𝑡)𝐴𝑥 (𝑡)⟩ ⟨|𝐴𝑦 (𝑡) |2⟩

]
. (5.96)

This observation justifies the use of approximation (5.89). We then define the Stokes
parameters as

𝐼 =
1
2

(
⟨|𝐴𝑥 (𝑡) |2⟩ + ⟨|𝐴𝑦 (𝑡) |2⟩

)
, (5.97a)

𝑄 =
1
2

(
⟨|𝐴𝑥 (𝑡) |2⟩ − ⟨|𝐴𝑦 (𝑡) |2⟩

)
, (5.97b)

𝑈 = Re ⟨𝐴∗
𝑥 (𝑡)𝐴𝑦 (𝑡)⟩ , (5.97c)

𝑉 = Im ⟨𝐴∗
𝑥 (𝑡)𝐴𝑦 (𝑡)⟩ . (5.97d)

With these definitions, we recover the expression (5.91) for J0.
The Stokes parameters are commonly used in optics to characterize the polar-

ization states of plane waves. In particular, non-zero values of the parameter 𝑉

correspond to elliptic polarization. The Stokes vectors of the form 𝐼 (1, 0, 0, 1) and
𝐼 (1, 0, 0,−1) correspond to right and left circular polarizations, respectively. Plane
waves with 𝑉 = 0 do not possess any “handiness”. We refer the reader to the text-
book [2] for further details, but would like to offer a word of caution. Namely, the
Stokes parameters can be defined only for quasi-monochromatic waves. Indeed, there
is no unique or reasonable way to define the slow amplitudes 𝐴𝑥,𝑦 (𝑡) for a broad
spectrum. In practice, the condition of quasi-monochromaticity does not need to be
strong and characterization of light beams in terms of Stokes vectors is quite robust
to violations of the underlying assumption of quasi-monochromaticity. However, it
is possible and in fact easy to find physical situations in which the use of Stokes
parameters is not justified. This is the case, for example, for many kinds of unfiltered
thermal radiation.

We now return to the expression for the extinguished power (5.90). Writing it out
in components and using (5.91) for J0, we obtain

𝑄ext = 2𝜔0

{
𝐼 Im[T𝑥𝑥 (k0, k0;𝜔0) + T𝑦𝑦 (k0, k0;𝜔0)]

+𝑄 Im[T𝑥𝑥 (k0, k0;𝜔0) − T𝑦𝑦 (k0, k0;𝜔0)]
+𝑈 Im[T𝑥𝑦 (k0, k0;𝜔0) + T𝑦𝑥 (k0, k0;𝜔0)]

+𝑉 Re[T𝑦𝑥 (k0, k0;𝜔0) − T𝑥𝑦 (k0, k0;𝜔0)]
}
. (5.98)
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Targets for which T𝑦𝑥 (k0, k0;𝜔0) − T𝑥𝑦 (k0, k0;𝜔0) can be different from zero are
known as chiral. In the case of chiral targets, two incident plane waves with Stokes
vectors 𝐼 (1, 0, 0, 1) and 𝐼 (1, 0, 0,−1) produce different extinguished powers, which
is known as the effect of circular dichroism. Conversely, the extinguished power of
chiral targets can change if we keep the Stokes parameters the same and change
the direction of propagation, which is described mathematically by the substitution
k0 → −k0.

If the target can be superimposed onto its mirror image by a combination of
translations and rotations, the target is non-chiral and the last term in (5.98) is
identically zero. Moreover, for such targets it is possible to rotate the 𝑋 and 𝑌 axes
about the 𝑍 axis so that the third term is also zero. In such case, the off-diagonal
elements of T(𝜔0) are unimportant for extinction. Examples of non-chiral targets
include spheres, truncated cylinders, cones, cuboids and many other regular shapes.

5.9 Quasi-static approximation

5.9.1 Assumptions and conditions of applicability

Generally, the quasi-static approximation is applicable to sub-wavelength targets.
More specifically, we require that

max
r,r′∈V; 𝑆inc (r,𝜔)>𝑆min

(𝜔
𝑐
|r − r′ |

)
≤ 𝜀1 ≪ 1 , (5.99)

where 𝜀1 is a small dimensionless constant and 𝑆min > 0 is a threshold value
for 𝑆inc (r, 𝜔). Since most spectra never turn exactly to zero at any frequency, we
would not be able to satisfy the condition (5.99) unless we define such a finite
threshold. While there is no first-principle method to specify 𝑆min, we can determine
it heuristically as the solution to the equation

∞∫
0

d𝜔
∫
V

d3𝑟 𝑆inc (r, 𝜔) Θ (𝑆min − 𝑆inc (r, 𝜔)) = 𝜀2

∞∫
0

d𝜔
∫
V

d3𝑟 𝑆inc (r, 𝜔) ,

(5.100)

where Θ(𝑥) is the unit step function and 𝜀2 ≪ 1 is another small dimensionless
constant. For spectra that are concentrated around a given frequency 𝜔0, we can
replace the condition 𝑆inc (r, 𝜔) > 𝑆min with the much simpler condition 𝜔0−Δ/2 ≤
𝜔 ≤ 𝜔0 +Δ/2, where Δ is the spectral width. For commonly-encountered Lorenzian
spectra, the selection Δ = 12𝛾, where 𝛾 is the width of the Lorenzian, approximately
corresponds to 𝜀2 = 0.01 in (5.100) and, roughly, to a 1% relative error of the
approximation.

Selecting the value of 𝜀1 in (5.99) is a more complicated matter. The quasi-
static approximation requires that we neglect the time shifts due to retardation,
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|r− r′ |/𝑐, in all equations of Sec. 5.3. It is correct to do so in the mathematical limit
𝜀1 → 0. However, we should keep in mind that these equations also contain the
coupling function 𝜅(r, 𝜏). As a result, the value of 𝜀1 that is required to reach this
limit depends on the properties of the target. For transparent dielectrics at optical
frequencies, it is often sufficient to take 𝜀1 ∼ 0.1. For high-conductivity metals below
the plasma frequency, the requirement is much more stringent. A rough estimate can
be obtained by considering a homogeneous spherical target of radius 𝑎 for which
an analytical solution to the electromagnetic problem is known. For the quasi-static
approximation to be accurate, the amplitude of the induced electric dipole of the
sphere must be much larger than the amplitudes of all other induced multipole
moments, most importantly, of the magnetic dipole moment. If this condition holds,
it is sufficient to take 𝜀1 = 𝜔𝑎/𝑐. Note that the magnetic moments should be small
at all frequencies within the essential spectrum.

Above, we have stated the condition of target smallness. This is the only essential
condition for the quasi-static approximation to be valid. However, to simplify the
analysis, we will make two additional assumptions, which are not related to the target
size. Namely, we will assume that

(i) the target is spatially-uniform;
(ii) the sources of radiation are located in the far zone of the target, so that the incident

field is also spatially-uniform over V at any instance of time.

A couple of obvious examples in which the quasi-static approximation can still be
valid but the above two assumptions do not hold include multi-component targets or
illumination in the Kretschmann geometry. While we do not cover these cases here,
it is hoped that the reader who follows the derivations below will know how to make
the required generalizations.

The assumption (i) means that the coupling function 𝜅(r, 𝜏) or its Fourier trans-
form 𝜅(r, 𝜔) are independent of r in V (and, of course, are zero outside of V) and,
therefore, we can write

𝜅(r, 𝜏) = 𝜅(𝜏) , 𝜅(r, 𝜔) = 𝜅(𝜔) , r ∈ V . (5.101)

The assumption (ii) implies that we can approximate the incident field in V by a
spatially-independent time-varying vector, viz,

Einc (r, 𝑡) = Einc (𝑡) , r ∈ V . (5.102)

In (5.102), the Cartesian components of Einc (𝑡) are stationary but otherwise arbitrary
functions of time. Note that it does not follow from (5.102) that the incident field in
V is equivalent to a field of a plane wave. The equivalence always holds for strictly
monochromatic fields but not more generally. In the polychromatic case, (5.102)
coincides with a field of a plane wave only if one of the Cartesian components
of Einc (𝑡) is zero. Otherwise, the tip of the vector Einc (𝑡) is not constrained to a
plane and moves quasi-chaotically in three dimensions. Consequently, polarization
of Einc (𝑡) may not be conventionally defined in terms of the Stokes parameters.
An example of this somewhat counter-intuitive behavior is illumination by two
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or more non-monochromatic plane waves propagating in different directions. This
observation illustrates a subtle difference that exists in applying the quasi-static
approximation to monochromatic and polychromatic fields.

5.9.2 Dipole polarizability

In the considered approximations, we can fully characterize the target by a contraction
of the T-matrix known as the dipole polarizability tensor, denoted by α(𝜏) in time
domain or α(𝜔) in frequency domain (the two functions are, of course, Fourier
transforms of each other). We define the total dipole moment of the target as

d(𝑡) =
∫
V

P(r, 𝑡)d3𝑟 . (5.103)

Upon using the expression (5.10b) for P(r, 𝑡), integration over r, and using the
homogeneous approximation (5.102) for Einc (r, 𝑡), we obtain

d(𝑡) =
∞∫

0

α(𝜏)Einc (𝑡 − 𝜏)d𝜏 , (5.104)

where

α(𝜏) =
∫
V

d3𝑟

∫
V

d3𝑟 ′ T0 (r, r′; 𝜏) . (5.105a)

As all functions of 𝜏 above have Fourier transforms, we can also define the polariz-
ability tensor in frequency domain as

α(𝜔) =
∫
V

d3𝑟

∫
V

d3𝑟 ′ T0 (r, r′;𝜔) . (5.105b)

Equations (5.105) define the dipole polarizability tensor in terms of the quasi-static
approximation to the T-matrix, T0

20. Here T0 still satisfies the integral equation
(5.20) but with the Green’s tensor GR replaced by G0 (defined in (4.13b)). To see that
G0 is the quasi-static limit of GR, we can take the formal limit 𝑐 → ∞ of (5.12b). In
time domain, the integral equation for T0 simplifies to

20 In principle, we can define the dipole moment and the linear coefficient between the dipole
moment and the incident field at some point in space for any target. Theories that use dipole
polarizabilities outside of the quasi-static approximation are known as extended [66, 67]. Here we
stay strictly within the quasi-static approximation and therefore use T0 in place of T.
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T0 (r, r′; 𝜏) = 𝜅(𝜏)𝛿(r − r′)I3 +
∞∫

0

𝜅(𝜂)d𝜂
∫
V

d3𝑟 ′′ G0 (r, r′′)T0 (r′′, r′; 𝜏 − 𝜂) ,

(5.106)

where we have used the spatial uniformity condition (5.101). In frequency domain,
this equation is of an even simpler form:

T0 (r, r′;𝜔) = 𝜅(𝜔)𝛿(r − r′)I3 + 𝜅(𝜔)
∫
V

d3𝑟 ′′ G0 (r, r′′)T0 (r′′, r′;𝜔) . (5.107)

This equation can be discretized (i.e., using rectangular volume elements) and the
resulting system of algebraic equations can be solved to obtain a numerical ap-
proximation to the T-matrix. This approach forms the mathematical basis of the
DDA [32–35]. In the quasi-static approximation, the DDA is especially efficient as
the computationally-intensive part of the algorithm is independent of frequency. This
is true even if the discrete representation of the T-matrix is too large to be computed
or diagonalized directly; in quasistatics, there exist iterative spectral methods that are
independent of the frequency or the dielectric permittivity of the target yet employ
only matrix-vector multiplications. This includes methods based on the continued
fraction expansion of the resolvent [68].

We can also obtain a convenient spectral representation of the polarizability
tensor. This can be done in several different ways, in particular, by utilizing eigen-
decomposition of the scattering operator Σ(𝜔) (defined in (4.83)). Here we follow
a less formal approach and start with the integral equation for the field of electric
polarization, P(r, 𝑡). In time domain, and within the adopted approximations, this
equation has the following form:

P(r, 𝑡) =
∞∫

0

d𝜏 𝜅(𝜏) Einc (𝑡 − 𝜏) +
∞∫

0

d𝜏 𝜅(𝜏)
∫
V

d3𝑟 ′ G0 (r, r′)P(r′, 𝑡 − 𝜏) .

