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ropagation of diffuse light in a turbid medium
ith multiple spherical inhomogeneities

italiy N. Pustovit and Vadim A. Markel

We develop a fast and accurate solver for the forward problem of diffusion tomography in the case of
several spherical inhomogeneities. The approach allows one to take into account multiple scattering of
diffuse waves between different inhomogeneities. Theoretical results are illustrated with numerical
examples; excellent numerical convergence and efficiency are demonstrated. The method is generalized
for the case of additional planar diffuse–nondiffuse interfaces and is therefore applicable to the half-space
and slab imaging geometries. © 2004 Optical Society of America
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. Introduction

omographic imaging methods utilizing nonionizing
ear-IR light have drawn continuously growing at-
ention in recent years.1 These methods are dra-
atically different from the conventional x-ray

omputerized tomography2 owing to strong multiple
cattering of the probing radiation inside the tissue.
ndeed, propagation of the near-IR radiation in the
o-called transparency window �700 nm � � � 900
m� in most biological tissues is characterized by
elatively weak absorption and strong scattering and
s often described theoretically by the diffusion equa-
ion for the density of electromagnetic radiation.3
he imaging modality based on detection of the
ultiply-scattered light has been referred to as dif-

usion tomography.
Obtaining tomographic images with the use of dif-

use light requires one to solve an ill-posed inverse
roblem.4 This ill-posedness is known to limit spa-
ial resolution and quality of the obtained images.
n addition, the inverse problem of the diffusion to-
ography is nonlinear.4 Owing to the above circum-
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tances, a significant effort has been devoted to
ptimizing instrumentation, data-collection schemes,
nd image-reconstruction algorithms with the ulti-
ate goal of improving the quality and reliability of

he obtained images �see, for example, Refs. 5–10�.
ften such optimization is done in numerical exper-

ments with the use of mathematical phantoms.
umerical experiments are especially important for
alidation and optimization of the analytical image-
econstruction methods,9–13 which utilize extremely
arge data sets. The use of mathematical phantoms
equires, in turn, accurate forward solvers to gener-
te numerical data for the inverse problem. The
nite-difference and finite-element methods are gen-
ral and allow one to generate data for phantoms of
rbitrary shape. However, in three dimensions
hese methods can be exceedingly demanding com-
utationally, and their accuracy is difficult to con-
rol. On the other hand, analytical forward solvers
ave been obtained so far only for mathematical
hantoms in the shape of isolated spherical inho-
ogeneities.14 It is clear that more complicated

hantoms are required for evaluation of different
mage-reconstruction algorithms and data-collection
chemes. Single spherical inhomogeneities can be
specially inadequate for evaluating nonlinear
mage-reconstruction algorithms,4,15 in which multi-
le scattering of diffuse waves can play an essential
ole. In this case, it is important to obtain accurate
orward solvers for several inhomogeneities, includ-
ng the effects of multiple scattering not only inside
ach inhomogeneity �as was done in Ref. 14� but also
etween different inhomogeneities.
In this paper we develop a semianalytical forward

olver for the case of multiple interacting spherical
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nhomogeneities. More specifically, we obtain the
ata function in the form of an analytical expansion
hose coefficients must be found numerically from a

ystem of linear equations. Note that this system of
quations, unlike the inverse problem of diffusion
omography, is well posed and therefore allows an
ccurate numerical solution. Note that the forward
olver developed in this paper is inadequate for iter-
tive image-reconstruction algorithms such as the
unctional Newton’s method when the target is not
nown a priori and is not necessarily a collection of
pheres. It is rather intended for accurate genera-
ion of forward data in numerical experiments with
athematical phantoms of spherical shape.
The problem of multiple scattering of electromag-

etic waves from several interacting spherical parti-
les was solved previously.16–18 In this paper we
xtend the theoretical approach developed earlier for
he Maxwell equations to the diffusion equation that
escribes propagation of diffuse waves. Note that
low convergence of solutions can be a major problem
n the electromagnetic case. Indeed, obtaining accu-
ate solutions for touching spheres with a metallike
ielectric function requires extremely high-order ex-
ansion coefficients and is therefore computationally
neffective, if at all possible.19 However, in the case
f diffusing waves, the convergence is much faster
ven for high-contrast touching spherical inhomoge-
eities �high contrast of the inhomogeneities with
espect to the background is the mathematical analog
f the large dielectric function of metals in the elec-
romagnetic case�.

