
GF User Guide

George Y. Panasyuk, John C. Schotland, Vadim A. Markel

Contact: vmarkel@upenn.edu

September 21, 2022

Summary

This Guide describes several stand-alone Fortran codes, which can be
used to compute the components of the frequency-domain electromagnetic
Green’s tensor in the half-space geometry. The Green’s tensor gives the
electric field at the point r due to a monochromatically oscillating dipole
at the point r′. Some codes compute the Green’s tensor by numerical eval-
uation of the Sommerfield integral. Others compute the tensor coefficients
of an analytical approximation, which is described in the Paper referenced
below. The approximation is applicable in many more ways than the nu-
merical integration. For example, it can be analytically continued and
used to compute the Purcell factors.

The programs can be compiled with any modern Fortran compiler such
as ifort or gfortran. No external libraries or subroutines are required.

The package is accompanied by the following paper: G.Y.Panasyuk,
J.C.Schotland and V.A.Markel, “Short-distance expansion for the elec-
tromagnetic half-space Green’s tensor: general results and an application
to radiative lifetime computations,” J. Phys. A 42, 275203 (2009). The
article can also be downloaded from here.

The authors welcome questions, comments or bug reports at the fol-
lowing e-mail address: vmarkel@upenn.edu. Please check the following
URL for updates and to download the package:
http://whale.seas.upenn.edu/vmarkel/CODES/GF.html.

Contents

1 Installation 2

2 Preliminary notes 3

3 List of files 4

4 Description of programs 5

5 Input 8

1

https://doi.org/10.1088/1751-8113/42/27/275203
https://doi.org/10.1088/1751-8113/42/27/275203
http://whale.seas.upenn.edu/vmarkel/EPUBS/JPA-2009-42-275203.pdf
mailto:vmarkel@upenn.edu
http://whale.seas.upenn.edu/vmarkel/CODES/GF.html

6 Defining the substrate permittivity 11

7 Details of numerical integration 12

8 Using GF k2g.f 13

9 IAQ (Infrequently Asked Questions) 15

1 Installation

The following instructions are given for Unix/Linux. However, the package
can also be installed and compiled under Windows or MacOS. Instructions for
Windows and MacOS are not provided.

To install the package, first unpack the archive. To unpack GF.tar.gz execute
the following sequence of commands:

gunzip GF.tar.gz [ENTER]

tar xvf GF.tar [ENTER]

If using GF.zip, simply type

unzip GF.zip [ENTER]

This will create the directory GF. Switch to that directory. You will see the
following files and subdirectories:

bin cmd.sh doc Makefile Makefile.gnu Makefile.int obj src work

Here bin is the sub-directory where the executables go, doc contains this Guide,
obj is used for compilation, src contains the code, and work contains a sample
parameter file and can be used as a working directory.

The easiest way to compile the programs is to execute the scrip cmd.sh by
typing

cmd.sh [ENTER]

The script will check whether Intel’s Fortran compiler ifort is installed and if
so use it. Otherwise, it will use Gnu Fortran compiler gfortran. Of course, if
a Fortran compiler is not installed on the computer, then nothing will work.

If not using the script cmd.sh, then copy one of the files Makefile.int or
makefile.gnu to Makefile and edit the latter. Alternatively, switch to src

directly and compile the programs one-by-one. The package consists of several
stand-alone programs, which can be compiled independently. No libraries or
external subroutines are needed.

If using cmd.sh or the Makefile, the executables will go to the bin sub-
directory. To run the codes, switch to work sub-directory and issue a command
like

../bin/GF num exb.exe [ENTER]

Replace GF num exb.exe with the name of the executable that you want to run.

2

2 Preliminary notes

Before starting to use the programs, please familiarize yourself with the following
points, which are listed below in no particular order.

• The Green’s tensor is computed in the special reference frame shown in
Fig. 1 of the Paper.

• All programs use the same input parameter file GF.par. The parameters
can be used to tune the execution in many different ways. See Sec. 5 for
details.

• Information about execution progress, conflicting or invalid parameters
is printed on the computer display. Do not ignore this information; it
is provided for a reason. If invalid parameters are read from GF.par,
execution will stop with a brief explanation. Correct the error in GF.par
but do not attempt to edit the programs to override the checks. In some
instances, the programs would want to alert you of something. Then
the execution will pause rather then stop. You can resume execution by
pressing the ENTER key.

• Output data are written to files and not printed on the display. There are
two types of files: those whose name start with a G and those whose name
start with a K. The first contain the components of the Green’s tensor and
the second contain the components of the expansion tensor coefficients
K(l).

• The Green’s tensor in the output files is dimensionalized by multiplying
it by the factor k−3

1 . Here k1 = ω
√
ǫ1/c = 2π

√
ǫ1/λ. The permittivity

of the upper half-space where the source and the point of observation are
located, ǫ1, is a positive constant by definition, possibly, unity (in the case
of vacuum).

