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Effects of sampling and limited data in optical tomography
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We consider the image reconstruction problem for optical tomography in the transmission geometry.
We investigate the effects of sampling and limited data on this inverse problem and derive an
explicit inversion which is computationally efficient and stable in the presence of nois2002
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The propagation of near-infrared light in many biologi- intensity of transmitted light due to fluctuations d{r) can
cal tissues is characterized by strong multiple scattering anbe obtained from the integral equatidh
relatively weak absorptioh.Under these conditions, the
transport of light can be regarded as occurring by means of d)(ps,pd):J I'(ps,pqy;r)da(r)dr, (D)
diffusing waves* There has been considerable recent interest
in the use of such waves for medical imaghghe physical Where thedata function ¢(ps.pg) is proportional to the
problem under consideration consists of recovering the optich@nge in intensity relative to a reference medium with ab-
cal properties of the interior of an inhomogeneous mediuntOPtion ao, da(r)=a(r)—ao, andps and py denote the

from measurements taken on its surface. A fundamentdf@nSverse coordinates of a point source on the pzn@

guestion of substantial practical importance concerns the im"Zmd a point detector on the plane=L. The kemel

pact of limited data on this inverse scattering probfeth. K(ps.pq:T) is expressed in terms of the Green's functions

) . . . o . for the diffusion equation in the reference medium and can
This question arises since it is often not possible to measure

L . Pe expressed as the Fourier integral

all the data which is necessary to guarantee uniqueness oOr
stability of a solution to the inverse problem. A related ques- [ d*asd?qq _
tion is how to recover the properties of the medium with ar(ps’pd’r)_f (2m)* «(Gs,00:2)
certain spatial resolution. Hence, it is important to under- , i
stand the effects of sampling of the measured data on the Xexfi(ds—0g) - p~i(ds:ps—da-pa)], (2
quality of reconstructed images. wherer =(p,z). General expressions for the functionsre

In this letter, we consider the linearized inverse problemgiven in Ref. 9 and depend upon the nature of the boundary
of optical diffusion tomography with sampled and limited conditions obeyed by the Green’s function. Here, we con-
data in the slab geometry. In this geometry, which is oftersider absorbing boundaries in which case
used in optical mammography, measurements are taken with _ 1* \ 2sin{ Q(qe) (L — 2) ]sin{ Q(qy2) ]
N sources located on one face of the slab &hdetectors k(0s,04;2) = D- SINM Q(q9)L ]SiNH Q(g)L ]
located on the opposite face. In addition, we assume that the 0 G Y

sources and detectors are placed on a square lattice with o L2 L )
lattice spacinch. Under these assumptions, we show that itwhereQ(q)—(q Tk _) Kis the(ge_nerally, comple_)<d|f-
use wave number given yf=(ao—iw)/Dy, andl* is the

is possible to obtain a suitably defined solution to the invers%
. L . ransport mean free path.
problem in the form of an explicit inversion formula. An

. . . We now turn to the derivation of the inversion formula
important consequence of this result is that the fundament%r sampled data. The approach we will follow is a modifi-
limit of resolution in the transverse direction is the lattice P . pp

. L T cation of the method of Refs. 10 and 11 in which an inver-
spacingh. The resolution in the depth direction is a more

deli dis d ined b ical . sion formula was obtained for the casecoimplete datathat
elicate matter and is determined by numerical precision ang continuously measured over the infinite faces of the slab.

the level of noise in the measurements. Resolution is furthegyie that although the complete-data inversion formula, in
controlled by the size of the windoW/=Nh on which the  inciple, provides an exact solution to the linearized inverse
data is takep. o . . ~ problem, it is only the starting point for developing accurate

We begin by considering the propagation of diffuse light,ymerical algorithms. To proceed, we introduce the Fourier-

in the slab geometry. We work in the frequency domain andransformed data function which is defined by
assume that the sources are harmonically modulated at the

frequencyw. The detectors are assumed to yield measure- Gy v)= > ¢(pg,py)e U PstVPd), (4)
ments of the oscillatory part of the transmitted intensity. For Ps.Pq

SlmpIICIty, we restrict our attention to the case in which thewhere the sum ovep and P is carried out over all lattice
slab is characterized by an inhomogeneous optical absorptiafectors andi, v are in the first Brillouin zondFBZ) of the
coefficienta(r) and a diffusion constarid,. The change in  |attice. Making use of the identity S ,exp(u- p)
=(2mw/h)228(u—s), whereu denotes a reciprocal lattice

dElectronic mail: vmarkel@altai.wustl.edu vector, and applying the definitiad) to Egs.(1) and(2), we
YElectronic mail: jcs@ee.wustl.edu obtain
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- 1 L
H(u,v)= FE J;) k(U+s,—V—5;2)

X da(u+v+s+s,z)dz, (5)

where

55(0,2)= f Sa(p2)exp(ia- p)dZp, ®)

andsands’ are reciprocal lattice vectors. To avoid the use of
redundant data, we multiply both sides of E§) by the
function x(u,v) which is unity inside the FBZ and zero

outside'? Then, we_define a new functiony(q,p)
=h*y(a/2+p,q/2—p) ¢(q/2+p,q/2—p) where p and q
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Sa(r)
d?q . . B
- fFBz(Zﬂ')ZeXF(_Iq'p)% PRL(@,n)M (@) F(a),
(13
where
Pr(@.1)=2 explis p)Kn(d:52). (14)