(5.108)

An interesting feature of this equation is that the integral kernel G0 (r, r′) is real,
symmetric and time-independent, and therefore its eigenfunctions P𝑛 (r) form a
complete, orthonormal, time-independent basis in V. We denote the real eigenvalues
corresponding to P𝑛 (r) by 1/𝜅𝑛 (this notation will become clear momentarily) 21.
The eigenfunctions and eigenvalues satisfy the equation

21 We have labeled the eigenfunctions and eigenvalues by the discrete index 𝑛. However, if the target
has a non-differentiable surface, the spectrum of eigenvalues can be continuous either globally or
in some interval. While this fact is not conceptually important, it can lead to slow numerical
convergence, especially, for highly-conducting metallic targets. Physically, this corresponds to the
known effect of very large electric fields induced near sharp, highly-conducting features such as
needles or sharp edges.
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V

G0 (r, r′)P𝑛 (r′)d3𝑟 ′ =
1
𝜅𝑛

P𝑛 (r) , r ∈ V , (5.109)

and the orthonormality condition is of the form∫
V

P𝑛 (r) · P𝑚 (r) d3𝑟 = 𝛿𝑛𝑚 . (5.110)

The fact that the eigenvalues and eigenfunctions are real and time- and -frequency-
independent is a useful feature of the quasi-static approximation. In particular, P𝑛 (r)
and 1/𝜅𝑛 are determined only by the shape of the target but not by its material
properties.

Relying on the completeness of the basis of P𝑛 (r), we can seek the solution to
(5.108) in the form

P(r, 𝑡) =
∑︁
𝑛

P𝑛 (r)𝑔𝑛 (𝑡) , (5.111)

where the time functions 𝑔𝑛 (𝑡) are to be determined from (5.108). We can use the
expansion (5.111) to write the total dipole moment of the target as

d(𝑡) =
∑︁
𝑛

D𝑛 𝑔𝑛 (𝑡) , (5.112)

where

D𝑛 =

∫
V

P𝑛 (r)d3𝑟 (5.113)

is the dipole moment of the 𝑛-th mode. Note the relations∑︁
𝑛

D𝑛 ⊗ D𝑛 = 𝑉 [V] I3 ,
∑︁
𝑛

D𝑛 · D𝑛 = 3𝑉 [V] , (5.114)

where 𝑉 [V] is the volume of V.
To obtain an expression for the polarizability α(𝑡), we need to relate the func-

tions 𝑔𝑛 (𝑡) to Einc (𝑡). By direct substitution of (5.111) into (5.108) and using the
orthogonality of P𝑛 (r), we find the equation for 𝑔𝑛 (𝑡):

𝑔𝑛 (𝑡) =
∞∫

0

𝜅(𝜏) [D𝑛 · Einc (𝑡 − 𝜏)]d𝜏 + 1
𝜅𝑛

∞∫
0

𝜅(𝜏)𝑔𝑛 (𝑡 − 𝜏)d𝜏 . (5.115a)

We recognize that neither 𝑔𝑛 (𝑡) nor Einc (𝑡) have temporal Fourier transforms.
Nevertheless, from general linearity and causality, we can find the following solution
to (5.115a):
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𝑔𝑛 (𝑡) =
∞∫

0

b𝑛 (𝜏) · Einc (𝑡 − 𝜏)d𝜏 , (5.115b)

where

b𝑛 (𝜏) =
∞∫

−∞

D𝑛𝑒
−i 𝜔𝜏

1/𝜅(𝜔) − 1/𝜅𝑛
d𝜔
2𝜋

. (5.115c)

For most target materials that are encountered in practice, b(𝜏) is an exponentially
decreasing function of 𝜏. Therefore, the integral transform (5.115b) is well defined
and gives the general solution to (5.115a) even if Einc (𝑡) is not Fourier-transformable.
This can be verified by direct substitution. Note that b𝑛 (𝜏) are causal, which means
that the integral in the right-hand side of (5.115c) evaluates to zero for 𝜏 < 0.
This follows from the analytical properties of 𝜅(𝜔) and the fact that all 𝜅𝑛 are real.
Consequently, b𝑛 (𝜏) = 0 for 𝜏 < 0, and we can expand time integration in (5.115b)
to the entire real axis.

Now it should be clear why we denoted the eigenvalues of G0 (r, r′) by 1/𝜅𝑛: the
constants 𝜅𝑛 are special values of the function 𝜅(𝜔). The integrand in (5.115c) has
poles at the complex frequencies �̃�𝜇 satisfying 𝜅(�̃�) = 𝜅𝑛. These poles are known as
the natural frequencies of the target 22. In the absence of an external field, the dipole
moment of the target is a superposition of oscillations of the form d𝜇 exp(−i �̃�𝜇𝑡).
We therefore expect on physical grounds that all natural frequencies lie in the lower
half of the complex plane so that Im�̃�𝜇 < 0, with the inequality being strict. The
inequality in fact holds for all causal and passive materials.

Finally, combining (5.115b), (5.112) and (5.104), we find the expression for the
polarizability tensor in terms of the eigenvalues 1/𝜅𝑛 and the mode dipole moments
D𝑛:

α(𝜔) =
∑︁
𝑛

D𝑛 ⊗ D𝑛

1/𝜅(𝜔) − 1/𝜅𝑛
. (5.116)

This equation provides a convenient recipe to compute α(𝜔) numerically. Usually, the
frequency-domain function 𝜅(𝜔) is known as it can be directly related to the dielectric
permittivity of the target according to (4.18). Therefore, it is more common to
perform such computations in frequency domain. There exist many different ways to
do so. One can use (5.116) directly, or solve numerically the Laplace equation, solve
the integral equation (5.108) or its algebraic approximation, etc. Note that spectral
methods, which rely on computing the modes P𝑛 (r) and their integrals D𝑛 [26, 68]
are especially powerful as they allow one to compute α(𝜔) as an analytical function
of 𝜔. The computationally-intensive part of the spectral methods depends only on
the target shape but not on its material or frequency. Once α(𝜔) is computed, the
time-domain polarizability α(𝜏) can be obtained by Fourier transform. Although, it
is not possible to compute analytically the Fourier integral in (5.116) generically,

22 The concept of a natural frequency can be generalized beyond quasi-statics.
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in many special cases this can be done. A prime example are media with Lorentz
dispersion whose analytical properties are summarized in Sec. 7.1. In this case,

α(𝜏) = Θ(𝜏)
∑︁
𝑛

D𝑛 ⊗ D𝑛

𝜏𝑛
𝑒−(𝛾/2)𝜏 sin

(
𝜏

√︃
𝜔2
𝑛 − (𝛾/2)2

)
. (5.117)

Here 𝜏𝑛 are positive coefficients of the dimensionality of time, 𝜔𝑛’s are positive
frequencies and 𝛾 is a positive relaxation constant. Specific expressions for 𝜏𝑛 and
𝜔𝑛 in terms of the parameters of the Lorentz model are given in Sec. 7.1.

5.9.3 Extinction

We now turn to the extinguished power. We start from the expression (5.22) and
account for the assumption that the incident field is independent of position in V, as
stated in (5.102). This results in

𝑄ext =

〈
𝜕d(𝑡)
𝜕𝑡

· Einc (𝑡)
〉
. (5.118)

We then utilize the time-domain linear relation (5.104) between d(𝑡) and Einc (𝑡)
and obtain

𝑄ext =

〈[ 𝜕
𝜕𝑡

∞∫
0

α(𝜏)Einc (𝑡 − 𝜏)d𝜏
]
· Einc (𝑡)

〉
. (5.119)

As was done frequently in Sec. 5.4, we utilize the identity 𝜕 𝑓 (𝑡 − 𝜏)/𝜕𝑡 = −𝜕 𝑓 (𝑡 −
𝜏)/𝜕𝜏, and, writing expanding all matrix-vector and dot products, obtain

𝑄ext = −
∑︁
𝑖 𝑗

∞∫
0

𝛼𝑖 𝑗 (𝜏)
𝜕

𝜕𝜏

〈
[Einc (𝑡 − 𝜏)] 𝑗 [Einc (𝑡)]𝑖

〉
d𝜏 . (5.120)

The time averages in (5.120) are the elements of the coherence matrix for the incident
field, Γinc (𝜏). Note that, in the quasi-static approximation, the incident coherence
matrix is position-independent as long as r, r′ ∈ V. It can be said that the incident
field is spatially coherent over V. We therefore can re-write (5.120) in terms of the
coherence matrix as

𝑄ext = −Tr
∞∫

0

α(𝜏) 𝜕

𝜕𝜏
Γinc (𝜏)d𝜏 . (5.121)

This expression is similar to (5.26) except that the spatial integrals have now been
reduced to the single parameter α(𝜏). We can further make the same steps as in
Sec. 5.4 and transform (5.121) into frequency domain, viz,
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𝑄ext =
1
𝜋

Tr Im
∞∫

0

Winc (𝜔) α(𝜔) 𝜔d𝜔 . (5.122)

Since α(𝜔) is symmetric and W(𝜔) is Hermitian, we also have

𝑄ext =
1
𝜋

Tr
∞∫

0

W
(r)
inc

(𝜔) α (i) (𝜔) 𝜔d𝜔 , (5.123)

which is similar to the more general result (5.43), which was derived above.

(a) Monochromatic field

If the incident field (5.102) is monochromatic, it is indistinguishable in V from the
field of a monochromatic plane wave. Let Einc (𝑡) = Re[A𝑒−i 𝜔0𝑡 ], where A is a
complex amplitude. Then the field is polarized in the plane spanned by the vectors
(A(r) ,A(i) ). The propagation direction is perpendicular to this plane but otherwise
undetermined. This indicates that the extinguished power for the considered setup
(quasi-static approximation, monochromatic incident plane wave) is invariant with
respect to reversing the propagation direction while keeping the polarization plane
fixed. This is not equivalent to saying that the extinguished power is independent of
the propagation direction. Indeed, changing the propagation direction entails chang-
ing the plane of polarization (since the incident wave is transverse), and extinction
is obviously sensitive to polarization.

For the incident field introduced above, we have

[Winc (𝜔)]𝑖 𝑗 =
𝜋

2

[
𝐴∗
𝑖 𝐴 𝑗𝛿(𝜔 − 𝜔0) + 𝐴𝑖𝐴

∗
𝑗𝛿(𝜔 + 𝜔0)

]
, (5.124)

and, therefore,

𝑄ext =
𝜔0
2

Im[A∗ · α(𝜔0)A] = 𝜔0
2

[
A∗ · α (i) (𝜔0)A

]
. (5.125)

Note that, even though A can be complex, the second expression in (5.125) is real
because α (i) (𝜔) is a real symmetric and hence Hermitian tensor. For this reason,
we have omitted the real part symbol in this formula.

Equation (5.125) is a well-known result for the extinguished power in the dipole
approximation wherein the electromagnetic properties of a target are reduced to
its dipole polarizability tensor α(𝜔). As mentioned above, monochromatic incident
field is indistinguishable in V from the field of some monochromatic plane wave.
Therefore, Eq. (5.125) applies to a monochromatic plane wave propagating in the
direction perpendicular to the plane spanned by the two real vectors (A(r) ,A(i) ).
One conclusion that we can make is that there is no chirality in the quasi-static
approximation. More precisely, the target may have a chiral shape geometrically, but
this has no effect on extinction. This follows from the invariance of (5.125) with
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respect to the substitution A → A∗. This is consistent with the observation made
above that quasi-static extinction due to a monochromatic plane wave is invariant
with respect to reversing the direction of propagation while keeping the polarization
plane fixed.