The paper is organized as follows. In Section 2 we
evelop the theoretical formalism for scattering of
iffuse waves from multiple spherical inhomogene-
ties embedded in an infinite macroscopically homo-
eneous medium. Numerical examples are given in
ection 3. In Section 4 we generalize the theoretical
pproach to the case in which the scattering medium
s not infinite �either a half-space or a slab� and con-
ider additional boundary conditions on diffuse–
ondiffuse interfaces. Finally, Section 5 contains a
ummary of obtained results.

. Theoretical Model

e start with the description of the theoretical
odel. The fundamental assumption of this paper

s that the energy density of diffuse light u�r, t� pro-
uced by a spatially and time-varying source S�r, t�
beys the diffusion equation

�u�r, t�
�t

� � � �D�r��u�r, t�� � 	�r�u�r, t�

� S�r, t�, (1)

here 	�r� and D�r� are the position-dependent ab-
orption and diffusion coefficients. Note that 	 and

are related to the scattering and absorption coeffi-
ients 
a and 
s, which are commonly encountered in
he radiative transfer theory by 	 � c
a and D �
��3�
 
 �1 � g�
 ��, where c is the average velocity
a s
f light in the medium and g is the asymmetry factor.
hus 	 has units of frequency, and D has units of area
er unit time. We further assume that 	�r� and D�r�
re piecewise constant, i.e.,

	�r� � � 	� , r� �
i�1

N

Vi

	i, r � Vi

, (2)

D�r� � � D� , r� �
i�1

N

Vi

Di, r � Vi

. (3)

ere Vi, i � 1, . . . , N, are spherical regions defined
y �r � ri� � ai, where ri and ai are the radius vector
f the center and the radius of the spherical region Vi,
espectively, 	� and D� are the background values of
he absorption and diffusion coefficients, and 	i and
i are the respective values inside the ith spherical

egion.
In most practical applications, the source of diffuse

adiation is located outside the area where the optical
oefficients are inhomogeneous and is harmonically
mplitude modulated according to S�r, t� � S�r��1 

exp��i�t��, where A � 1. �Continuous-wave �cw�

maging corresponds to the case A � 0.� Then ev-
rywhere in space, except for the surfaces of discon-
inuity of 	 and D, Eq. �1� takes the form

��2 � k2�r��u�r� � �
1
D�

S�r�, (4)

here u�r� is the Fourier component of u�r, t� oscil-
ating at the frequency � and the �generally, complex�
iffuse wave number k�r� is also piecewise constant
nd given by

k�r� � �	�r� � i�
D�r� �1�2

� � k� , r� �
i�1

N

Vi

ki, r � Vi

, (5)

here

k� � �	� � i�
D� �1�2

, ki � �	i � i�
Di

�1�2

. (6)

n addition, on the surfaces of discontinuity �r � ri� �

i, the following boundary conditions must be satis-
ed20:

u�r�ri
�ai���n̂ � u�r�ri
�ai
��n̂, (7)

Din̂ � �u�r�ri
�ai���n̂ � D� n̂ � �u�r�ri
�ai
��n̂, (8)

here � is an infinitesimally small constant and n̂ is
n arbitrary unit vector. The first equation ex-
resses continuity of the field u�r� across the inter-
aces, and the second equation expresses continuity of
he normal component of the flux.

Because point sources are most often used in dif-
usion tomography, we will obtain the solution to Eq.
4� for a point source of the form S�r� � S0��r � rs�,
here rs is the location of the source. More general

olutions can be easily obtained by superposition.
he geometry of the problem is illustrated in Fig. 1.
1 January 2004 � Vol. 43, No. 1 � APPLIED OPTICS 105
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or an arbitrary point P characterized by the radius
ector r, we introduce the notation Ri � r � ri. We
lso denote the vector drawn from the center of the
th sphere to the source as Rsi � rs � ri.

