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Effects of sampling and limited data in optical tomography
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We consider the image reconstruction problem for optical tomography in the transmission geometry.
We investigate the effects of sampling and limited data on this inverse problem and derive an
explicit inversion which is computationally efficient and stable in the presence of noise. ©2002
American Institute of Physics.@DOI: 10.1063/1.1495543#
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The propagation of near-infrared light in many biolog
cal tissues is characterized by strong multiple scattering
relatively weak absorption.1 Under these conditions, th
transport of light can be regarded as occurring by mean
diffusing waves.2 There has been considerable recent inte
in the use of such waves for medical imaging.3 The physical
problem under consideration consists of recovering the o
cal properties of the interior of an inhomogeneous medi
from measurements taken on its surface. A fundame
question of substantial practical importance concerns the
pact of limited data on this inverse scattering problem.4–6

This question arises since it is often not possible to mea
all the data which is necessary to guarantee uniquenes
stability of a solution to the inverse problem. A related qu
tion is how to recover the properties of the medium with
certain spatial resolution. Hence, it is important to und
stand the effects of sampling of the measured data on
quality of reconstructed images.

In this letter, we consider the linearized inverse probl
of optical diffusion tomography with sampled and limite
data in the slab geometry. In this geometry, which is of
used in optical mammography, measurements are taken
N sources located on one face of the slab andN detectors
located on the opposite face. In addition, we assume tha
sources and detectors are placed on a square lattice
lattice spacingh. Under these assumptions, we show tha
is possible to obtain a suitably defined solution to the inve
problem in the form of an explicit inversion formula. A
important consequence of this result is that the fundame
limit of resolution in the transverse direction is the latti
spacingh. The resolution in the depth direction is a mo
delicate matter and is determined by numerical precision
the level of noise in the measurements. Resolution is fur
controlled by the size of the windowW5Nh on which the
data is taken.

We begin by considering the propagation of diffuse lig
in the slab geometry. We work in the frequency domain a
assume that the sources are harmonically modulated a
frequencyv. The detectors are assumed to yield measu
ments of the oscillatory part of the transmitted intensity. F
simplicity, we restrict our attention to the case in which t
slab is characterized by an inhomogeneous optical absorp
coefficienta(r ) and a diffusion constantD0 . The change in
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intensity of transmitted light due to fluctuations ina(r ) can
be obtained from the integral equation7,8

f~rs ,rd!5E G~rs ,rd ;r !da~r !d3r , ~1!

where thedata function f(rs ,rd) is proportional to the
change in intensity relative to a reference medium with
sorptiona0 , da(r )5a(r )2a0 , and rs and rd denote the
transverse coordinates of a point source on the planez50
and a point detector on the planez5L. The kernel
K(rs ,rd ;r ) is expressed in terms of the Green’s functio
for the diffusion equation in the reference medium and c
be expressed as the Fourier integral

G~rs ,rd ;r !5E d2qsd
2qd

~2p!4 k~qs ,qd ;z!

3exp@ i ~qs2qd!•r2 i ~qs•rs2qd•rd!#, ~2!

wherer5(r,z). General expressions for the functionsk are
given in Ref. 9 and depend upon the nature of the bound
conditions obeyed by the Green’s function. Here, we c
sider absorbing boundaries in which case

k~qs ,qd ;z!5S l *

D0
D 2 sinh@Q~qs!~L2z!#sinh@Q~qdz!#

sinh@Q~qs!L#sinh@Q~qd!L#
,

~3!

whereQ(q)5(q21k2)1/2, k is the ~generally, complex! dif-
fuse wave number given byk25(a02 iv)/D0 , andl * is the
transport mean free path.

We now turn to the derivation of the inversion formu
for sampled data. The approach we will follow is a modi
cation of the method of Refs. 10 and 11 in which an inv
sion formula was obtained for the case ofcomplete data, that
is continuously measured over the infinite faces of the s
Note that although the complete-data inversion formula,
principle, provides an exact solution to the linearized inve
problem, it is only the starting point for developing accura
numerical algorithms. To proceed, we introduce the Four
transformed data function which is defined by

f̃~u,v!5 (
rs ,rd

f~rs ,rd!ei (u•rs1v•rd), ~4!

where the sum overrs andrd is carried out over all lattice
vectors andu, v are in the first Brillouin zone~FBZ! of the
lattice. Making use of the identity (r exp(iu•r)
5(2p/h)2(sd(u2s), whereu denotes a reciprocal lattic
vector, and applying the definition~4! to Eqs.~1! and~2!, we
obtain
0 © 2002 American Institute of Physics
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f̃~u,v!5
1

h4 (
s,s8

E
0

L

k~u1s,2v2s8;z!

3dã~u1v1s1s8,z!dz, ~5!

where

dã~q,z![E da~r,z!exp~ iq•r!d2r, ~6!

ands ands8 are reciprocal lattice vectors. To avoid the use
redundant data, we multiply both sides of Eq.~5! by the
function x(u,v) which is unity inside the FBZ and zer
outside.12 Then, we define a new functionc(q,p)
5h4x(q/21p,q/22p)f̃(q/21p,q/22p) where p and q
range over all space. Making use of this definition and
change of variabless1s85s1 ands2s85s2 , we find that

c~q,p!5x~q/21p,q/22p!

3(
s1

(
s2Ps(s1)

E
0

L

dzkS p1
s11s21q

2
,

p1
s12s22q

2
;zD dã~q1s1 ,z!, ~7!

wheres(s1) is the set of values thats2 can take for a fixed
s1 . Following the general method of Refs. 10 and 11,
treat the variableq as continuous andp as discrete withp
P$p1 ,...,pM%, and define

Fm~q!5c~q,pm!, ~8!

