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Superresolution and corrections to the diffusion approximation
in optical tomography
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We demonstrate that the spatial resolution of images in optical tomography is not limited to the
fundamental length scale of one transport mean free path. This result is facilitated by the
introduction of novel corrections to the standard integral equations of scattering theory within the
diffusion approximation to the radiative transport equation. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2040010�
There has been considerable recent interest in the devel-
opment of optical methods for tomographic imaging.1 The
physical problem that is considered is to recover the optical
properties of the interior of an inhomogeneous medium from
measurements taken on its surface. The starting point for the
mathematical formulation of this inverse scattering problem
�ISP� is a model for the propagation of light, typically taken
to be the diffusion approximation �DA� to the radiative trans-
port equation �RTE�. The DA is valid when the energy den-
sity of the optical field varies slowly on the scale of the
transport mean free path �*. The DA breaks down in opti-
cally thin layers, near boundary surfaces, or near the source.
One or more of these conditions are encountered in biomedi-
cal applications such as imaging of small animals2 or of
functional activity in the brain.

Within the accuracy of the DA, reconstruction algo-
rithms based on both numerical3 and analytic solutions4–6 to
the ISP have been described. Regardless of the method of
inversion, the spatial resolution of reconstructed images is
expected to be limited to �*. This expectation is due to the
intertwined effects of the ill-posedness of the ISP5 and intrin-
sic inaccuracies of the DA.7 In this letter, we introduce novel
corrections to the integral equations of scattering theory
within the DA. Using this result, we report the reconstruction
of superresolved images whose spatial resolution is less than
�*.

We begin by considering the propagation of multiply
scattered light in an inhomogenous medium characterized by
an absorption coefficient �a�r�. In what follows, we will ne-
glect the contribution of ballistic photons and consider only
diffuse photons whose specific intensity I�r , ŝ� at the point r
in the direction ŝ is taken to obey the time-independent RTE

ŝ · �I�r, ŝ� + ��a + �s�I�r, ŝ� − �s� d2s�A�ŝ, ŝ��I�r, ŝ��

= S�r, ŝ� , �1�

where �s is the scattering coefficient, A�ŝ , ŝ�� is the scatter-
ing kernel, and S�r , ŝ� is the source. The change in specific
intensity due to spatial fluctuations in �a�r� can be obtained

from the integral equation
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��r1, ŝ1;r2, ŝ2� =� d3rd2sG�r1, ŝ1;r, ŝ�G�r, ŝ;r2, ŝ2���a�r� .

�2�

Here the data function ��r1 , ŝ1 ;r2 , ŝ2� is proportional, to
lowest order in ��a, to the change in specific intensity rela-
tive to a reference medium with absorption �a

0 ,G is the
Green’s function for Eq. �1� with �a=�a

0, ��a�r�=�a�r�
−�a

0, r1 , ŝ1 and r2 , ŝ2 denote the position and direction of a
unidirectional point source and detector, respectively.

We now show that the integral equation Eq. �2� may be
used to obtain corrections to the usual formulation of scat-
tering theory within the DA. To proceed, we note that, fol-
lowing Ref. 6, the Green’s function G�r , ŝ ;r� , ŝ�� may be
expanded in angular harmonics of ŝ and ŝ�

G�r, ŝ;r�, ŝ�� =
c

4�
�1 + �*ŝ · �r��1 − �*ŝ� · �r��G�r,r�� ,

�3�

where �*=1/ ��a
0+��s� with ��s= �1−g��s, g being the an-

isotropy of the scattering kernel A. The Green’s function
G�r ,r�� satisfies the diffusion equation �−D0�2

+�0�G�r ,r��=��r−r��, where the diffusion coefficient D0

=1/3c�* and �0=c�a
0. In addition, the Green’s function must

satisfy boundary conditions on the surface of the medium �or
at infinity in the case of free boundaries�. In general, we will
consider boundary conditions of the form G�r ,r��
+�n̂ ·�G�r ,r��=0, where n̂ is the outward unit normal to the
surface bounding the medium and � is the extrapolation dis-
tance. Equation �3� may be seen to correspond to the first
term of the PN expansion for the Green’s function of the
RTE. It is possible to carry out this expansion to higher order
as was done in Ref. 8, where a finite-element based iterative
reconstruction algorithm was developed.