Now we briefly outline the method for matching the
oundary conditions on the surfaces of discontinuity.
he approach described below is based on translation
f scalar spherical harmonics and is analogous to the
ne used in the electromagnetic theory. There are,
owever, substantial differences. Most impor-
antly, unlike the propagating electromagnetic
aves, the diffuse waves are exponentially decaying.3
econd, the diffuse waves are scalar. In the electro-
agnetic case, expansion of the electric field inside a

phere into vector spherical harmonics starts from
he order l � 1. However, expansion of the field u
nside a sphere into the scalar spherical harmonics
tarts from the order l � 0. This fact changes the
ature of the dipole approximation as it may be ap-
lied to the multiple scattering of diffuse waves.
ast, the field u�r, t� has the physical meaning of the
nergy density and is therefore strictly positive.
his fact puts certain restrictions on the expansion
oefficients introduced below. Note that these re-
trictions are not present in the electromagnetic case.
The field inside the ith sphere must satisfy Eq. �4�
ith k�r� � ki and be finite everywhere inside the

phere. Therefore it can be expanded as

u�r� � �
l�0

�

�
m��l

l

Ailmil�kiRi�Ylm�R̂i�, Ri � ai. (9)

ere Ailm are unknown coefficients, il�x� � i�1 jl�ix�
re the modified spherical Bessel functions of the first
ind, and Ylm�R̂i� are the spherical functions defined
y the direction of the unit vector R̂i � Ri�Ri in the
aboratory frame. Outside the spherical regions Vi,
he field is given by a superposition of the incident
eld u �r� �which is equal to the field produced by the

ig. 1. Sketch of the problem geometry and graphical illustration
f the definitions of vectors Ri and Rsi and rij. The source �S�, the
oint of observation �P�, the center of laboratory reference frame
O�, and two spheres are shown.
0

06 APPLIED OPTICS � Vol. 43, No. 1 � 1 January 2004
ource in an infinite homogeneous medium� and the
cattered field us�r�:

u�r� � u0�r� � us�r�, r� �
i�1

N

Vi. (10)

he incident field is given by

u0�r� �
S0 exp��k� �r � rs��

4�D� �r � rs�

�
S0 exp��k� �Ri � Rsi��

4�D� �Ri � Rsi�

� �
l�0

�

�
m��l

l

Bilm
�0� il�k� Ri�Ylm�R̂i�, � i, (11)

here

Bilm
�0� �

S0k�

D�
kl�k� Rsi�Y*lm�R̂si� (12)

nd kl�x� � �ilhl
�1��ix� is the modified spherical Han-

el function of the first kind �defined without the ��2
actor�. The last equality in Eq. �11� was obtained by
xpansion of a spherical wave into spherical harmon-
cs with the additional condition Ri � Rsi. This in-
quality is valid in a sufficiently close vicinity of the
urface of any sphere, provided that the source is
eparated from this surface by a finite distance. Be-
ause we will use only Eqs. �11� and �12� to satisfy
oundary conditions on the surfaces of discontinuity,
e do not need to consider the case Ri � Rsi. Note
lso that the sum in the right-hand side of Eq. �11�
oes not depend on the number of the spherical in-
omogeneity, i, even though individual terms depend
n this index. Thus expansion �11� with coefficients
iven by Eq. �12� is valid for any value of i. A specific
epresentation �for a given value of i� will be used to
atisfy the boundary conditions on the surface of the
th sphere.

The scattered fields us�r� are a superposition of
elds scattered by all spherical inhomogeneities:

us�r� � �
i�1

N

usi�r�. (13)

he functions usi�r� can be, in turn, expanded as

usi�r� � �
l�0

�

�
m��l

l

Bilmkl�k� Ri�Ylm�R̂i�, (14)

here Bilm is another set of unknown coefficients.
We seek to satisfy boundary conditions �7� and �8�

n the surface of each sphere. Let us consider the
th sphere and write the scattered field in the vicinity
f its surface as

us�r� � usi�r� � �
j�i

usj�r�. (15)

hus we have separated the field scattered by the ith
phere from the input of all other spheres. Next, we



u
s

w

a
e

a

R
fi

N
i
s
r
t

D

H
H
fi

a
t

w

I
l
w
s

a
m
e
t
f
�

n
i

H
m
t
f
t
e
s
p
a
c
�
t
i
c
n
N
i
s

i
t

w
a
B

3

W
a

se the following formula for translation of scalar
pherical harmonics21:

kl�k� Rj�Ylm�R̂j� � �
l�0

�

�
m��l

l

Klm
l�m��rij�il��k� Ri�Yl�m��R̂i�,

(16)

here

Klm
l�m��rij� � 4���1�l� �

l���l��l�

�l�
l�

�l�,m�
l,m,l�,m�m��l��k� rij�

� Yl�,m�m��r̂ij� (17)