(b) Quasi-monochromatic plane wave

Let the incident field be of the form Einc (𝑡) = Re[A(𝑡)𝑒−i 𝜔0𝑡 ], where A(𝑡) is a
slow-varying complex amplitude. In general, this field does not have a fixed plane of
polarization. We therefore make the additional assumption that A(𝑡) is constrained
to the 𝑋𝑌 -plane at any moment of time. In this case, Einc (𝑡) is indistinguishable
in V from the field of some quasi-monochromatic plane wave propagating in either
positive or negative 𝑍-direction. The cross-spectral density for a general quasi-
monochromatic plane wave was derived in Sec. 5.8.2 above and is given in (5.95). In
the quasi-static approximation, the factor 𝑒i (𝑧′−𝑧)/𝑐 in this formula can be replaced
by unity. Expressing the time-averages in (5.95) in terms of the Stokes parameters
according to (5.97)

Winc (𝑧, 𝑧′;𝜔) = 2𝜋
[
𝐼 +𝑄 𝑈 + i𝑉
𝑈 − i𝑉 𝐼 −𝑄

]
𝛿(𝜔 − 𝜔0) . (5.126)

Upon substitution of this formula into (5.122), and accounting for the symmetry
𝛼𝑥𝑦 (𝜔) = 𝛼𝑦𝑥 (𝜔), we obtain

𝑄ext = 2𝜔0

{
𝐼 [𝛼 (i)

𝑥𝑥 (𝜔0) + 𝛼
(i)
𝑦𝑦 (𝜔0)]

+𝑄 [𝛼 (i)
𝑥𝑥 (𝜔0) − 𝛼

(i)
𝑦𝑦 (𝜔0)] + 2𝑈 𝛼

(i)
𝑥𝑦 (𝜔0)

}
. (5.127)

As expected, the Stokes parameter 𝑉 does not enter the above expression, which
confirms our previous conclusion that there is no electromagnetic manifestation of
the target chirality within the quasi-static approximation. Moreover, since α (i) (𝜔0)
is a real symmetric 2 × 2 tensor, we can always rotate the 𝑋 and 𝑌 axes about the 𝑍

axis so that 𝛼 (i)
𝑥𝑦 (𝜔0) = 0 23. Correspondingly, we may write

𝑄ext = 2𝜔0

{
𝐼 [𝛼 (i)

𝑥𝑥 (𝜔0) + 𝛼
(i)
𝑦𝑦 (𝜔0)] +𝑄 [𝛼 (i)

𝑥𝑥 (𝜔0) − 𝛼
(i)
𝑦𝑦 (𝜔0)]

}
. (5.128)

(in principal axes)

In this case, the parameter 𝑈 is also unimportant.
Further, we can write

23 It might not be possible to find axes in which the complex matrix element satisfies 𝛼𝑥𝑦 (𝜔0 ) = 0,
and the axes in which 𝛼

(i)
𝑥𝑦 (𝜔0 ) = 0 may depend on the frequency.
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α (i) (𝜔0) =
3∑︁
𝑖=1

𝛼𝑖 u𝑖 ⊗ u𝑖 , (5.129)

where 𝛼𝑖 (𝑖 = 1, 2, 3) is a set of real principal values of the 3 × 3 real symmetric
tensor α (i) (𝜔0) and u𝑖 are the corresponding orthogonal principal vectors satisfying
u𝑖 · u 𝑗 = 𝛿𝑖 𝑗 (all quantities can depend on 𝜔0). It follows that the orientation average
of the extinguished power can depend only on the principal values 𝛼𝑖 and, moreover,
all three principal values must enter the averaged quantity on equal footing. By
orientation averaging we mean here average over such rotations of the target that,
say, the first of the principal vectors u1 samples uniformly the unit sphere and the
triplet (u1, u2, u3) is rotated as a rigid body. Putting all these symmetry arguments
together, we conclude that the orientation-averaged power of extinction is

⟨𝑄ext⟩orientation =
4𝜋
3
𝜔0 𝐼 Tr[α (i) (𝜔0)] . (5.130)

Thus, only the overall intensity of the incident field, 𝐼, is important for the orien-
tation average. A more rigorous mathematical analysis of orientation averaging of
extinction can be found in [69].

6 Operational definition and paradoxes

6.1 Motivation and review

We have discussed so far how to compute the extinguished, absorbed and scattered
powers theoretically given the incident field and the target. We however did not yet
consider the question how any of these powers can be measured. In this section,
we focus on measuring the extinguished power for incident plane waves as this is
the commonly-encountered experimental setup either for natural or artificial light
sources. Scattered and absorbed powers can also be measured, but this typically
requires wide area or wide solid angle measurements. In contrast, extinction is
special because, by optical theorem, it is related to the scattering amplitude in the
forward direction (Sec. 4.4). It can therefore be hoped that extinction can be measured
with a relatively small, flat, power-integrating detector placed on axis with the target.
While this conjecture is, basically, correct, the problem of measuring extinction is
non-trivial and attracted significant attention in the past decade or so [70–74]. One
of the defining contributions was made by Mishchenko et al. in 2009 [16] and a
recent review of the field can be found in [75].

Undoubtedly, the reason why the questions considered in the above references
were not settled a long time ago is related to the counter-intuitive nature of extinction.
The extinguished energy current is not directly measurable, and it is fundamentally
impossible to spatially separate the incident and scattered fields (there would be
no extinction otherwise). The same reasons have led to the so-called extinction
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paradoxes, which challenge our intuition of what extinction is or should be. Therefore,
in the end of this section, we will discuss two extinction paradoxes, including the
classical paradox of extinction cross section being twice as large as the geometrical
cross section for electrically large targets.

We note that, in many cases, measuring extinction is sufficient to know absorption
and scattering. For example, macroscopically large water droplets in the atmosphere
have very low absorption. In this case, extinguished and scattered powers (or cross
sections) are almost the same. At the other extreme, small metal colloidal particles
in solutions can often be treated within the quasi-static approximation according to
which scattering is negligible compared to absorption. In this case, extinction and
absorption are almost the same.

6.2 The measurement planes

The first question we wish to address is whether there is a well-defined surface on
which the extinction can be measured with a flat power-integrating detector. To this
end, it is instructive to introduce two measurement planes denoted by Sfront and
Sback as is illustrated in Fig. 3. The surface Sfront is located between the source and
the target, and every ray that connects the two objects must cross this plane. The
plane Sback is located behind the target. We assume that the two planes are parallel.
We also show in the figure two spatial regions Ω and Ω′. The region Ω contains
the target and has the same properties as the region Ω that was defined in Sec. 3.1.
In Fig. 1, this region is shown as spherical and in Fig. 3 it is deformed so that its
surface overlaps with Sfront and Sback. However, this difference does not affect the
definition and properties of Ω. We can imagine that Ω is a truncated cylinder or
a cuboid with the bases located in Sfront and Sback and the height 𝐻 equal to the
distance between the two planes. The region Ω′ is different: it contains the source
but no part of the target. The boundaries 𝜕Ω and 𝜕Ω′ share the same sub-region of
Sfront, which, as suggested above, can be a circle or a rectangle. Importantly, this
sub-region must be large enough to encompass a dominant part (over the boundary
𝜕Ω′) of the interaction between the incident field and the field scattered by the
target. We will show that the total flux of Sext (r) (defined in (3.12)) through 𝜕Ω′

is zero and, by extension, the total flux of Sext (r) through Sfront is also zero.
Consequently, the extinguished power 𝑄ext, defined as the surface integral (3.11),
enters the three-dimensional region Ω entirely through Sback. This conclusion may
seem to be counter-intuitive, but it is consistent with the physical understanding of
extinction as removal of energy from a beam of radiation. We will however need to
consider some mathematical nuances to see how this interpretation works in practice.

The first statement, namely, that∮
𝜕Ω′

Sext (r) · n(r) d2𝑟 = 0 (6.1)
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Source

Target

Fig. 3 Schematic illustration of the measurement planes Sfront and Sback. The total extinction flux
through Sfront is zero.

is easy to prove. Indeed, we have for the energy current on 𝜕Ω′

S(r) = Sinc (r) + Ssca (r) + Sext (r) , (6.2)

where Ssca and Sext are defined in (3.9) and (3.12), and we assume a similar definition
for Sinc (involving only the incident field). Since Ω′ contains the source but not the
target, the total outward energy flux through 𝜕Ω′, computed as a surface integral of
S(r), is equal to the power of the source, 𝑄inc. The total power flux of the incident
field through 𝜕Ω′, computed as a surface integral of Sinc (r), is also equal to 𝑄inc.
This follows from the assumption of no back-action (stated in Sec. 3.1), according
to which the power of the source is independent of presence or absence of the target.
Consequently, integrating (6.2) over 𝜕Ω′, we obtain∮

𝜕Ω′

Ssca (r) · n(r) d2𝑟 +
∮
𝜕Ω′

Sext (r) · n(r) d2𝑟 = 0 . (6.3)

The integral of Ssca (r) is obviously zero (since the “secondary source” of Ssca (r)
is supported outside of Ω′) and we have therefore proved (6.1). The proof is mathe-
matically rigorous and not an approximation, as long as we neglect the back-action
of the scatterer on the source. We have stated the absence of back-action as a fun-
damental assumption of the theory in Sec. 3.1. However, we should keep in mind
that the scattered field is not strictly zero in the region of space where the source
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currents are supported. In some problems where the source is small (i.e., a quantum
emitter such as a molecule) and the target is large (i.e., a macroscopic substrate), the
back-action produces the Purcell effect, and the corresponding Purcell factor can be
viewed as a quantitative measure of the interaction. An example of a purely classical
computation of the Purcell factor has been given in [28], and a more general theory
of energy budgets in a setting where the source and the target can interact has been
developed in [76]. In a typical scattering problem, the source and the target are placed
sufficiently far apart, so that the back-action power can be neglected not only when
compared to the total power of the source but also relative to the power extinguished
by the target. We proceed under this assumption.

In order to prove the stronger statement that∮
Sfront

Sext (r) · e𝑧 d2𝑟 = 0 , (6.4)

we need an additional assumption that the incident field is in some sense forward-
directed and therefore interference of the incident field and the field scattered by the
target occurs on Sfront but not on the rest of 𝜕Ω′. In problems involving collimated
beam or plane-wave illumination, this assumption holds naturally. In other cases, we
can come to the same conclusion by sending the size of overlap of 𝜕Ω′ and Sfront
to infinity.

We thus arrived at an important conclusion: the extinguished power is equal to
the total flux of Sext (r) through Sback. Mathematically, the statement is formalized
as

𝑄ext = −
∫

Sback

Sext (r) · e𝑧 d2𝑟 . (6.5)

We emphasize that (6.5) was not proved rigorously but only made plausible. The
conclusion relies on the assumption that interference of the incident and scattered
fields is negligible on the parts of 𝜕Ω′ that do not overlap with Sfront. For most
physical settings in which measuring extinction is of practical interest, the overlap
of 𝜕Ω′ and Sfront can be made sufficiently large for this assumption to hold with
arbitrary precision. However, one can think of exotic cases for which satisfying the
condition may be challenging.

6.3 Measuring extinction

Equation (6.5) still contains a quantity that is not directly measurable. Indeed,
Sext (r), as defined in (3.12), is a peculiar interference term, which involves a
quadratic combination of the incident and scattered fields. The measurable fields
on Sback are the total fields E(r, 𝑡) and B(r, 𝑡). However, we can still access 𝑄ext as
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a differential measurement, and this will reveal the physical significance of extinc-
tion.

Consider the two measurements schematically illustrated in Fig. 4. Here we
assume illumination by a plane wave propagating along the 𝑍-axis. The plane Sback
is perpendicular to 𝑍 . A flat power-integrating detector measures the total energy
flux intercepted by its surface, which we denote by Sdet. The measured power can
be written as

𝑄det =

∫
Sdet

S(r) · e𝑧 d2𝑟 , (6.6)

where e𝑧 is the unit vector pointing in the 𝑍-direction. Assume that we can perform
this measurement with and without the target 24 and let the respective measurements
be 𝑄 (a)

det
and 𝑄

(b)
det

. Then

Δ𝑄det = 𝑄
(b)
det

−𝑄
(a)
det

=

∫
Sdet

[
Sinc (r) −

(
Sinc (r) + Ssca (r) + Sext (r)

)]
· e𝑧 d2𝑟

= −
∫

Sdet

Sext (r) · e𝑧 d2𝑟 −
∫

Sdet

Ssca (r) · e𝑧 d2𝑟 . (6.7)

From (6.5), we know that

lim
area[Sdet ]→∞

−
∫

Sdet

Sext (r) · e𝑧 d2𝑟

 = 𝑄ext . (6.8)

Therefore, a differential measurement of the type (6.7) with a sufficiently large flat
detector may produce the desired quantity 𝑄ext assuming that the input of Ssca (r)
to 𝑄

(a)
det

is negligible. Therefore, the detector area needs to be large but not too large,
so that the limit in (6.8) is almost reached yet the input of the scattered energy flux
in (6.7) is negligible. The required intermediate value of the detector area, in fact,
can be found, but only if the detector is sufficiently far from the target. This is so
because the scattered field scales as 1/𝑅 with the distance 𝑅 from the target to the
detector. Consequently, Ssca (r) scales as 1/𝑅2. However, Sext (r) is an interference
term with only one copy of the scattered field, and therefore it scales as 1/𝑅. It seems
therefore that all one needs in order to make a measurement of 𝑄ext is to move the
detector as far from the target as possible. This conclusion is, in principle, correct,
but it has been badly muddled by the oscillatory nature of the integral in (6.8). The
oscillations in question are, of course, interference fringes, which are visible only
for highly coherent sources. However, since the problem is most often considered in

24 If the target cannot be removed, we can utilize a pair of measurements by placing the detector in
front and behind the target (that is, on the planes Sfront and Sback). While these two measurements
can be used to determine 𝑄ext, they are not exactly equivalent to the differential measurement on
Sback due to a small but nonzero contributions of Ssca (r) .
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Target

a) Measurement with target 

b) Measurement without target 
Z

Fig. 4 Two measurements with a flat power-integrating detector of area Sdet. In measurement (a),
the target is present and in measurement (b) the target is removed and the detector measures energy
flux of the incident field.

frequency domain, it is instructive to illustrate the relevant mathematical issues with
a simple physical example.