Making use of Eq. �3� and performing the angular inte-
gration over ŝ in Eq. �2� we obtain

��r1, ŝ1;r2, ŝ2� =
c

4�
�1�2� d3r�G�r1,r�G�r,r2�

−
�*2

3
�rG�r1,r� · �rG�r,r2�����r� , �4�

where the differential operators �k=1− �−1�k�*ŝk ·�rk
with
k=1, 2 and ��=c��a. Note that if the source and detector
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are oriented in the inward and outward normal directions,
respectively, then Eq. �4� becomes

��r1,− n̂�r1�;r2,n̂�r2��

=
c

4�
�1 +

�*

�
	2� d3r�G�r1,r�G�r,r2�

−
�*2

3
�rG�r1,r� · �rG�r,r2�����r� , �5�

where we have used the boundary conditions on G to evalu-
ate the action of the �k operators. Equation �5� is the main
theoretical result of this letter. It may be viewed as providing
corrections to the DA since the first term on the right hand
side of Eq. �5� corresponds to the standard DA in an inho-
mogeneous absorbing medium. We note that the second term
may be interpreted as defining an effective diffusion coeffi-
cient D�r�=D0− ��*2 /3����r� since the expression
�rG�r1 ,r� ·�rG�r ,r2� defines the diffusion kernel in a me-
dium with an inhomogeneous diffusion coefficient.3

For the remainder of this letter we will work in the pla-
nar measurement geometry, often encountered in small-
animal imaging. In this case, Eq. �4� becomes

���1,�2� =� d3rK��1,�2;r����r� , �6�

where �1 denotes the transverse coordinates of a point source
in the plane z=0, �2 denotes the transverse coordinates of a
point detector in the plane z=L, and the dependence of � on
ŝ1 and ŝ2 is not made explicit. Evidently, from considerations
of invariance of the kernel K��1 ,�2 ;r� under translations of
its transverse arguments, it can be seen that K may be ex-

pressed as the Fourier integral

approximation to ��. Here we use this approach to simulate
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K��1,�2;r� =
1

�2��4 � d2q1d2q2��q1,q2;z�

�exp�i�q1 − q2� · � − i�q1 · �1 − q2 · �2�� ,

where r= �� ,z�. The function � may be obtained from the
plane-wave expansion of the diffusion Green’s function
obeying appropriate boundary conditions. In the case of free
boundaries, it is readily seen that � is given by the expres-

FIG. 1. Reconstructions of a point absorber for different thicknesses of the
slab using the corrected �solid curve� and uncorrected �dashed curve� DA.
sion
��q1,q2;z� =
c

16�D0
2Q�q1�Q�q2�

�1 +
�*2

3
�Q�q1�Q�q2� − q1 · q2���1 + �*�Q�q1� + Q�q2�� + �*2Q�q1�Q�q2��

�exp�− Q�q1�
z
 − Q�q2�
z − L
� , �7�
where Q�q�= �q2+�0 /D0�1/2 and we have assumed that ŝ1

= ŝ2= ẑ1.
Inversion of the integral equation Eq. �6� may be carried

out by analytic methods. These methods have been shown to
be computationally efficient and may be applied to data sets
consisting of a very large number of measurements.5,6 The
approach taken is to construct the singular value decomposi-
tion of the linear operator K in the proper Hilbert space set-
ting and then use this result to obtain the pseudoinverse so-
lution to Eq. �6�. In this manner, it is possible to account for
the effects of sampling and thereby obtain the best �in the
sense of minimizing the appropriate L2 norm� bandlimited
the reconstruction of a point absorber located at a point r0

between the measurement planes with ���r�=A��r−r0� for
constant A. In this situation it is possible to calculate the data
function � within radiative transport theory, thus avoiding
“inverse crime.” To proceed, we require the Green’s function
G�r , ŝ ;r� , ŝ�� for the RTE in a homogeneous infinite medium
which we obtain as described in Ref. 9. Note that in this
case, the angular integration over ŝ in Eq. �2� may be carried
out analytically.