nd rij � ri � rj and the coefficients �l�,m�
l,m,l�,m� are

xpressed in terms of the Wigner three-j symbols

� j1 j2 j3

m1 m2 m3
�

s

�l�,m�
l,m,l�m� � ��1�m��2l � 1��2l� � 1��2l� � 1�

4� �1�2

� � l l� l�
0 0 0�� l l� l�

�m m� m�� . (18)

earranging indexes, we can write the total external
eld in the vicinity of the ith sphere as

u�r� � �
l�0

�

�
m��l

l

Bilm
�0� il�k� Ri�Ylm�R̂i�

� �
l�0

�

�
m��l

l

Bilmkl�k� Ri�Ylm�R̂i�

� �
j�i

�
l�0

�

�
m��l

l

il�k� Ri�Ylm�R̂i�

� �
l��0

�

�
m���l�

l�

Kl�m�
lm �rij� Bjl�m�. (19)

ow we substitute expressions �9� and �19� for the
nternal and external fields near the surface of the ith
phere into boundary conditions �7� and �8�. This
esults in a system of linear equations with respect to
he unknown coefficients Ailm and Bilm:

Ailmil�kiai� � il�k� ai��Bilm
�0� � �

j�i
�
l��0

�

�
m���l�

l�

Kl�m�
lm �rij�

� Bjl�m�� � kl�k� ai� Bilm, (20)

iki Ailmi�l�kiai� � D� k� �i�l�k� ai��Bilm
�0� � �

j�i
�
l��0

�

�
m���l�

l�

� Kl�m�
lm �rij� Bjl�m�� � k�l�k� ai� Bilm� .

(21)

ere primes denote derivatives of the Bessel and
ankel functions. We can eliminate the internal
eld coefficients A from Eqs. �20� and �21� to obtain
ilm
system of equations of reduced size with respect to
he external field coefficients Bilm, which has the form

Bilm

�il
� �

j�i
�
l��0

�

�
m���l�

l�

Klm
l�m��rij� Bjl�m� � �Bilm

�0� , (22)

here

�il �
Diki il�k� ai�i�l�kiai� � D� k� il�kiai�i�l�k� ai�

Diki i�l�kiai�kl�k� ai� � D� k� il�kiai�k�l�k� ai�
. (23)

n particular, in the limit rij 3 � �noninteracting
imit� the second term in Eq. �22� may be omitted, and
e obtain Bilm � ��ilBilm

�0� , which is the standard
calar Mie solution.
The system of equations can be written compactly

s ¥jl�m�Wilm
jl�m� Bjl�m� � �Bilm

(0) . In the cw case, the
atrix W is Hermitian, i.e., Wilm

jl�m� � �Wjl�m�
ilm �*. How-

ver, for a finite modulation frequency �, it is nei-
her Hermitian nor symmetrical. Instead, the
ollowing symmetry property is fulfilled: Wilm

jl�m����
�Wjl�m�

ilm �����*.
The quantity of interest in diffusion tomography is

ot u�r� but the scattered field us�r� or, more specif-
cally, the quantity

�I�r� �
c

4�
�u0�r� � u�r�� � �

c
4�

us�r�. (24)

ere c � c0�n is the average speed of light in the
edium �c0 is the speed of light in vacuum, and n is

he average refractive index of the medium�, and the
actor c�4� is introduced to relate the density of elec-
romagnetic energy u�r� to the physically measurable
nergy flux I�r�. The quantity �I�r� in the left-hand
ide of Eq. �24� is the change in the flux due to the
resence of inhomogeneities. This quantity is usu-
lly referred to as the data function. It can be cal-
ulated at any point in space by use of Eqs. �13� and
14�, where the coefficients Bilm must be found from
he system of Eqs. �22�. The latter is a system of
nfinite size and must be truncated in any numerical
alculation at some maximum value l � lmax. The
umber of equations in the truncated system is
�lmax 
 1�2. One may assume that the convergence

s reached when the function us�r� does not change
ubstantially when lmax is further increased.
Once the external field coefficients are found, the

nternal field coefficients can be calculated by use of
he formula

Ailm � �Bilm

D� �k� ai
2

Diki il�k� ai�i�l�kiai� � D� k� il�kiai�i�l�k� ai�
,

(25)

hich follows directly from the system of Eqs. �20�
nd �21� and the Wronskian relations for the modified
essel and Hankel functions.

