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The sub-Poissonian statistics parameter & of unidirectional random jumps on a circumferenceis
calculated. It is shown that & approaches -1 under certain conditions, which corresponds to very
strong antibunching of events. The unidirectional jump model is considered as a direct analogy

of step-wise multiphoton excitation in amultilevel system, and the results can be applied to the
statistics of photons radiated from a particular level.
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SUB-POISSONIAN STATISTICS OF UNIDIRECTIONAL RANDOM JUMPS
ON A CIRCUMFERENCE

V.A.Markel

The sub-poissonian statistic parameter £ of unidirectional random jumps on a circumference
is calculated. £ is shown to tend to — 1 in certain con ditions, this corresponds to a very strong
antibunching of events. A unidirectional jump model is considered as applied to statistics of
step-by-step excitation of multilevel systems, and to photon statistics, in particular.

The subject problem of random unidirectional jumps arises, in particular, in step-by-step excitation of
multilevel systems with subsequent return to the ground state with energy release (photon emission, for example).
Statistics of such events is known to be sub-poissonian, due to the dead-time effect [1-3]. The dead-time effect had
been demonstrated experimentally to cause the sub-poissonian statistics [4] (antibunching of events, in particular).

Two directions of motion exist, as a rule, in real physical systems — toward energy increase (excitation) and
energy decrease (decay). However, in order to prove the conceptual possibility of strong event antibunching, we
limit our consideration to unidirectional jumps. Moreover, this problem is of importance from purely statistical
grounds.

Let there be L + 1 points on a circumference, separated by equal arcs. Number them sequentially from
zero to L. The particle undergoes instantaneous transitions from the point & to the point k+1
(k=0,1,..,L — 1), and from the point L to the point 0. The transition times are random, and the differential
probability dp of the transition to occur in the time interval dt is given by dp = udt (u is independent of time
or the initial point of the transition. Thus the particle. makes unit steps in the given direction along the circum-
ference.

Let event 4 be recorded at the time when the particle moves from the point L to the point 0. Henceforth
we will discuss the statistics of such elements. Let also certain initial conditions be set at ¢ = 0, after which the
system evolved for unlimited period of time. The process becomes steady-state at ¢ >>¢, = (L + 1)t;, where
t; = 1/u - the characteristic time of particle transition by a single step; and the probability to find a particle atany
of the points becomes pw = 1/(L + 1).

Letus consider the time intervals (¢, t + T),t >>¢,. Let <N; > be the average number of events A recorded
with the period of time 7, and <ANZ > = <N > — <N, > be the variance of this number. The averaging may
be done either over equal non-overlapping time intervals (t,¢ + T), or over the ensemble of particles undergoing
similar jumps. The sub-poissonian statistical parameter &, is defined as follows [1,2]:

<AN;> = <N;> (1 + &)). (1)

The value of §; characterizes the deviation of the statistics of events 4 from the Poissonian one. Depending on
the sign of £, event bunching (£, > 0), or antibunching (£, < 0) takes place.

The §; value against L was calculated in the present paper.

For t >>t,, the following relations are valid:

<Ny> =JT, J = up.;

) T )
<Np> = [ [[F{t, = t) +Jo(t, - &,)]ar dts. )
0
Here J is the steady-state probability of event A4 detection in a unit time, and the function F(t, = t,) is the joint
probability of the event A occurring at times , and t, (per dt,dt,). To check the validity of (2) for <N+>, let
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us divide the time interval T into intervals Af, they are so small that the probability to record the event A in any

of them is much less than unity. N, can be represented as a sum of contributions AN, and correspondingly Nﬁ.
as a double sum:

<N§> = 2 <ANAN>.

Ati ], we get by definition of the function F <AN,AN,> = F(t, t)ArAand at i =j, <AN;> = <AN,> =
= JAt;. Passing from summation to integration, we obtain (2).
For the function F, obviously,

F(r) = F(-7) = Jup, (), 3

is valid, where p,(7) is the conditional probability to find the particle at the point k (k =0, 1, ..., L) at the instant
of time ¢ = 7, if it was at the point 0 at ¢ = 0. The function p, satisfies the fallowing conditions:

L
Pu(0) = Si Pu(=) =p=i X (D) =1. @

In view of (1)-(4), the equation for &, takes the form:

T =i S
fr= 2 [ dr [ delpu(e) = el .

The method of balance equations is the simplest approach to calculation of the functions g,. It is based on
the ensemble treatment. Let there be an ensemble of particles, for each of which the initial conditions
2.(0) = 8, were set. Then, treating p,(7) as a fraction of particles found at the point k at ¢ = 7, and proceeding
from the balance of the processes, we obtain the following L + 1-dimensional linear set of dilferential equations:

dpy/dt = u(p, = p, ), ' (6)
dpjdt=pu(p,-1—p) k=12,.,L.

The system (6) with the initial conditions (4) can be easily shown to have the solution

L ;
_ (L+1—kY - o . 2
D6 —p:.jzoz exp[(Z — Dut], z=-exp [‘L T 1}. 7)
Obviously, all p, are purely real values, the imaginary part of the sum (7) reduces to zero. The solution (7) may

be conveniently rewritten in another form. Expanding exp[7] into a series and changing the order of summation,
we obtain

i exp (—ut) (u)* " il ®)

P = [k + (L + Dm]!

m=

Thus the conditional probabilities p, are represented by a sum of Poissonian distributions.
Expression (7) is more convenient for calculation of &7, Note that for the most interesting case of T >>1,
and, correspondingly, <N,> >> 1, the integral (5) becomes substantially simpler, and we obtain

fu=2] r=p.3 Eom L
w =% ) =pald =223 TTE=-LIT ©)
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In this case <AN'%—>/<NT> = P, and strong antibunching occurs at L - o,

The result §= = —3/4, corresponding to - L + 1 = 4, was obtained in [2] for the fluorescence photons in a
two-level atom excited by electromagnetic radiation under certain optimum conditions. Let us briefly discuss this
result. Contrary to the particle of the present paper, which has a definite ("pure") state at any instant of time, an
atom may have mixed states. As a result, the differential equation system for the density matrix of a two-level atom
is in fact four-dimensional (two equations for the diagonal elements, and two for the real and imaginary parts of
the off-diagonal element). The set of equations for the density matrix is similar to set (6) with L = 3, given the
conditions imposed in [2] upon the internal times of the atom and its radiative excitation rate. These conditions
yield the minimum possible value of £, = —3/4. Generally speaking, atomic excitation and relaxations go through

transient stages which correspond to the mixed states, these stages may be identified with the two additional points
of the random jump model.

Similar to the above, we may predict for the step-wise excitation of a three-level atom or molecule a minimum
value of £= = —7/8. This value is achieved at no return from the first excited to the ground state.

In another limiting case of T <<, (<N,> <<1), taking into account that p,(0) = 0, we obtain
£, = =IT==<N>. (10)

It is impossible to evaluate the sum resulting from integration of (7) according to (5) for arbitrary T. The
figure presents numerical calculation results for various L. It is obvious that at large L the & plot against T has
damped oscillations with a period .. &, tendsto £= at T >>t,.
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