The effects of corrections to the DA were studied in
numerical simulations following the methods of Ref. 5. The
simulations were performed for a medium with optical prop-
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erties similar to breast tissue in the near infrared. The back-
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ground absorption and reduced scattering coefficients were
given by �a

0=0.03 cm−1 and �s�=10 cm−1. The scattering
kernel was taken to be of Henyey-Greenstein-type with
A�ŝ , ŝ��=	�=0


 g�P��ŝ · ŝ�� and g=0.98. This choice of param-
eters corresponds to �*=1 mm and D0=0.8 cm2 ns−1. The
separation between the measurement planes L was varied in
order to explore the effects of the corrections. A single point
absorber was placed at the midpoint of the measurement
planes with r0= �0,0 ,L /2� and A=1 cm3 ns−1. The sources
and detectors were located on a square lattice with spacing h.
The total number of source-detector pairs N was varied,
along with h, as indicated below. To demonstrate the stability
of the reconstruction in the presence of noise, Gaussian noise
of zero mean was added to the data at the 1% level, relative
to the average signal. Note that the level of regularization
was chosen to be the same for all reconstructions.

Reconstruction of ���r� for a point absorber defines the
point spread function �PSF� of the reconstruction algorithm.
The resolution �x is defined as the half width at half maxi-
mum of the PSF. In Fig. 1�a� we consider the case of a thick
layer with L=6.6 cm. The above parameters were chosen to
be h=0.83 mm and N=1.5�109. PSFs with and without cor-
rections are shown. It may be seen that the effect of the
corrections is negligible in the case of a thick layer and the
resolution �x=3.5�*. For the case of a layer of intermediate
thickness with L=1.1 cm, as shown in Fig. 1�b�, the correc-
tions have a more significant effect. In particular, with h
=0.28 mm and N=1.2�1011, we found that �x=0.9�* for
the uncorrected reconstruction and �x=0.7�* for the cor-
rected reconstruction. The corrections are most significant
for the thinnest layer considered in this study, achieving a
factor of 2 improvement in resolution when L=0.55 cm. In
this case, with h=0.14 mm and N=1.9�1012, we found that
�x=0.4�* for the uncorrected case and �x=0.2�* for the
corrected case as shown in Fig. 1�c�. We note that the curves
in Fig. 1�a� are not symmetric about their central maxima,
whereas those in Figs. 1�b� and 1�c� appear to be symmetric.
The explanation for this result is that the inverse problem for
the thick layer is more ill posed than in the case of the thin-
Downloaded 05 Sep 2005 to 165.123.34.86. Redistribution subject to 
ner layers due to the exponential decay of the diffuse wave.
In the absence of noise, the PSF for the thick layer also
appears to be symmetric �graph not shown�.

In conclusion, we have described a series of corrections
to the usual formulation of the DA in optical tomography. We
have found that these corrections give rise to superresolved
images with resolution below �*. Several comments on these
results are necessary. First, the effects of corrections were
demonstrated to be most significant in optically thin layers.
However, corrections to the DA may also be expected to be
important for thick layers when inhomogeneities in the ab-
sorption are located near the surface. Second, the results of
this study were obtained without resorting to so-called in-
verse crime. That is, forward scattering data were obtained
from the full RTE under conditions when the DA is known to
break down. Third, the use of analytic reconstruction algo-
rithms was essential for handling the extremely large data
sets employed in this study. Note that such data sets may be
obtained in modern noncontact optical tomography
systems.11 Finally, we note that higher order corrections to
the DA are also expected to be important for the nonlinear
ISP.
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