. Numerical Simulations

e now illustrate the theoretical results obtained
bove with numerical simulations of the data func-
1 January 2004 � Vol. 43, No. 1 � APPLIED OPTICS 107
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ion �24� for different numbers and arrangements of
pherical inhomogeneities. We consider the cw case
� � 0�, so that the values of ki and k� are purely real.

e also assume that all the spheres are of the same
adius ai � a @ i and that the inhomogeneities are
urely absorbing, namely, Di � D� @ i. First, we
onsider strongly absorbing inhomogeneities with
i � 16	� @ i; correspondingly, ki � 4k� @ i. It can be
asily verified that, if 	i � 	� @ i and Di � D� @ i, the

ig. 2. Sketch of the data-collection scheme. The position of the
ource is fixed with respect to the inhomogeneities, and the detec-
or is scanned on the Z axis. The distance between the source and
he Z axis is L � �diff � 2��k� .

ig. 3. Data function �I calculated as a function of the detector
osition Z for two touching spheres with radii a � 0.2L and centers
t �0, 0.3L, 0� and �0, 0.7L, 0� for the intensity of the source S0 �
00 mW and k1 � k2 � 4k� . �a� Convergence of the solution with

max, and �b� comparison of the fully converged result with the
oninteracting approximation for the same value of l .
max

08 APPLIED OPTICS � Vol. 43, No. 1 � 1 January 2004
ata function �24� is strictly positive. Further, we
ave selected the following values of the background
oefficients: 	� � 1 GHz and D� � 1 cm2�ns, which
orrespond to the typical values in biological tissues.
he corresponding background diffuse wave number

s k� � 1 cm�1. The average speed of light in the
edium is chosen to be c � 2.26 � 1010 cm�s, which

orresponds to the refraction index of water �n �
.33�. We have also chosen the intensity of the
ource to be S0 � 100 mW, and the data function is
isplayed in physical units �milliwatts per square
entimeter�. The geometry of the measurements is
hown in Fig. 2. Here the source is fixed with re-
pect to the inhomogeneities, and the detector is
canned in the plane separated from the source by
he distance L � �� diff � 2��k� , where �� diff is the
iffuse wavelength.
The results for two touching spheres of the radius
� 0.2L whose centers are placed along and perpen-
icular to the Y axis are shown in Figs. 3 and 4,
espectively. In the top panels �Figs. 3�a� and 4�a��
he convergence of the data function with lmax is il-
ustrated. We note that the fully converged results
re strictly positive, as expected. The bottom panels
Figs. 3�b� and 4�b�� show the effect of intersphere

ultiple scattering. Namely, we compare the fully
onverged data function �solid curves� for two spheres
ith the data function obtained for the same value of

when the interaction term in Eq. �22� is neglected

ig. 4. Same as in Fig. 3 but for two touching spheres with radii
� 0.2L and centers at �0, 0.5L, 0.2L� and �0, 0.5L, �0.2L�.
max
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radii a � 0.2L and centers at �0, 0.3L, 0� and �0, 0.8L, 0�.

F
radii a � 0.2L and centers at �0, 0.5L, 0.3L� and �0, 0.5L, �0.3L�.
dashed curves�. First, we note that, even though
he spheres are touching and the contrast between
he optical properties of the spheres and the back-
round is high, convergence is reached for relatively
ow values of lmax �lmax � 4�. This value of lmax is
lose to the diffraction parameter of an isolated
phere, x � kia � 4k�a � 5. It should be noted that,
n the case of electromagnetic scattering from touch-
ng spheres, the value of lmax required for conver-
ence is, typically, much larger than x.22 This is
xplained by the fact that secondary waves scattered
y a given sphere are highly inhomogeneous inside
eighboring spheres and must therefore excite spher-

cal harmonics of high order.19 This fact was dem-
nstrated both numerically19 and experimentally.24

e believe that the reason we obtain this fast con-
ergence �compared with the electromagnetic case� is
hat the free-space Green’s function for the scalar
iffusion equations decays as 1�r at small distances,
hereas the Green’s function for the Maxwell equa-

ions �for the electric field rather than the vector
otential� decays as 1�r3 and therefore varies much
tronger in space.25 Second, it is obvious that the
nteraction of spheres is much stronger when the
enters of the spheres are located on the Y axis.
his is explained by the fact that in this case the
phere that is closer to the detector is located in the
hadow of the other sphere. It can be seen that the
esult obtained in the noninteracting representation
s severely inaccurate because it exceeds the maxi-
um possible value of �Imax � 5.6 � 10�3 mW�cm2,
hich corresponds to total absence of diffuse radia-