Consider the physical setup of Rayleigh scattering. Let a small particle of a
scalar dipole polarizability 𝛼 be placed at the origin of a reference frame 𝑋𝑌𝑍 and
illuminated by a monochromatic, linearly-polarized incident plane wave of the form

Einc (r, 𝑡) = Re[e𝑥𝐴𝑒i (𝑘𝑧−𝜔𝑡 ) ] , Binc (r, 𝑡) = Re[e𝑦𝐴𝑒i (𝑘𝑧−𝜔𝑡 ) ] (6.9)

with the associated energy current

Sinc =
𝑐

8𝜋
|𝐴|2 e𝑧 . (6.10)
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Z

X

Y
Fig. 5 Measurement geometry with a flat power-integrating detector located in the plane Sback.
The detector is either a circle of the radius 𝑎 or a square of the side 2𝑎.

The dipole moment of the particle oscillates at the same frequency 𝜔 as d(𝑡) =

Re[d𝑒−i 𝜔𝑡 ], where d = 𝛼𝐴e𝑥 . The flat detector is located in the plane Sback. The
distance from the origin to Sback is 𝐿 and the radius-vector from the origin to a point
on the detector surface is R = 𝐿e𝑧 + ρ, where ρ = (𝑋,𝑌 ) is a two-dimensional
vector specifying a point in the plane Sback. We define n = R/𝑅 to be the unit
vector pointing from the origin to the point (𝑋,𝑌 ) on the detector. The measurement
geometry is illustrated in Fig. 5.

We assume that the distance between the target and the measurement plane is large
compared to the wavelength so that 𝑘𝐿 = 𝜔𝐿/𝑐 ≫ 1. In the numerical example
below, we take 𝑘𝐿 = 105, so that this inequality is satisfied strongly. Under this
condition, we can can keep only the far-field contribution G2 (r, r′) to the Green’s
tensor (4.13a) and disregard G0 (r, r′) and G1 (r, r′). We can therefore write the
complex amplitudes of the scattered fields as

Esca (r) =
𝑘2

𝑅
[d − (d · n)n] 𝑒i 𝑘𝑅 , Bsca (r) =

𝑘2

𝑅
(n × d) 𝑒i 𝑘𝑅 . (6.11)

We can now use the basic definitions of energy currents (3.9) and (3.12) and the
time-averaging techniques applicable to monochromatic fields introduced in Sec. 4.1
to compute Ssca (r) and Sext (r):

Ssca (r) = 𝑆inc
𝑘4

𝑅2 |𝛼 |
2 [

1 − (n · e𝑥)2] n , (6.12a)

Sext (r) = 𝑆incRe
{
𝑘2

𝑅
𝛼𝑒i 𝑘 (𝑅−𝑧) [n − (n · e𝑥)e𝑥 + e𝑧 − (n · e𝑥) (n × e𝑦)

]}
,

(6.12b)
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where 𝑆inc = 𝑐 |𝐴|2/8𝜋 is the scalar factor in (6.10). Integrating the fluxes of these
energy currents through a spherical surface 𝑅 = 𝑅0 according to (3.8) and (3.11),
we obtain

𝑄sca = 𝑆inc𝜎sca , 𝑄ext = 𝑆inc𝜎ext , (6.13a)

where

𝜎sca =
8𝜋
3
𝑘4 |𝛼 |2 , 𝜎ext = 4𝜋𝑘Im𝛼 . (6.13b)

These theoretical results are well known in Rayleigh theory of scattering. We are
interested in how 𝑄ext or 𝜎ext can be measured with the flat detector shown in (5).
To this end, we fix 𝑍 = 𝐿, project the energy currents in (6.12) onto the 𝑍-axis, and
integrate the result over the detector area Sdet. We will consider two cases in which
Sdet is a circle of the radius 𝑎 and a square of the side 2𝑎. We then have∫

Sdet

Ssca (𝑋,𝑌, 𝐿) · e𝑧
𝑄sca

d𝑋d𝑌 = 𝐼sca (𝑎/𝐿) , (6.14a)

−
∫

Sdet

Sext (𝑋,𝑌, 𝐿) · e𝑧
𝑄ext

d𝑋d𝑌 = − 1
Im𝛼

Re[𝛼 𝐼ext (𝑎/𝐿)] , (6.14b)

where

𝐼sca (𝜉) =
3

8𝜋

∫
F[ 𝜉 ]

1 + 𝑦2

𝑟5 (𝑥, 𝑦)
d𝑥d𝑦 , (6.14c)

𝐼ext (𝜉) =
𝑘𝐿

4𝜋

∫
F[ 𝜉 ]

𝑒i 𝑘𝐿 [𝑟 (𝑥,𝑦)−1]
[
1 + 1 + 𝑦2

𝑟 (𝑥, 𝑦)

]
d𝑥d𝑦

𝑟2 (𝑥, 𝑦)
, (6.14d)

and we have introduced the dimensionless variables

𝑥 =
𝑋

𝐿
, 𝑦 =

𝑌

𝐿
, 𝜉 =

𝑎

𝐿
, 𝑟 (𝑥, 𝑦) =

√︁
1 + 𝑥2 + 𝑦2 . (6.14e)

Here F[𝜉] is the scaled (by 𝐿) area of the detector. As mentioned above, we take F[𝜉]
to be either a circle of radius 𝜉 or a square of side 2𝜉. The quantities 𝑄sca and 𝑄ext
in (6.12) are the theoretical values of the scattered and extinguished powers given in
(6.13a). Note that 𝐼sca (𝜉) is real but 𝐼ext (𝜉) is complex. We thus see that the detector
would measure (approximately) the extinguished power if there is an interval of 𝜉
in which, simultaneously, 𝐼sca (𝜉) ≪ 1 and 𝐼ext (𝜉) ≈ i . Here 𝜉 quantifies the solid
angle subtended by the detector when viewed from the target.

The integral 𝐼sca (𝜉) does not depend on 𝑘𝐿, can be expressed in terms of ele-
mentary functions, and is illustrated graphically in Fig. 6 for both circular and square
integration regions. It can be seen that, for 𝜉 ≲ 0.2, the condition 𝐼sca (𝜉) ≪ 1 holds
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Fig. 6 Integral 𝐼sca ( 𝜉 ) for circular and square detectors. At larger values of 𝜉 , both functions
tend to 1/2. For 𝜉 ≲ 0.2, the condition 𝐼sca ( 𝜉 ) ≪ 1 holds with a good precision.

in both cases. Thus, we conclude that the scattered energy flux can be neglected if
the detector subtends a solid angle less than, approximately, 4𝜋/100.

The integral 𝐼ext (𝜉) is considerably more complicated. It can be expressed in
terms of integral trigonometric and exponential functions for a circular integration
region, but, for the square, it has to be computed numerically. This is complicated
due to the oscillatory integrand, especially, when 𝑘𝐿 is large. Nevertheless, we have
computed 𝐼ext (𝜉) for 𝑘𝐿 = 105 as is illustrated in Fig. 7. It can be seen that, for
both shapes of the detector, the integral converges to i when 𝜉 → ∞, as expected.
However, in the case of a circular detector, the convergence is slow and oscillatory,
and the integral is still far from its limit at 𝜉 = 2. Under such conditions, measurement
of 𝑄ext is impossible. However, in the case of a square detector, the oscillations are
suppressed, and the integral approaches its limit already at 𝜉 ∼ 0.1, well in the range
of 𝜉 wherein we can neglect the contribution of 𝐼sca (𝜉). We then conclude that
the measurement of 𝑄ext with a square detector is possible. At the target-detector
separation of 𝑘𝐿 = 105, the relative error of such a measurement is of the order of
2%.

The observation that a square detector, unlike a circular one, can measure the
extinguished power in the setup of Fig. 5 was made by Mishchenko et al. in 2009 [16].
However, the insight obtained in this work is even deeper. Namely, Ref. [16] points
out that the oscillations seen in Fig. 7(a) occur only in a very special case of a
monochromatic field and a circular detector, which is on axis with the target. Any
deviation from these assumptions either destroys or integrates out the interference
fringes and makes measurement of 𝑄ext possible. In particular, it was already
observed in the precursors of Ref. [16] by Berg et al. [70, 71] that measuring 𝑄ext
with a flat circular detector is easier for several scattering particles than for just one.
This is so because not all particles were placed on axis with the detector. A circular
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Fig. 7 Integral 𝐼ext ( 𝜉 ) for circular (top) and square (bottom) detectors and the parameter 𝑘𝐿 =

105. In both cases, the integral approaches i when 𝜉 → ∞. However, for the square detector,
approximate convergence to the limit is reached much faster.

detector that is not on axis integrates the interference fringes out similarly to an
on-axis square detector.

Another important conclusion of Ref. [16] is the following. In order to measure
extinction, we must make the contribution of the scattered energy flux negligible.
To this end, the detector must be placed sufficiently far from the target. While we do
not derive the exact condition, both the target and the detector must be deep in the
Fraunhofer diffraction zone of each other. In other words, if the characteristic size of
the target is 𝐷 and the characteristic size of the detector is 𝑎, the distance 𝐿 in Fig. 5
must satisfy 𝐿 ≫ 𝑘 max(𝐷2, 𝑎2). The inequality must be satisfied strongly since the
convergence of the measurement to its theoretical limit is algebraic and therefore
slow. In Fig. 7, we have taken 𝑘𝐿 = 105, which is sufficient to illustrate the effect
and still feasible computationally. However, measurements are often performed at
even larger values of 𝑘𝐿. For example, if the wavelength is 𝜆 = 500nm and 𝐿 = 1m,
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Detector 2 Detector 1

Fig. 8 Measuring extinction in the case of a collimated incident beam. Extinguished power can be
obtained as a differential measurement of Detector 1 with and without the target or as a differential
measurement of powers registered by Detectors 2 and 1. When Detector 1 is used, Detector 2 should
be removed from the optical path and not to block the beam. The width of the beam should be
sufficiently large to fully encompass the target.

we have 𝑘𝐿 ≈ 107. Although this case is difficult to simulate numerically, the actual
physical measurement at 𝑘𝐿 = 107 is even more precise. In general, when the
value of 𝑘𝐿 is increased, convergence of the differential measurement (6.7) to its
theoretical limit 𝑄ext becomes faster, except in the special case of monochromatic
field and a circular detector on axis with the target.

The above discussion applies to illumination by a wide-front field such as sunlight.
In the case of laboratory measurements with tightly collimated beams, measuring
extinction is much easier as the extinguished power is literally removed from the
beam. Consider the measurement geometry illustrated in Fig. 8. Since the flux of
extinguished power through Sback is zero, and the interference of the incident and
scattered field on Sback occurs only on the surface of Detector 1, we can measure
the extinguished power almost precisely by one of the following two differential
measurements. We can measure the powers measured by Detector 1 with and without
the target and take the difference (Detector 2 should be absent in this case), or, keeping
the target in place, compute the difference between powers measured by Detector 2
and Detector 1 (when Detector 1 is activated, Detector 2 should be removed and not
block the beam). It should be kept in mind that the beam can have a complicated
structure and the measured extinction for a beam is not necessarily the same as the
extinguished power for an plane wave. The correspondence is obtained if the incident
beam can be approximated by a plane wave locally over V. This is achievable with
Gaussian beams of sufficiently large waist. There exists however an apparent paradox
associated with the measurement scheme of Fig. 8. Extinction-related paradoxes are
discussed in Sec. 6.4 below.

We finally note that the fact that 𝐼sca (𝜉) tends to 1/2 as 𝜉 → ∞ (this result is
not graphically illustrated in Fig. 6 but can be easily verified) suggests the way in
which the absorbed power can be measured. Unlike 𝑄ext, 𝑄abs cannot be accessed
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by placing a detector only on Sback. Rather, we have

𝑄abs =

∫
Sfront

S(r) · e𝑧d2𝑟 −
∫

Sback

S(r) · e𝑧d2𝑟 . (6.15)

Therefore, 𝑄abs can be accessed as a differential measurement with two large-area
detectors. The target must be present in both measurements. For the measurement
on Sback, there should be no detector on Sfront. The areas of detectors should be
large enough for the function 𝐼sca (𝜉) to approach its theoretical limit of 1/2, which
occurs at approximately 𝜉 ∼ 10. Obviously, measuring absorption is a much harder
task than measuring extinction.