Km~q,s1 ;z!5x~q/21pm ,q/22pm!

3 (
s2Ps(s1)

kS p1
s11s21q

2
,p1

s12s22q

2
;zD ,

~9!

so that the integral Eq.~7! becomes

Fm~q!5(
s1

E
0

L

Km~q,s1 ;z!dã~q1s1 ,z!dz. ~10!

The pseudoinverse solution to this one-dimensional inte
equation is given by

dã~q1s,z!5(
m,l

Km* ~q,s;z!Mml
21~q!Fl~q!, ~11!

where

Mlm~q!5(
s
E

0

L

Km~q,s;z!Kl* ~q,s;z!dz. ~12!

If qPFBZ ands takes all possible values in the reciproc
lattice, then Eq.~11! defines all possible transverse Four
components ofda(r ), which can be now obtained by inver
ing Eq. ~6!. We thus arrive at the main result of this lette
which is the required inversion formula forda:
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da~r !

5E
FBZ

d2q

~2p!2 exp~2 iq•r!(
m,l

Pm* ~q,r !Mml
21~q!Fl~q!,

~13!

where

Pm~q,r !5(
s

exp~ is•r!Km~q,s;z!. ~14!

Several comments on the inversion formula~13! are nec-
essary. For the case of complete data, the inverse proble
overdetermined. This should be contrasted with the cas
discrete, sampled data in which the inverse problem is
derdetermined. In either case, the solution we have c
structed to the inverse problem is the minimumL2 norm
solution to the integral Eq.~7!. If, however,da is restricted
to the subspace of transversely band-limited functions,
inverse problem with discrete data is no longer underde
mined and the sum overs in Eqs. ~14! and ~12! may be
truncated. Thus, the inversion formula produces the bes~in
the sense of minimizingL2 norm! transversely band-limited
approximation toda that is consistent with the lattice o
which the data function is sampled.

Multiple factors control the spatial resolution of imag
reconstructed using the inversion formula~13!. Numerical
stability is an important factor determining resolution and
influenced by the existence of small singular values ofM .
Accordingly, M 21 must be regularized by setting

M 215 (
m51

M

Q~sm
2 2e!sm

22ucm&^cmu, ~15!

whereucm& andsm
2 are the eigenvectors and eigenvalues

M , e is a small regularization parameter, andQ(x) is the
unit step function. The minimum value ofe for which recon-
struction is numerically stable is defined by noise, and in
absence of noise by numerical precision. For sufficien
small e, the transverse resolution is defined only by the s
of the FBZ in integration~13! and, therefore, is equal toh. In
contrast, the depth resolution always depends one and in the
absence of noise is determined by numerical precision. R
lution can further decrease when the window sizeW is finite.
Indeed, the inversion formula derived here uses data on
infinite lattice. In the case of finiteW, f(rs ,rd) is not
known for all values of its arguments. Therefore, Four
transformation of the data function according to Eq.~4! can
be carried out only approximately, by truncating the infin
sum. The effect of this truncation is to introduce addition
systematic errors inFl(q). Reconstruction using such da
will require an increased regularization parameter and w
have lower resolution.

To illustrate the nature of the resolution for differe
values ofh and W, we have performed numerical simula
tions using continuous wave~cw! data (v50). The object to
be imaged is a small point absorber of the formda(r )
5ad(r2r0), located between the two measurement pla
at r05(0,0,L/2). Integration overq in Eq. ~13! is performed
by discretizing the integration region~41341 discrete values

IP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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of q!, and the vectorspm are chosen to be of the formpm

5(m21)Dpêx , m51,...,M21 with Dp5p/@(M21)h#
andM520. The distance between the measurement planL
is chosen to be equal to the diffuse wavelengthl52p/k
~l;10 cmin vivo!, and the field of view of the reconstructe
images isL3L. The pixels in the images coincide with th
source–detector lattice spacingh.

The dependence of the fundamental limit~in the absence
of noise! of transverse resolution onW andh is illustrated in
Fig. 1. First, it can be seen that in the case of sufficien
largeW andh, the resolution limit is indeed equal toh. For
h smaller than a certain value~which depends onW!, there is
no further improvement in the resolution. For example,
W53L, the resolution limit is achieved ath'L/20. In the
case of an infinite window, the resolution does not impro
for h,L/40 due to purely computational reasons: The fu
tions Km , in Eq. ~9!, decay extremely rapidly withz at the
edge of the FBZ, which leads to numerical instabilities.
arrangement, which is practically feasible at the present ti
corresponds toW52L,L510h ~4003400 source–detecto
pairs!. In this case, the resolution achieved is approximat
l/10. However, significantly higher resolution can be,
principle, achieved with more data.

The resolution in the depth direction is illustrated in F
2. In Fig. 2, we have fixedh5L/10 and considered differen
values ofW. In some of the reconstructed images, Gauss
noise of zero mean is added to data at the levels~relative to
the mean signal! n as indicated. It can be concluded that f
W52L and n51%, the resolution is limited by the finite
ness of the window rather than by noise. It can be impro
by using a larger window (W54L) and simultaneously de
creasinge from 10212 to 10215. At this point, the resolution

FIG. 1. ~Color! Transverse resolution for different values of parameterh
andW.
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is controlled by noise, and further increase ofW does not
lead to any improvement. In the third column, we show t
images obtained for the same window size but withn50.

In conclusion, we have studied the transverse and de
resolutions for optical tomography with sampled data. It w
found that the fundamental limit of transverse resoluti
scales as the the transverse separation between ne
sources~detectors! and can be as small asl/40.
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