ion at the point Z � 0. In the case in which the
enters of the spheres are on a line that is perpendic-
lar to the Y axis �Fig. 4�, the effects of intersphere
ultiple scattering are much weaker.
The results for two nontouching spheres of the

ame radius and contrast are shown in Figs. 5 and 6.
ere the two spheres are separated by the distance of
.5a. It is interesting to note that the effects of in-
eraction remain quite strong in the case in which the
enters of the spheres are on the Y axis. However,
hen the centers of the spheres are on a line perpen-
icular to the Y axis, the effects of interaction are
lmost negligible �Fig. 6�b��.
In Fig. 7 we show results for seven touching spher-

cal inhomogeneities with radii a � 0.1L located as
escribed in the figure caption and illustrated in the
nset. Note that the convergence in this case is
eached for lmax � 2, which is, again, close to the
alue of the diffraction parameter of an isolated
phere �x � 2.5�. At the same time, effects of the
ntersphere multiple scattering remain quite strong.

Results shown in Figs. 3–7 were obtained for
trongly absorbing inhomogeneities with the contrast
f the absorption coefficient �with respect to the back-
round� of 16. The problem in this case is strongly
onlinear, and the Born approximation is inade-
ig. 5. Same as in Fig. 3 but for two nontouching spheres with
 ig. 6. Same as in Fig. 4 but for two nontouching spheres with
1 January 2004 � Vol. 43, No. 1 � APPLIED OPTICS 109
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uate. In particular, multiple scattering of diffuse
aves between different spheres is important, as can
e seen from Figs. 3�b�, 5�b�, and 7�b�. Although
hese examples are intended to illustrate the power of
he developed method in a somewhat extreme case,
he above contrast of the absorption coefficient is
arely encountered in practical situations. There-
ore we have also performed simulations for a more
ealistic value of the contrast. Namely, we have re-
eated simulations whose results are shown in Figs.
and 4 with the same parameters, except that the

ontrast of the absorption coefficient was reduced and
et to 	i � 4	� @ i. The corresponding contrast of the
iffuse wave number is ki � 2k� @ i. The results are
hown in Figs. 8 and 9. It can be seen that, in the
ase of smaller contrast, convergence with lmax is
chieved faster. This is quite evident in the case in
hich the sphere centers are on a line perpendicular

o the measurement surfaces �e.g., compare Figs. 3�a�
nd 8�a��. In particular, in the case in which ki � 2k�
i, the data function converges for lmax � 3 and is

trictly positive even for smaller lmax. When the
phere centers are on a line parallel to the measure-
ent surface, the dipole approximation lmax � 1 is

uite accurate for both values of contrast �see Figs.
�a� and 9�a��.

ig. 7. Same as in Fig. 3 but for seven touching spheres with radii
� 0.1L and centers at �0, 0.5L, 0�, �0, 0.5L, 0.2L�, �0, 0.5, �0.2L�,

0, 0.3L, 0�, �0, 0.7L, 0�, �0.2L, 0.5L, 0�, and ��0.2L, 0.5L, 0� and
i � 4k� , i � 1, . . . , 7. �The curves lmax � 1 and lmax � 2 in the top
anel are indistinguishable.�
10 APPLIED OPTICS � Vol. 43, No. 1 � 1 January 2004
. Diffuse–Nondiffuse Interfaces

he practical implementation of diffusion tomogra-
hy imaging often requires placing the imaged me-
ium in a chamber filled with index-matching fluid.
he diffusion equation �4� may be used only inside

he imaging chamber. As a result, in addition to
he boundary conditions on the surfaces of discon-
inuity inside the turbid medium �diffuse–diffuse
nterfaces�, we need to take into account boundary
onditions on the imaging surfaces �diffuse–
ondiffuse interfaces�. The theoretical approach
eveloped above can be easily generalized to include
urely absorbing and purely reflecting infinite pla-
ar diffuse–nondiffuse interfaces. The purely ab-
orbing boundary conditions are formulated as
�r�boundary � 0, whereas the purely reflecting
oundary conditions are n̂ � �u�r�boundary � 0, where

ˆ is a unit vector normal to the boundary surface.
he infinite planar interfaces appear in the half-
pace or slab imaging geometries.13 Expressions
or the physically measurable data function in the
ase in which the sources and detectors of diffuse
adiation are located close to diffuse–nondiffuse in-
erfaces are given in Ref. 26.