6.4 Paradoxes

Because the extinguished power is not defined in terms of a physical energy current,
it has long been associated with various paradoxes, which pitch our intuition against
mathematical facts. The best known of these is the classical extinction paradox, which
struggles with the observation that the extinction cross section of a large sphere is
twice its geometrical cross sections. There is another apparent paradox associated
with extinction of collimated beams. To understand the paradoxes, we must start
from first principles and ask where our intuition went wrong. For example, why do
we assume that the extinction cross section of a large sphere should be equal to its
geometrical cross section? In what follows, we provide simple qualitative arguments
that explain the paradoxes and review the relevant literature.

6.4.1 Classical extinction paradox

After Mie has developed in 1908 the mathematical theory of scattering of plane
electromagnetic waves from homogeneous spheres, calculations that were not fea-
sible before became, in principle, possible. However, the Mie theory is analytically
complicated and, before the age of computers, carrying out the calculations to high
orders was a tedious work in which errors were common. Therefore, significant time
has passed before Mie theory was applied to electrically large spheres. The result
turned out to be unexpected. In 1943, LaMer published a report 25 in which it was
suggested that the Mie theory is wrong, at least, as applied to natural unpolarized
light, as it predicts a result that is twice as large as the experimental value. The first
consistent explanation of this discrepancy (in favor of Mie) was given by Brillouin
in 1949 [77], but the subject continues to attract attention [17, 78, 79]. In particular,
in 2011, Berg et al. suggested that Brillouin’s explanation is incomplete and in some

25 Cited by Brillouin in [77] but not readily available at present.
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Fig. 9 Illustration of the classical extinction paradox for an opaque slab. The total field at Sback is
zero.

instances problematic, and provided a new explanation of the paradox connecting it
to the Ewald-Oseen extinction theorem [17].

The question of which explanation is more correct is however moot since there
is no reason to believe that the extinction cross section should be equal to the
geometrical cross section, and there is nothing strange in the former being twice
the latter. In particular, what was referred to as the experimental measurement of
the extinction cross section by LaMer was not such; rather, it was a measurement
of the geometrical shadow area created by a large sphere. To understand why the
extinction cross section can be twice the geometrical cross section, consider the
simple physical setup illustrated in Fig. 9. Here we have a wide-front plane wave
incident on an opaque slab 26. Some part of the incident field is reflected back,
some is absorbed, but there is virtually no transmission, so that the total field on the
measurement surface Sback is zero.

In the physical setup of Fig. 9, we can define extinguished power per unit area. It
is easy to show that, in agreement with Sec. 6.2, the energy current Sext (r) is zero
on Sfront. To see this, it suffices to take an arbitrary model for the slab (as long as it
is homogeneous in the lateral direction) and compute the reflected field according to
the Fresnel formulas. Consequently, the specific (per unit area) extinguished power
must be computed on Sback where the total field is zero. However, neither the incident
nor the scattered fields are zero on Sback. Rather, these two fields are opposite and
cancel each other to produce the zero total field in agreement with the Ewald-Oseen
extinction theorem. We have therefore:

Esca (r, 𝑡) = −Einc (r, 𝑡) , Bsca (r, 𝑡) = −Binc (r, 𝑡) for r ∈ Sback . (6.16)

Using this in (3.12), we find that

26 Of course, there are no infinite slabs in nature, but, if the slab is sufficiently wide, we can neglect
the edge effects.

https://doi.org/10.1007/978-3-031-29601-7_1
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Sext (r) = − 𝑐

4𝜋
× 2 × ⟨Einc (r, 𝑡) × Binc (r, 𝑡)⟩ = −2 Sinc , r ∈ Sback . (6.17)

Consequently, for the dimensionless specific cross section of extinction d𝜎sca/dA
where dA is an element of area, we find

d𝜎ext
dA =

−Sext (r) · e𝑧
���
r∈Sback

Sinc · e𝑧
= 2 . (6.18)

This equation indicates that, for every geometrical cross section A of the slab, the
incident energy flux (units of power) is (Sinc · e𝑧)A but the extinguished energy
flux entering the slab is twice that amount. We thus see that the classical extinction
paradox is indeed closely related to the Ewald-Oseen extinction theorem, just as
suggested in Ref. [17]. What may seem to be paradoxical in this result is that it
appears to contradict the intuitive idea of measuring extinction with a flat detector
placed in Sback. Indeed, if we perform such a measurement with and without the
slab, and then take the difference, we will measure the incident energy flux times the
area of the detector, not twice that amount. But, as discussed in Sec. 6.3, in order for
such a measurement to really yield extinction, the detector must be placed deep in
the Fraunhofer diffraction zone of the target. Since the target in Fig. 9 is infinite, the
Fraunhofer diffraction zone is infinitely far, and a measurement of extinction with a
flat detector is impossible (or poorly defined) in this setup. Therefore, there is really
no contradiction and no paradox.

To understand the paradox for a finite target, it is instructive to consider a macro-
scopic mirror. The relevant experiment is illustrated in Fig. 10. Here a wide-front
plane wave is incident on a triangular mirror, which reflects the radiation at a slight
angle to the backward direction. The figure depicts three field components: the in-
cident field, which, according to the superposition principle, is independent of the
target, the scattered field and the total field, which is the sum of the former two com-
ponents. Importantly, there is a shadow behind the mirror where the incident and
scattered field cancel each other almost precisely, similarly to the case of a slab. The
small angle that the reflected field makes with the backward direction is unimportant:
it was introduced for a more convenient graphical representation of the fields. Now,
it is clear that the power that is reflected back by the mirror is approximately equal
to the incident field power intercepted by the mirror surface. In addition to that,
the scattered field includes the forward component (the Ewald-Oseen field), which
cancels the incident field in the geometrical shadow. Therefore, the scattering cross
section of the mirror is twice its geometrical cross section. For a perfect mirror, scat-
tering is equal to extinction. To obtain the same result as a measurement with a flat
power-integrating detector, we would need to place the latter deep in the Fraunhofer
diffraction zone of the mirror where the geometrical shadow is no longer present. To
appreciate the involved scales, consider the following example. For a mirror of the
transverse size 1cm at the wavelength of 1𝜇m, distance to the detector must be much
larger than 100m, probably of the scale of 1km or more. Yet, if we could arrange
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(b) Scattered Field

(c) Total Field

(a) Incident Field

Shadow

Ewald-Oseen 
Field

Fig. 10 Illustration of the classical extinction paradox for a finite target. A triangular mirror reflects
incident plane wave at a slight angle to the backward direction. A shadow region is formed behind
the mirror. The panels depict schematically the incident (a), the reflected (b) and the total (c) fields.
Sketch is limited to the Fresnel diffraction zone in which a geometrical shadow is formed. At larger
distances, the sketch (which is, essentially, based on geometrical optics) is not accurate.

such an experiment, the flat detector of appropriate size would measure correctly (in
the differential scheme of Sec. 6.3) the extinction cross section of the mirror.

The basic argument explained above goes back to the work of Brillouin [77]. Note
that we have not proved that the extinction cross section of all targets that are much
larger than the wavelength tends to twice their geometrical cross sections, although
this is, in fact, the case. Rather, we have shown that there is nothing surprising in
extinction cross section being twice the geometrical cross section, and therefore
there is no paradox. If the mirror in the above example is not perfect, or if the target
is a large transparent object, which does not reflect back all incident radiation and
does not form a well-defined shadow, the extinction cross section still tends to be
twice the geometrical cross section, although this is not easy to prove using only
arguments of geometrical optics. We refer the reader for further details to Ref. [17]
and the more recent review [75].

https://doi.org/10.1007/978-3-031-29601-7_1
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6.4.2 Paradox of a collimated beam

This paradox is less known but deserves some discussion. Consider again the setup
of Fig. 8 where we take the differential measurement with and without the target with
Detector 1 while Detector 2 is not present. The paradox is that the same measurement
is obtained regardless of position of Detector 1 on the axis of the beam. We can, for
example, move the detector twice further from the target and would obtain the same
measurement. This seems to be contradictory because the amplitude of the incident
field of a well-collimated beam is constant while the amplitude of the scattered
field scales as 1/𝐿 where 𝐿 is the distance between the target and Detector 1. Since
the extinguished power current contains one copy of the scattered field, one might
conclude that the measurement should also fall off as 1/𝐿. However, no matter where
we place the detector along the beam, we obtain the same power measurement.

An intuitive but incorrect explanation of this paradox relies on the observation
that the beam cannot be perfectly collimated but always diverges. Therefore, the
further we move the detector, the larger is the interaction area. Even though the
scattered field scales as 1/𝐿, the total power flux intercepted by the detector surface
remains constant due to the increased integration area. To see that this explanation
is insufficient, consider a Gaussian beam of waist 𝑎, and let the target be located in
the waist. The divergence of the beam in the Fresnel diffraction zone 𝐿 ≤ 𝑘𝑎2 is
very slow and definitely not significant enough to compensate for the 1/𝐿 scaling of
the scattered field. The consideration here is somewhat muddled by the complicated
mathematical structure of vector Gaussian beams, but all mathematical models,
regardless of the level of approximation, will indicate that divergence of the beam is
not enough to explain the paradox.

In Ref. [74], an explanation was given for the case of scalar Gaussian beams
whose mathematical modeling is much easier. The paradox however remains the
same. It was shown that, although the divergence of the beam may be negligible
in the Fresnel diffraction zone, the energy current Sext (𝜌, 𝑧) · e𝑧 is an oscillatory
function of 𝜌, where 𝜌 is the radial coordinate in a cylindrical reference frame whose
𝑍-axis coincides with the optical axis of the beam. The oscillations becomes slower
when 𝑧 is increased so that the integral∫

Sdet

Sext (𝜌, 𝑧) · e𝑧 𝜌d𝜌 (6.19)

remains constant independently of 𝑧. This consideration is applicable only in Fresnel
diffraction zone. At larger target-detector separations, the beam indeed starts to
diverge, and the argument based on increasing integration area becomes also relevant.

While it is difficult and, perhaps, not so interesting to show in detail how this
oscillatory behavior works for various vectorial electromagnetic beams, the simple
model of Ref. [74] shows that there is really no paradox. We can be sure from energy
conservation that measuring the extinguished power in the setup of Fig. 8 will always
yield the correct result as long as the detector surface intercepts almost all power of
the incident beam.
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7 Some auxiliary formulas and examples

7.1 Lorentz model of constitutive relations in time and frequency
domain

Let the target be spatially-uniform so that we can omit r in the list of arguments and
focus of the temporal and frequency dependence of various linear response coeffi-
cients. Consider the well-known Lorentz dispersion formula for the susceptibility,

𝜒(𝜔) =
𝜔2

0 𝜒0

𝜔2
0 − 𝜔2 − i 𝛾𝜔

, 𝜒0 =
𝜖0 − 1

4𝜋
, (7.1)

where 𝜖0 and 𝜒0 are the static values of the permittivity and susceptibility at 𝜔 = 0,
𝜔0 is the resonance frequency, 𝛾 is the relaxation constant, and, for simplicity, let
𝜔0 > 𝛾/2 > 0. Applying the inversion formula (3.6b) to (7.1), we find the time-
domain response function,

𝜒(𝜏) = Θ(𝜏)
𝜔2

0 𝜒0 𝑒−(𝛾/2)𝜏√︃
𝜔2

0 − (𝛾/2)2
sin

(
𝜏

√︃
𝜔2

0 − (𝛾/2)2
)
, (7.2)

where Θ(𝑥) is the unit step function. It can be seen that 𝜒(𝜏) is zero for all 𝜏 < 0,
just as expected. However, equation (7.2) illustrates an additional point. Namely,
𝜒(𝜏) is also continuous at 𝜏 = 0 and its first derivative is bounded (but may be
discontinuous). Physically, the condition 𝜒(𝜏 = 0) = 0 implies that the electric field
cannot induce a current in the medium instantaneously; there is always some lag time.
Continuity of 𝜒(𝜏) can be proved more generally assuming that 𝜒(𝜔) approaches
zero faster than 1/|𝜔 | when |𝜔 | → ∞. This is the case for all practically-relevant
constitutive relations.