Several comments on the inversion form(l8) are nec-
essary. For the case of complete data, the inverse problem is
overdetermined. This should be contrasted with the case of

range over all space. Making use of this definition and thedlscrete, sampled data in which the inverse problem is un-

change of variables+s'=s; ands—s'=s,, we find that

#(q,p) = x(a/2+p,q/2—p)

L +s,+
XE 2 dzk p+sl—52q,
S sca(s) Jo 2
p+¥;2)5&(q+sl,z), (7)

wherea(s,;) is the set of values tha, can take for a fixed

derdetermined. In either case, the solution we have con-
structed to the inverse problem is the minimurA norm
solution to the integral Eq.7). If, however, d« is restricted
to the subspace of transversely band-limited functions, the
inverse problem with discrete data is no longer underdeter-
mined and the sum oves in Egs. (14) and (12) may be
truncated. Thus, the inversion formula produces the best
the sense of minimizing.2 norm transversely band-limited
approximation toda that is consistent with the lattice on
which the data function is sampled.

Multiple factors control the spatial resolution of images

s,. Following the general method of Refs. 10 and 11, wereconstructed using the inversion formul&3). Numerical

treat the variabley as continuous ang as discrete wittp
e{p1,..-.Pu}, and define

Fm(Q) = ¢(d,pm), (8

Km(QuS;L,Z):X(q/Z"” pmrq/2_ pm)

+s,+ —-s,—
> +51 S q,p+31 S q;z,
s2€a(s1) 2 2
€)
so that the integral Eq7) becomes
L
Fm(q)=§ foKm(q,sl;z)é”Zv(Qvle,z)dz. (10

. . . . . . |
The pseudoinverse solution to this one-dimensional mtegraI

equation is given by

5a<q+s,z>=; KE(a,S2M (@) Fi(q), (1)
where
L
Mlm(q)=25 fo Km(a,52)K{ (q,s,z)dz (12

stability is an important factor determining resolution and is
influenced by the existence of small singular valuesviof
Accordingly, M~ must be regularized by setting

M
M~ 1= O(d2—e)an?lcn)(Cnl, (15)
m=1

where|c,,) and afn are the eigenvectors and eigenvalues of
M, € is a small regularization parameter, afqx) is the
unit step function. The minimum value effor which recon-
struction is numerically stable is defined by noise, and in the
absence of noise by numerical precision. For sufficiently
small ¢, the transverse resolution is defined only by the size
of the FBZ in integratior{13) and, therefore, is equal ta In
contrast, the depth resolution always depends and in the
absence of noise is determined by numerical precision. Reso-
Ption can further decrease when the window &/¢és finite.
ndeed, the inversion formula derived here uses data on an
infinite lattice. In the case of finitdV, ¢(ps,py) iS not
known for all values of its arguments. Therefore, Fourier
transformation of the data function according to E4).can
be carried out only approximately, by truncating the infinite
sum. The effect of this truncation is to introduce additional
systematic errors ifr(q). Reconstruction using such data
will require an increased regularization parameter and will
have lower resolution.

To illustrate the nature of the resolution for different
values ofh and W, we have performed numerical simula-

If qe FBZ ands takes all possible values in the reciprocal tions using continuous wavew) data = 0). The object to
lattice, then Eq(11) defines all possible transverse Fourierbe imaged is a small point absorber of the fodw(r)
components ob«(r), which can be now obtained by invert- =ad(r—ry), located between the two measurement planes
ing Eqg. (6). We thus arrive at the main result of this letter, atry=(0,0L/2). Integration oveq in Eq. (13) is performed

which is the required inversion formula fée:

by discretizing the integration regiqd1x 41 discrete values
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FIG. 1. (Color) Transverse resolution for different values of paramekers
andW.

of g), and the vectorp,, are chosen to be of the form,,
=(m—-1)Apg, m=1,...M—1 with Ap==/[(M—1)h]
andM = 20. The distance between the measurement planes
is chosen to be equal to the diffuse WavelengchW/k FIG. 2. (Color Depth resolution for different values &%, levels of noise
(A~10 cmin vivo), and the field of view of the reconstructed n, and regularization parameter
images isL X L. The pixels in the images coincide with the
source—detector lattice spacihg

The dependence of the fundamental lifiit the absence

W=2L, n=1%, W=4L, n=1%, W=4L, n=0,
e=10"2* e=1072% g=10"2"

is controlled by noise, and further increaseWfdoes not
lead to any improvement. In the third column, we show the

of noise of transverse resolution a andh is illustrated in ~ Mages obtained for the same window size but wthO0.
Fig. 1. First, it can be seen that in the case of sufficiently N conclusion, we have studied the transverse and depth

largeW andh, the resolution limit is indeed equal to For resolutions for optical tomography with sampled data. It was

h smaller than a certain valu@hich depends ol), there is found that the fundamental limit of tra_nsverse resolution
no further improvement in the resolution. For example, forscales as the the transverse separation between nearest
W=3L, the resolution limit is achieved &t~L/20. In the Sourcestdetectorsand can be as small a340.

case of an infinite window, the resolution does not improve  Tpis research was supported by the NIH.

for h<L/40 due to purely computational reasons: The func-
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