Accounting for the additional boundary conditions
an be done with the method of images. The case of

single planar interface is illustrated in Fig. 10.
ere the turbid medium, the source, and the spher-

cal inhomogeneities are located in the right half-

ig. 8. Same as in Fig. 3 but for a smaller contrast: k1 � k2 � 2k� .
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pace. The mirror images of the inhomogeneities
nd the source are placed in the left half-space. The
roblem of finding the solution to Eq. �4� in the right
alf-space that satisfies either absorbing or reflecting
oundary conditions on the surface Y � 0 is equiva-
ent to finding the solution in the infinite space con-
aining both the original and the image
nhomogeneities and both the original and the image
ources. �Of course, the obtained solution must be
sed only in the right half-space and has no physical
eaning in the left half-space.�

ig. 9. Same as in Fig. 4 but for a smaller contrast: k1 � k2 � 2k� .

ig. 10. Illustration of the method of images for the case of a
ingle planar interface. The turbid medium, source, and spheri-
al inhomogeneities are located in the right half-space. The mir-
or images of the inhomogeneities and source are in the left half-
pace.
Consider first purely absorbing boundaries. In
his case, we take the optical constants of the image
nhomogeneities to be the same as those of the orig-
nal inhomogeneities and the amplitude �defined as
he value of the constant A� of the image source to be
he same in absolute value as that of the original
ource but negative. One must keep in mind that in
he cw case there are no physical sources with nega-
ive amplitudes �in the case of a finite modulation
requency, the negative amplitude of the image
ource is equivalent to the relative phase shift of �
ith respect to the original source�. However, such

ources can be formally introduced in Eq. �4�. Next,
e solve Eq. �4� in the infinite space, taking into
ccount the interaction of the original and the image
pheres, as described in Section 2. The solution
ith the two sources is given simply by a superposi-

ion of the solutions obtained for each source sepa-
ately. From the symmetry of the problem, it is easy
o see that the value of u must turn to zero in the
lane Y � 0. Thus the boundary conditions at the
iffuse–nondiffuse interface are automatically ful-
lled, and the boundary conditions on the surfaces of
iscontinuity in the right half-space are fulfilled by
ne’s solving the system of Eqs. �22�. Note that in
he cw case the quantity u is purely real and strictly
ositive. It is easy to see that the positivity of u is
ot violated in the right half-space owing to the pres-
nce of a negative source in the left half-space.
rom the symmetry of the problem, the obtained u
ill be strictly negative in the left half-space, but, as
entioned above, the solution has no physical mean-

ng in that region.
In the case of reflecting boundaries, the image

ource has exactly the same �positive� amplitude as
he original source. Otherwise, the problem is
olved exactly as in the case of absorbing boundaries.
inally, in the case of a slab �two parallel diffuse–
ondiffuse interfaces�, an infinite number of images

of both the sources and the inhomogeneities� are
enerated. However, the image sources and inho-
ogeneities that are sufficiently far from the mea-

urement surfaces may be neglected owing to the
xponential decay of diffusing waves, and the calcu-
ations can be approximately carried out for a finite
ystem.

. Summary and Conclusions

e have presented an approach for accurate model-
ng of multiple scattering of diffuse waves from sev-
ral spherical inhomogeneities. The method has
emonstrated excellent convergence properties even
n the case in which the spherical inhomogeneities
re of high contrast with respect to the background
nd touching. The number of linear equations that
ust be solved to obtain the scattering coefficients

cales as N�lmax 
 1�2, where N is the total number of
he inhomogeneities and lmax is the maximum order
f scalar spherical harmonics used in the expansion
f the scattered field. We have found that it is suf-
cient to take lmax � maxi�xi�, where xi � kiai is the
iffraction parameter of the ith spherical inhomoge-
1 January 2004 � Vol. 43, No. 1 � APPLIED OPTICS 111
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eity. For example, for absorbing inhomogeneities
ith an absorption coefficient contrast of 16 times

with respect to the background� and a radius of ap-
roximately 0.2 of the diffuse wavelength �1.2 cm for
he parameters selected in the simulations�, x � 5,
nd convergence is reached for lmax � 4. Thus the
orward solution can be easily obtained, for example,
or ten spherical inhomogeneities, in which case the
otal number of equations that must be solved is only
60. This should be contrasted with the finite-
ifference or finite-element methods, for which the
umber of equations for the forward problems solved

n Section 3 can easily be as large as 106.
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