We next adduce similar expressions for the coupling functions 𝜅(𝜔) and 𝜅(𝜏).
We have from the definition (4.18)

𝜅(𝜔) =
𝜔2

0 𝜒0

Ω2
0 − 𝜔2 − i 𝛾𝜔

. (7.3)

where

Ω2
0 =

(
1 + 4𝜋

3
𝜒0

)
𝜔2

0 =
𝜖0 + 2

3
𝜔2

0 . (7.4)

Thus, the only difference between 𝜒(𝜔) and 𝜅(𝜔) (within the Lorentz dispersion
model) is that 𝜔2

0 is replaced by Ω2
0. Therefore, in time domain we have

𝜅(𝜏) = Θ(𝜏)
𝜔2

0 𝜒0 𝑒−(𝛾/2)𝜏√︃
Ω2

0 − (𝛾/2)2
sin

(
𝜏

√︃
Ω2

0 − (𝛾/2)2
)
. (7.5)
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Just like 𝜒(𝜏), 𝜅(𝜏) is causal and continuous at 𝜏 = 0.
We finally compute the time-domain quasi-static polarizability for a target whose

material is a Lorentz medium, assuming the dipole moments of the modes D𝑛 and
the eigenvalues 1/𝜅𝑛, as defined in (5.109) through (5.113), are known and 𝜅(𝜔) is
given by (7.3). We then have from (5.116):

α(𝜔) =
∑︁
𝑛

D𝑛 ⊗ D𝑛

𝜔2
0 𝜒0

𝜔2
𝑛 − 𝜔2 − i 𝛾𝜔

. (7.6)

where

𝜔2
𝑛 = [1 + (4𝜋/3 − 1/𝜅𝑛) 𝜒0] 𝜔2

0 . (7.7)

Equivalently, we can introduce the generalized depolarization coefficients 𝜈𝑛 accord-
ing to

𝜈𝑛 = 1/3 − 1/4𝜋𝜅𝑛 (7.8)

so that the resonance frequencies 𝜔𝑛 are given by

𝜔2
𝑛 = [1 + 4𝜋𝜈𝑛𝜒0] 𝜔2

0 = [1 − 𝜈𝑛 + 𝜈𝑛𝜖0] 𝜔2
0 . (7.9)

For ellipsoids, there are only three non-zero terms in (7.6) and the corresponding
depolarization coefficients satisfy 𝜈1+𝜈2+𝜈3 = 1 [80, $ 8]. In particular, for spheres,
𝜈1 = 𝜈2 = 𝜈3 = 1/3. For V of a general shape, the number of non-zero terms in
(7.6) is infinite and the sum rule

∑
𝑛 𝜈𝑛 = 1 does not hold. Although we present no

mathematical proof here, an argument can be given (essentially, based on stability
of solutions) that the generalized depolarization coefficients satisfy 0 ≤ 𝜈𝑛 ≤ 1 (just
like in the case for ellipsoids) so that −8𝜋/3 < 1/𝜅𝑛 < 4𝜋/3 [68]. From this, we see
that all frequencies 𝜔𝑛 in (7.10) are real.

Computing the Fourier transform of (7.6), we find the time-domain polarizability:

α(𝜏) = Θ(𝜏)
∑︁
𝑛

D𝑛 ⊗ D𝑛

𝜔2
0 𝜒0 𝑒−(𝛾/2)𝜏√︁
𝜔2
𝑛 − (𝛾/2)2

sin
(
𝜏

√︃
𝜔2
𝑛 − (𝛾/2)2

)
. (7.10)

This expression is of the form (5.117) with 𝜏𝑛 given by

𝜏𝑛 =

√︁
𝜔2
𝑛 − (𝛾/2)2

𝜔2
0 𝜒0

. (7.11)
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7.2 Comparison of the conventional definition of the coherence matrix
to the one adopted in this chapter

Conventionally, the coherence matrix is defined in terms of the complex analytic
signal, which, by design, should correspond to the real-valued physical field. Of
course, if the analytic signal is known, the physical field can be computed simply
by taking the real part. However, determining the analytic signal corresponding to a
given physical field is only possible if the latter has a temporal Fourier transform, at
least in terms of generalized functions. Fields consisting of discrete monochromatic
components satisfy this condition, but more general stationary stochastic fields do
not. Therefore, if some second-order correlation function of a physical field is mea-
sured experimentally, the result cannot be mathematically related to the conventional
definition of the coherence function.

The above difficulty is rarely mentioned in the literature. However, it was dis-
cussed by Wolf in [11] (see Endnote 8). It was suggested that one can start with
the real-valued physical fields, use those to compute the real-valued coherence ma-
trix Γ (r) (r, r′; 𝜏), and then compute the corresponding complex analytic coherence
matrix Γ (c) (r, r′; 𝜏). The last step is mathematically sound since Γ (r) (r, r′; 𝜏) has
a well-defined Fourier transform with respect to the temporal variable 𝜏. Then we
have the relation Γ (r) (r, r′; 𝜏) = Re[Γ (c) (r, r′; 𝜏)]. However, except for some spe-
cial cases, the described manipulation is not equivalent to using the analytic signal in
place of the physical field to define the coherence matrix. Indeed, the analytic signal
corresponding to a stochastic stationary field simply does not exist, so an equivalence
between the two approaches cannot exist either. Secondly, computing Γ (c) (r, r′; 𝜏)
requires numerical evaluation of the Hilbert transform of Γ (r) (r, r′; 𝜏) with respect
to 𝜏. If Γ (r) (r, r′; 𝜏) is measured with a finite precision rather than given by a known
analytical formula, this step is ill-conditioned and, in any event, is rarely if ever taken
in practice. Most importantly, the manipulation is simply unnecessary as it does not
convey any new information or increase generality.

To avoid the mathematical complications briefly described above, we define the
coherence matrix in terms of the physical real-valued fields. That is, the matrix
Γ defined in (5.1) is equivalent to Γ (r) of Ref. [11]. We do not introduce of use
anywhere the corresponding analytic signal. While there is no loss of generality in
this approach, it is useful to note some differences, which mainly concern the degree
of coherence 𝛾, which is defined below in (7.12). In the conventional approach, 𝛾
is of magnitude 1 for all monochromatic fields. However, if we define Γ in terms of
the real-valued fields, the above simple property is lost. Perhaps, this is one of the
motivations for using the analytic signal in the definition of Γ.

Another, more trivial departure from the convention is that we define the cross-
spectral density W in (5.4) without the overall factor 1/2𝜋. This is done for consistency
with other definitions. For example, the frequency-domain susceptibility 𝜒(r, 𝜔) is
usually defined as the Fourier transform of the time-domain influence function
𝜒(r, 𝜏) as in (3.6a), without the 1/2𝜋 factor, which then shows up in the inverse
Fourier transform (3.6b).
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Before proceeding, we fix a few notations. In addition to the coherence ma-
trix Γ(r, r′; 𝜏) (5.1), the cross-spectral density W(r, r′;𝜔) (5.4), the intensity 𝐼 (r)
(5.3) and the power spectrum 𝑆(𝜔) (5.7), we will compute the temporal degree of
coherence 𝛾(r, r′; 𝜏), which is defined by the equation

𝛾2 (r, r′; 𝜏) = ∥Γ(r, r′; 𝜏)∥2

𝐼 (r)𝐼 (r′) , (7.12)

where ∥ · ∥ denotes the Frobenius matrix norm. The computations will be done
for monochromatic fields according to the conventional definitions and the defini-
tions of this chapter. As noted above, any physical, real-valued monochromatic field
oscillating at the frequency 𝜔0 can be written in the form

E(r, 𝑡) = Re[V (r, 𝑡)] , (7.13a)

where

V (r, 𝑡) = E (r)𝑒−i 𝜔0𝑡 (7.13b)

is the complex analytic signal. We will now compute the quantities listed above
according to the two definition for an electric field of the form (7.13).

7.2.1 Conventional Definitions

In the conventional approach, the analytic signal (7.13b) is used in place of the
physical electric field in all definitions. Correspondingly, elements of the coherence
matrix (5.1) are given by

Γ𝑖 𝑗 (r, r′; 𝜏) = ⟨𝑉∗
𝑖 (r, 𝑡)𝑉 𝑗 (r′, 𝑡 + 𝜏)⟩ . (7.14)

Substituting (7.13b) into (7.14) and performing time averaging (in this case, trivially),
we obtain

Γ𝑖 𝑗 (r, r′; 𝜏) = 𝐸∗
𝑖 (r)𝐸 𝑗 (r′)𝑒−i 𝜔0𝜏 . (7.15)

According to (5.3), the field intensity at any point in space is given by

𝐼 (r) =
∑︁
𝑖

𝐸∗
𝑖 (r)𝐸𝑖 (r) = |E (r) |2 . (7.16)

The Frobenius norm of Γ is

∥Γ(r, r′; 𝜏)∥2 =
∑︁
𝑖 𝑗

|𝐸∗
𝑖 (r)𝐸 𝑗 (r′)𝑒−i 𝜔0𝜏 |2 = |E (r) |2 |E (r′) |2 . (7.17)

Substituting this expression into (7.12), we find that the squared degree of coherence
is 1 for all arguments, viz,
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𝛾2 (r, r′; 𝜏) = 1 . (7.18)

Finally, the elements of the cross-spectral density matrix (5.4) are

𝑊𝑖 𝑗 (r, r′;𝜔) = 𝐸∗
𝑖 (r)𝐸 𝑗 (r′)𝛿(𝜔 − 𝜔0) (7.19)

and the power spectrum (5.7) is

𝑆(r, 𝜔) = |E (r) |2𝛿(𝜔 − 𝜔0) . (7.20)

It can be seen why the conventional definition is appealing: it predicts that the degree
of coherence is of magnitude 1 for any monochromatic field. Conversely, it can be
proved that, if the conventional degree of coherence is of magnitude 1 for all of its
arguments, then the field is necessarily monochromatic. Also, it seems convenient
that the conventional power spectrum is non-zero only for positive frequencies.

7.2.2 Definitions adopted in this chapter

In contrast to the conventional approach, we use the real-valued physical field in all
definitions. For the field of the form (7.13), elements of the coherence matrix are
computed as

Γ𝑖 𝑗 (r, r′; 𝜏) = ⟨[E(r, 𝑡)]𝑖 [E(r′, 𝑡 + 𝜏)] 𝑗⟩ , (7.21)

where E(r, 𝑡) is the real-valued physical field. Substituting (7.13a) into (7.21) and
performing time averaging, we obtain

Γ𝑖 𝑗 (r, r′; 𝜏) =
1
2

Re
[
𝐸∗
𝑖 (r)𝐸 𝑗 (r′)𝑒−i 𝜔0𝜏

]
. (7.22)

Disregarding the insignificant factor of 1/2, the conventional expression for the co-
herence matrix (7.15) is, indeed, the analytic signal corresponding to the real coher-
ence matrix defined in (7.22), just as suggested in Ref. [11]. However, this identifica-
tion can be made only for monochromatic fields. For stochastic non-monochromatic
fields, neither V (r, 𝑡) nor E (r, 𝑡) are defined, and (7.22) is not applicable. Instead
of this formula, we should use (7.21) to compute the coherence matrix according to
the definition of this chapter.

Returning to the monochromatic case, the field intensity (5.3) at any point in
space is given by

𝐼 (r) = 1
2
|E (r) |2 . (7.23)

The Frobenius norm of Γ is

∥Γ(r, r′; 𝜏)∥2 =
∑︁
𝑖 𝑗

Γ2
𝑖 𝑗 (r, r′; 𝜏)
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=
1
8

Re
{
[E (r)]2 [E∗ (r′)]2𝑒2i 𝜔0𝜏 + |E (r) |2 |E (r′) |2

}
. (7.24)

In this expression, E2 = E · E =
∑

𝑖 𝐸
2
𝑖

and |E |2 = E∗ · E =
∑

𝑖 |𝐸𝑖 |2. It can be
seen that the Frobenius norm (7.24) is more complicated than the corresponding
conventional expression (7.17).

The degree of coherence is computed by combining (7.24) and (7.23) in the
definition (7.12), which results in

𝛾2 (r, r′; 𝜏) = 1
2

[
1 + Re

[E (r)]2 [E∗ (r′)]2

|E (r) |2 |E (r′) |2
𝑒2i 𝜔0𝜏

]
. (7.25)

The magnitude of this expression is not always equal to 1. For example, in the case of a
linearly-polarized plane wave propagating along the 𝑍-axis, we have 𝛾2 (𝑧1, 𝑧2; 𝜏) =
sin2 [(𝜔0/𝑐) (𝑧2 − 𝑧1) − 𝜔0𝜏]. In this case, 𝛾2 fluctuates between 0 and 1. For a
circularly-polarized plane wave, 𝛾2 (𝑧1, 𝑧2; 𝜏) = 1/2. These results may seem to
contradict the intuitive understanding of perfect coherence, but we should keep in
mind that 𝛾 is not a directly-measurable quantity and expressions for measurable
quantities in terms of 𝛾 such as the visibility function in an interference experiment
depend on the adopted definition of the coherence matrix.

Finally, elements of the cross-spectral density and the power spectrum are

𝑊𝑖 𝑗 (r, r′;𝜔) =
𝜋

2

[
𝐸∗
𝑖 (r)𝐸 𝑗 (r′)𝛿(𝜔 − 𝜔0) + 𝐸𝑖 (r)𝐸∗

𝑗 (r′)𝛿(𝜔 + 𝜔0)
]

(7.26)

and

𝑆(r, 𝜔) = 𝜋

2
|E (r) |2 [𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)] . (7.27)

Even though the power spectrum (7.27) is non-zero for both positive and nega-
tive frequencies, expressions for physical observables given in this chapter involve
integration over positive frequencies only. Note that we can write

𝑊𝑖 𝑗 (r, r′;𝜔) =
𝜋

2
[
𝑤𝑖 𝑗 (r, r′;𝜔0) 𝛿(𝜔 − 𝜔0) + 𝑤𝑖 𝑗 (r, r′;−𝜔0) 𝛿(𝜔 + 𝜔0)

]
,

(7.28)

where

𝑤𝑖 𝑗 (r, r′;𝜔0) = 𝐸∗
𝑖 (r)𝐸 𝑗 (r′) , 𝑤𝑖 𝑗 (r, r′;−𝜔0) = 𝐸𝑖 (r)𝐸∗

𝑗 (r′) . (7.29)

In the case when E (r) is a plane wave of the form (4.27), we have

𝑤𝑖 𝑗 (r, r′;𝜔0) = 𝐴∗
𝑖 𝐴 𝑗𝑒

i k· (r′−r) , 𝑤𝑖 𝑗 (r, r′;−𝜔0) = 𝐴𝑖𝐴
∗
𝑗𝑒

i k· (r−r′ ) . (7.30)

The function 𝑤𝑖 𝑗 (r, r′;𝜔0) (denoted without the label 𝜔0) appears in the derivations
of Sec. 4.6.
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7.3 Proof that W(𝝎) is non-negative definite

To prove that W(𝜔) is non-negative-definite, we must show that, for an arbitrary
complex vector field F (r) ∈ H [V], it holds that

⟨F|W(𝜔) |F⟩ =
∫
V

d3𝑟1

∫
V

d3𝑟2 F ∗ (r1) · W(r1, r2;𝜔)F (r2) ≥ 0 . (7.31)

Utilizing the definition (5.4) of W in terms of Γ, we can re-write the left-hand side in
(7.31) as

⟨F|W(𝜔) |F⟩ =
∞∫

−∞

𝑒i 𝜔𝜏d𝜏
∫
V

d3𝑟1

∫
V

d3𝑟2 F
∗ (r1) · Γ(r1, r2; 𝜏)F (r2) . (7.32)

We further use the definition (5.1) of Γ in terms of the electric field E to obtain

⟨F|W(𝜔) |F⟩ =
∞∫

−∞

𝑒i 𝜔𝜏d𝜏
∫
V

d3𝑟1

∫
V

d3𝑟2

× ⟨[F ∗ (r1) · E(r1, 𝑡)] [F (r2) · E(r2, 𝑡 + 𝜏)]⟩ . (7.33)

Let

𝑓 (𝑡) =
∫
V

F (r) · E(r, 𝑡) d3𝑟 . (7.34)

Evidently, 𝑓 (𝑡) is a complex, scalar, stationary stochastic process. It then follows
from (7.33) that

⟨F|W(𝜔) |F⟩ = 𝑤(𝜔) =
∞∫

−∞

𝛾(𝜏)𝑒i 𝜔𝜏d𝜏 , (7.35)

where

𝛾(𝜏) = ⟨ 𝑓 ∗ (𝑡) 𝑓 (𝑡 + 𝜏)⟩ . (7.36)

We thus see that ⟨F|W(𝜔) |F⟩ is the power spectrum 𝑤(𝜔) of a scalar stochastic
process 𝑓 (𝑡). It is well known that the power spectrum cannot be negative in any
finite interval of frequencies. This can be shown as follows.

Assume that 𝑤(𝜔) is negative for 𝜔 ∈ [𝑎, 𝑏] where 𝑏 > 𝑎. We can apply a linear
filter ℓ(𝜏) to 𝑓 (𝑡) so that

https://doi.org/10.1007/978-3-031-29601-7_1
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𝑓ℓ (𝑡) =
∞∫

−∞

ℓ(𝜏) 𝑓 (𝑡 − 𝜏)d𝜏 . (7.37)

The power spectrum of 𝑓ℓ (𝑡) is 𝑤ℓ (𝜔) = |ℓ(𝜔) |2𝑤(𝜔). If ℓ(𝜔) is an ideal step
function equal to 1 in [𝑎, 𝑏] and 0 elsewhere (such a filter exists and can be easily
defined), then we conclude that

∞∫
−∞

𝑤ℓ (𝜔)d𝜔 =

𝑏∫
𝑎

𝑤(𝜔)d𝜔 < 0 . (7.38)

This is an impossibility because

∞∫
−∞

𝑤ℓ (𝜔)d𝜔 = 2𝜋𝛾ℓ (0) (7.39)

and 𝛾ℓ (0) = ⟨ 𝑓 ∗
ℓ
(𝑡) 𝑓ℓ (𝑡)⟩ is non-negative by definition. If we add the assumption

that 𝑤(𝜔) is continuous, then it cannot be negative at any point, not just in a finite
interval.

References

1. R. G. Newton. Scattering Theory of Waves and Particles. McGraw-Hill, 1966.
2. C. F. Bohren and D. R. Huffman. Absorption and Scattering of Light by Small Particles. Wiley,

1998.
3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Scattering, Absorption and Emission of Light

by Small Particles. Cambridge Univ. Press, 2002.
4. M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Multiple Scattering of Light by Particles.

Cambridge Univ. Press, 2006.
5. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, editors. Light Scattering by Nonspherical

Particles. Academic Press, 2000.
6. F. Frezza, F. Mangini, and N. Tedeschi. Introduction to electromagnetic scattering: tutorial. J.

Opt. Soc. Am. A, 35:163–173, 2018.
7. F. Frezza, F. Mangini, and N. Tedeschi. Introduction to electromagnetic scattering, part II:

tutorial. J. Opt. Soc. Am. A, 37:1300–1315, 2020.
8. P. C. Waterman. Matrix formulation of electromagnetic scattering. Proc. IEEE, 53:805–812,

1965.
9. P. C. Waterman. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev.

D, 3:825–839, 1971.
10. E. Wolf. New spectral representation of random sources and the partially coherent fields they

generate. Opt. Comm., 38:3–6, 1981.
11. E. Wolf. New theory of partial coherence in the space-frequency domain. Part I: Spectra and

cross spectra of steady-state sources. J. Opt. Soc. Am., 72:343–351, 1982.
12. E. Wolf. New theory of partial coherence in the space-frequency domain. Part II: Steady-state

fields and higher-order correlations. J. Opt. Soc. Am. A, 3:76–85, 1986.
13. J. Tervo, T. Setala, and A. T. Friberg. Theory of partially coherent electromagnetic fields in

the space–frequency domain. J. Opt. Soc. Am. A, 21:2205–2215, 2004.

https://doi.org/10.1364/JOSAA.35.000163
https://doi.org/10.1364/JOSAA.35.000163
https://doi.org/10.1364/JOSAA.381104
https://doi.org/10.1109/PROC.1965.4058
https://doi.org/10.1109/PROC.1965.4058
https://doi.org/10.1103/PhysRevD.3.825
https://doi.org/10.1103/PhysRevD.3.825
https://doi.org/10.1016/0030-4018(81)90295-9
https://doi.org/10.1364/JOSA.72.000343
https://doi.org/10.1364/JOSAA.3.000076
https://doi.org/10.1364/JOSAA.21.002205


104 Extinction of Electromagnetic Waves, Springer Series in Light Scattering, Vol.9 (2023)

14. G. Gbur and T. D. Visser. The structure of partially coherent fields. Progress in Optics,
55:285–341, 2010.

15. A. T. Fribert and T. Setala. Electromagnetic theory of optical coherence. J. Opt. Soc. Am. A,
33:2431–2442, 2016.

16. M. I. Mishchenko, M. J. Berg, C. M. Sorensen, and C. V. M. van der Mee. On definition and
measurement of extinction cross section. J. Quant. Spectrosc. Radiat. Transfer, 110:323–327,
2009.

17. M. J. Berg, C. M. Sorensen, and A. Chakrabarti. A new explanation of the extinction paradox.
J. Quant. Spectrosc. Radiat. Transfer, 112:1170–1181, 2011.

18. V. A. Markel. External versus induced and free versus bound electric currents and related
fundamental questions of the classical electrodynamics of continuous media: discussion. J.
Opt. Soc. Am. A, 35:1663–1673, 2018.

19. R. Fleury, J. Soric, and A. Alu. Physical bounds on absorption and scattering for cloaked
sensors. Phys. Rev. B, 89:045122, 2014.

20. V. A. Markel. Correct definition of the Poynting vector in electrically and magnetically
polarizable medium reveals that negative refraction is impossible. Opt. Expr., 16:19152–
19168, 2008.

21. R. Marques. Correct definition of the Poynting vector in electrically and magnetically polar-
izable medium reveals that negative refraction is impossible: comment. Opt. Expr., 17:7322–
7324, 2009.

22. V. A. Markel. Correct definition of the Poynting vector in electrically and magnetically
polarizable medium reveals that negative refraction is impossible: reply. Opt. Expr., 17:7325–
7327, 2009.

23. A. Favaro, P. Kinsler, and M. W. McCall. Comment on ”Correct definition of the Poynting
vector in electrically and magnetically polarizable medium reveals that negative refraction is
impossible”. Opt. Expr., 17:15167–15169, 2009.

24. V. A. Markel. Correct definition of the Poynting vector in electrically and magnetically
polarizable medium reveals that negative refraction is impossible: reply. Opt. Expr., 17:15170–
15172, 2009.

25. B. T. Draine. The discrete-dipole approximation and its application to interstellar graphite
grains. Astrophys. J., 333:848–872, 1988.

26. V. A. Markel and E. Y. Poliakov. Radiative relaxation time of quasi-normal optical modes in
small dielectric particles. Phil. Mag. B, 76:895–909, 1997.

27. D. R. Lytle, P. S. Carney, J. C. Schotland, and E. Wolf. A generalized optical theorem for
reflection, transmission and extinction of optical power for electromagnetic fields. Phys. Rev.
E, 71:056610, 2005.

28. V. A. Markel. Extinction, scattering and absorption of electromagnetic waves in the coupled-
dipole approximation. J. Quant. Spectrosc. Radiat. Transfer, 236:106611, 2019.

29. M. A. Yurkin and M. I. Mishchenko. Volume integral equation for electromagnetic scattering:
Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth
boundaries in a passive host medium. Phys. Rev. A, 97:043824, 2018.

30. V. A. Markel. Antisymmetrical optical states. J. Opt. Soc. Am. B, 12:1783–1791, 1995.
31. P. J. Flatau, G. L. Stephens, and B. T. Draine. Light scattering by rectangular solids in the

discrete-dipole approximation: A new algorithm exploiting the block-Teoplitz structure. J. Opt.
Soc. Am. A, 7:593–600, 1990.

32. B. Draine and P. Flatau. Discrete-dipole approximation for scattering calculations. J. Opt. Soc.
Am. A, 11:1491–1499, 1994.

33. M. A. Yurkin and A. G. Hoekstra. The discrete dipole approximation: An overview and recent
developments. J. Quant. Spectrosc. Radiat. Transfer, 106:558–589, 2007.

34. B. T. Draine and P. J. Flatau. Discrete-dipole approximation for periodic targets: theory and
tests. J. Opt. Soc. Am. A, 25:2593–2703, 2008.

35. M. A. Yurkin. “Computational approaches for plasmonics,” in Handbook of Molecular Plas-
monics, pp. 83–135. Pan Stanford Pub., 2013.

36. H. C. Van De Hulst. On the attenuation of plane waves by obstacles of arbitrary size and form.
Physica, 15:740–746, 1949.

https://doi.org/10.1007/978-3-031-29601-7_1
https://doi.org/10.1016/B978-0-444-53705-8.00005-9
https://doi.org/10.1016/B978-0-444-53705-8.00005-9
https://doi.org/10.1364/JOSAA.33.002431
https://doi.org/10.1364/JOSAA.33.002431
https://doi.org/10.1016/j.jqsrt.2008.11.010
https://doi.org/10.1016/j.jqsrt.2008.11.010
https://doi.org/10.1016/j.jqsrt.2010.08.024
https://doi.org/10.1364/josaa.35.001663
https://doi.org/10.1364/josaa.35.001663
https://doi.org/10.1103/PhysRevB.89.045122
https://doi.org/10.1364/OE.16.019152
https://doi.org/10.1364/OE.16.019152
https://doi.org/10.1364/OE.17.007322
https://doi.org/10.1364/OE.17.007322
https://doi.org/10.1364/OE.17.007325
https://doi.org/10.1364/OE.17.007325
https://doi.org/10.1364/OE.17.015167
https://doi.org/10.1364/OE.17.015170
https://doi.org/10.1364/OE.17.015170
https://doi.org/10.1086/166795
https://doi.org/10.1080/01418639708243137
https://doi.org/10.1103/PhysRevE.71.056610
https://doi.org/10.1103/PhysRevE.71.056610
https://doi.org/10.1016/j.jqsrt.2019.106611
https://doi.org/10.1103/PhysRevA.97.043824
https://doi.org/10.1364/JOSAB.12.001783
https://doi.org/10.1364/JOSAA.7.000593
https://doi.org/10.1364/JOSAA.7.000593
https://doi.org/10.1364/JOSAA.11.001491
https://doi.org/10.1364/JOSAA.11.001491
https://doi.org/10.1016/j.jqsrt.2007.01.034
https://doi.org/10.1364/JOSAA.25.002693
https://doi.org/10.1201/b15328
https://doi.org/10.1201/b15328
https://doi.org/10.1016/0031-8914(49)90079-8


Vadim A. Markel 105

37. D. S. Jones. On the scattering cross section of an obstacle. Phil. Mag., 46:957–962, 1955.
38. R. G. Newton. Optical theorem and beyond. Amer. J. Phys., 44:639–642, 1975.
39. I. I. Sobel’man. On the theory of light scattering in gases. Phys. Usp., 45:75–80, 2002.
40. J. A. Lock, J. T. Hodges, and G. Gouesbet. Failure of the optical theorem for Gaussian-beam

scattering by a spherical particle. J. Opt. Soc. Am. A, 12:2708–2715, 1995.
41. P. S. Carney, J. C. Schotland, and E. Wolf. A generalized optical theorem for reflection,

transmission and extinction of power for scalar fields. Phys. Rev. E, 70:036611, 2004.
42. I. Rondon-Ojeda and F. Soto-Eguibar. Generalized optical theorem for propagation invariant

beams. Optik, 137:17–24, 2017.
43. A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurt, P. Ginzburg, and A. V. Zayats.

Generalization of the optical theorem: experimental proof for radially polarized beams. Light:
Sci. & Appl., 7:36, 2018.

44. L. Zhang. Generalized optical theorem for an arbitrary incident field. J. Acoust. Soc. Am.,
145:EL185–EL189, 2019.

45. L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cambridge Univ. Press,
1995.

46. D. J. Carpenter and C. Pask. The angular spectrum approach to diffraction of partially coherent
light. Optica Acta, 24:939–948, 1977.

47. P. S. Carney, E. Wolf, and G. S. Agrawal. Statistical generalizations of the optical cross-section
theorem with application to inverse scattering. J. Opt. Soc. Am. A, 14:3366–3371, 1997.

48. P. S. Carney and E. Wolf. An energy theorem for scattering of partially coherent beams. Opt.
Comm., 155:1–6, 1998.

49. D. Cabaret, S. Rossano, and C. Brouder. Mie scattering of a partially coherent beam. Opt.
Comm., 150:239–250, 1998.

50. J.-J. Greffet, M. De La Cruz-Gutierrez, P.V. Ignatovich, and A. Radunsky. Influence of spatial
coherence on scattering by a particle. J. Opt. Soc. Am. A, 20:2315–2320, 2003.

51. D. G. Fischer, T. van Dijk, T. D. Visser, and E. Wolf. Coherence effects in Mie scattering. J.
Opt. Soc. Am. A, 29:78–84, 2012.

52. J. Liu, L. Bi, P. Yang, and G. W. Kattawar. Scattering of partially coherent electromagnetic
beams by water droplets and ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 134:74–84,
2014.

53. J. A. Gonzaga-Galeana and J. R. Zurita-Sanchez. Mie scattering of partially coherent light:
controlling absorption with spatial coherence. Opt. Expr., 26:2928–2943, 2018.

54. H. F. Schouten, D. G. Fischer, and T. D. Visser. Coherence modification and phase singularities
on scattering by a sphere: Mie formulation. J. Opt. Soc. Am. A, 36:2005–2010, 2019.

55. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon. Partially polarized
Gaussian Schell-model beams. J. Opt. A, 3:1–9, 2001.

56. Z. Mei, O. Korotkova, and E. Shchepakina. Electromagnetic multi-Gaussian Schell-model
beams. J. Opt., 15:025705, 2013.

57. G. W. Kenrick. The analysis of irregular motions with applications to the energy-frequency
spectrum of static and of telegraph signals. Phil. Mag., 7:176–196, 1929.

58. N. Wiener. Generalized harmonic analysis. Acta Math., 55:117–258, 2030.
59. H. O. Hagenvik and J. Skaar. Fourier-Laplace analysis and instabilities of a gainy slab. J. Opt.

Soc. Am. B, 32:1947–1953, 2015.
60. H. O. Hagenvik, M. E. Malema, and J. Skaar. Fourier theory of linear gain media. Phys. Rev.

A, 91:043826, 2015.
61. L. D. Landau and L. P. Lifshitz. Classical Theory of Fields. Pergamon Press, 1975.
62. R. Kubo. The fluctuation-dissipation theorem. Rep. Prog. Phys., 29:255–284, 1966.
63. A. T. Forrester, W. E. Parkins, and E. Gerjuoy. On the possibility of observing beat frequencies

between lines in the visible spectrum. Phys. Rev., 72:728, 1947.
64. A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson. Photoelectric mixing of incoherent

light. Phys. Rev., 99:1961–1700, 1955.
65. T. Kawalec and P. Sowa. Observation of two truly independent laser interference made easy.

Eur. J. Phys., 42:055305, 2021.

https://doi.org/10.1080/14786440908520615
https://doi.org/10.1119/1.10324
https://doi.org/10.1070/PU2002v045n01ABEH001115
https://doi.org/10.1364/JOSAA.12.002708
https://doi.org/10.1103/PhysRevE.70.036611
https://doi.org/10.1016/j.ijleo.2017.02.069
https://doi.org/10.1038/s41377-018-0025-x
https://doi.org/10.1038/s41377-018-0025-x
https://doi.org/10.1121/1.5092581
https://doi.org/10.1121/1.5092581
https://doi.org/10.1080/713819663
https://doi.org/10.1364/JOSAA.14.003366
https://doi.org/10.1016/S0030-4018(98)00318-6
https://doi.org/10.1016/S0030-4018(98)00318-6
https://doi.org/10.1016/S0030-4018(98)00053-4
https://doi.org/10.1016/S0030-4018(98)00053-4
https://doi.org/10.1364/JOSAA.20.002315
https://doi.org/10.1364/JOSAA.29.000078
https://doi.org/10.1364/JOSAA.29.000078
https://doi.org/10.1016/j.jqsrt.2013.11.002
https://doi.org/10.1016/j.jqsrt.2013.11.002
https://doi.org/10.1364/OE.26.002928
https://doi.org/10.1364/JOSAA.36.002005
https://doi.org/10.1088/1464-4258/3/1/301
https://doi.org/10.1088/2040-8978/15/2/025705
https://doi.org/10.1080/14786440108564727
https://doi.org/10.1007/BF02546511
https://doi.org/10.1364/JOSAB.32.001947
https://doi.org/10.1364/JOSAB.32.001947
https://doi.org/10.1103/PhysRevA.91.043826
https://doi.org/10.1103/PhysRevA.91.043826
https://doi.org/10.1103/PhysRev.72.728
https://doi.org/10.1103/PhysRev.99.1691
https://doi.org/10.1103/10.1088/1361-6404/ac0877


106 Extinction of Electromagnetic Waves, Springer Series in Light Scattering, Vol.9 (2023)

66. W. T. Doyle. Optical properties of a suspension of metal spheres. Phys. Rev. B, 39:9852–9858,
1989.

67. R. Ruppin. Evaluation of extended Maxwell-Garnett theories. Opt. Comm., 182:273–279,
2000.

68. V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev.
Electromagnetic density of states and absorption of radiation by aggregates of nanospheres
with multipole interactions. Phys. Rev. B, 70:054202, 2004.

69. M. I. Mishchenko and M. A. Yurkin. On the concept of random orientation in far-field
electromagnetic scattering by nonspherical particles. Opt. Lett., 42:494–497, 2017.

70. M. J. Berg, C. M. Sorensen, and A. Chakrabarti. Extinction and the optical theorem. Part I.
Single particles. J. Opt. Soc. Am. A, 25:1504–1513, 2008.

71. M. J. Berg, C. M. Sorensen, and A. Chakrabarti. Extinction and the optical theorem. Part II.
Multiple particles. J. Opt. Soc. Am. A, 25:1514–1520, 2008.

72. M. J. Berg, N. R. Subedi, P. A. Anderson, and N. F. Fowler. Using holography to measure
extinction. Opt. Lett., 39:3993–3996, 2014.

73. M. J. Berg, N. R. Subedi, and P. A. Anderson. Measuring extinction with digital holography:
nonspherical particles and experimental validation. Opt. Lett., 42:1011–1014, 2017.

74. V. A. Markel. What is extinction? Operational definition of the extinguished power for plane
waves and collimated beams. J. Quant. Spectrosc. Radiat. Transfer, 246:106933, 2020.

75. R. Ceolato and M. J. Berg. Aerosol light extinction and backscattering: A review with a lidar
perspective. J. Quant. Spectrosc. Radiat. Transfer, 262:107492, 2021.

76. A. E. Moskalensky and M. A. Yurkin. Energy budget and optical theorem for scattering of
source-induced fields. Phys. Rev. A, 99:053824, 2019.

77. L. Brillouin. The scattering cross section of spheres for electromagnetic waves. J. Appl. Phys.,
20:1110–1125, 1949.

78. W. Zakowicz. On the extinction paradox. Acta Physica Polonica A, 101:369–385, 2002.
79. H. M. Lai, W. Y. Wong, and W. H. Wong. Extinction paradox and actual power scattered in

light beam scattering: a two-dimensional study. J. Opt. Soc. Am. A, 21:2324–2333, 2004.
80. L. D. Landau and L. P. Lifshitz. Electrodynamics of Continuous Media. Pergamon Press,

1984.

https://doi.org/10.1007/978-3-031-29601-7_1
https://doi.org/10.1016/S0030-4018(00)00825-7
https://doi.org/10.1016/S0030-4018(00)00825-7
https://doi.org/10.1103/PhysRevB.70.054202
https://doi.org/10.1364/OL.42.000494
https://doi.org/10.1364/JOSAA.25.001504
https://doi.org/10.1364/JOSAA.25.001514
https://doi.org/10.1364/OL.39.003993
https://doi.org/10.1364/OL.42.001011
https://doi.org/10.1016/j.jqsrt.2020.106933
https://doi.org/10.1016/j.jqsrt.2020.107492
https://doi.org/10.1103/PhysRevA.99.053824
https://doi.org/10.1063/1.1698280
https://doi.org/10.1063/1.1698280
http://dx.doi.org/10.12693/APhysPolA.101.369
https://doi.org/10.1364/JOSAA.21.002324


Index

amplifying media, 48

beats, 59
boundary conditions, at infinity, 10, 19, 52

chirality, 71, 78, 79
circular dichroism, 71
circular polarization, 36, 70
coherence length, 43, 61
continued fraction, 74

depolarization coefficients, generalized, 97
diffraction

Fraunhofer, 25, 89, 93
Fresnel, 25, 94, 95

discrete-dipole approximation (DDA), 22, 52

Ewald sphere, 34
Ewald-Oseen extinction theorem, 92, 93

far-field approximation, 23, 25
first Born approximation, 23, 34, 39, 60
Fraunhofer diffraction, 25, 89, 93
Fresnel diffraction, 25, 94, 95

geometrical optics, 24, 25, 94

inverse scattering problem, 34

Jones matrix, 64, 67, 68

Joule heat, 15

Kretschmann geometry, of illumitation, 72

local field correction, of Lorentz, 23

mirror, 14, 24, 93

natural frequencies, 76
needle, field enhancement by, 74

on shell, Fourier transform, 24, 33
orientation average, in quasi-static approxima-

tion, 80

Poynting theorem, 15

Rayleigh scattering, 85, 87
reciprocity, electromagnetic, 20, 33
resonance, 61

Schell-model beam, 43
Schwartz inequality, 64
special points, in space-time, 40
spherical wave, 24
Stokes parameters, 69, 70, 72, 79
superposition principle, 31

Toeplitz matrix, 20
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