• A single run of any of the programs in this package will perform the com-
putations for fixed coordinates of the source and the point of observation
and for multiple (possibly, just one) wavelengths. All output data are
viewed as functions of the free-space wavelength λ = 2πc/ω. This quan-
tity is printed in the first column of all output files.

• All input and output quantities which have the dimensionality of length
are assumed to be in nanometers.

3

https://doi.org/10.1088/1751-8113/42/27/275203

3 List of files

UserGuide.pdf This Guide

GF.par A file containing input parameters for all programs.
GF num inb.f Numerical computation of the Green’s tensor

using intrinsic Bessel functions BESJ0 and BESJ1.

GF num exb.f Numerical computation of the Green’s tensor
using an external subroutine to compute the Bessel functions.

GF sde asub.f Computation of the Green’s tensor using
expansion (28) up to third order, see Paper.
Applicable to all types of substrates.

GF sde tnds.f Computation of the Green’s tensor using
expansion (28) up to seventh order, see Paper.
Applicable to nonabsorbing, nondispersive substrates.
(Wavelength-independent purely real, positive permittivity ǫ2.)

GF sde tdss.f Computation of the Green’s tensor using
expansion (28) up to seventh order, see Paper.
Applicable to nonabsorbing but dispersive substrates.
(Purely real, positive, but wavelength-dependent permittivity ǫ2.)
Requires additional programming to define the function ǫ2(λ).

GF k2g Uses tensor expansion coefficients K previously written by
programs GF sde *.f to compute the Green’s tensor GR

according to the expansion (28).

Table of acronyms used in the filenames

GF Greens Function
num Numerical
sde Short-distance expansion (formula (28))
asub Absorbing substrate
tsub Transparent substrate (used in output files only)
tnds Transparent nondispersive substrate
tdss Transparent dispersive substrate
k2g Computation of GR using precomputed K

4

https://doi.org/10.1088/1751-8113/42/27/275203
https://doi.org/10.1088/1751-8113/42/27/275203
https://doi.org/10.1088/1751-8113/42/27/275203

4 Description of programs

4.1 GF num inb.f and GF num exb.f

These two programs are very similar and compute the same quantities: the
dimensionalized reflected part of the Green’s tensor, k−3

1 GR, and the dimen-
sionalized total Green’s tensor, k−3

1 G defined in Eqs. (5-8),(16), by numerical
integration according to the Simpson’s rule. See additional notes on integration
in Sec. 7.

Recall that k1 = ωn1/c is the wave number in the upper (transparent) half-
space where n1 =

√
ǫ1 > 0. We can also write k1 = 2πn1/λ where λ is the

wavelength which corresponds to the frequency ω in vacuum.
It is important to remember that this and all other programs compute the

Green’s tensor as a function of the free-space wavelength λ. This quantity is
printed in the first column of all output files. However, the wavelength in the
upper half-space (where the source and the point of observation are located)
may be different if the parameter eps 1 is chosen to be different from unity.

A single run of either of these two programs will perform computations
for fixed source and detector positions and for multiple (possibly, just one)
wavelengths λ.

The difference between the two programs is the following. The program
GF num inb.f makes use of the intrinsic Bessel functions BESJ0 and BESJ1
while GF num exb.f calls an external subroutine adapted with some modifica-
tions from the numerical library written by S.Zhang and J.Jin; see Computation

of Special Functions, Wiley, 1996, Sec.5.2. Do not worry, the subroutine is al-
ready included in the file GF num exb.f; you do not need to download or link
it as this will be done automatically. There is a very minor numerical discrep-
ancy between the results of these two programs (in sixth or seventh significant
figure). It is not really possible to tell which version is more accurate. However,
the program GF num exb.f runs approximately twice faster because the subrou-
tine used in this code computes the Bessel functions of the zeroth and the first
order in one call, which is more efficient than computing these two functions
separately.

The only constraint on the substrate permittivity ǫ2 that is placed by this
program is that its imaginary part must be non-negative. A purely real permit-
tivity is OK. There are several ways to define the permittivity. This is explained
in more detail in Sec. 6.

Output. The output of these two programs is sent to the files named:

GRxx num, GRyy num, GRzz num, GRxz num, GRzx num

GTxx num, GTyy num, GTzz num, GTxz num, GTzx num

The files whose names start with GR contain the reflected part of the Green’s
tensor while the files whose names start with GT contain the total Greens tensor.
The indices xx, yy, zz, xz and zx are self-explanatory. They label the compo-
nents of the Green’s tensor in the special reference frame shown in Fig. 1 of

5

the Paper. Each line of the output files contains three numbers: the free space
wavelength, the real part and the imaginary part of the Green’s tensor compo-
nent which is specified in the filename. There may be an arbitrary number of
lines in each file, as specified by the input parameter NL. The wavelength can
be sampled either linearly or using a logarithmic scale, as specified by the input
parameter lambda scale.

Note that zx and xz components of the Green’s tensor satisfy GR
xz = −GR

zx.
Therefore, the data in files GRxz num and GRzx num are, in fact, redundant:
they only differ by sign. The total Green’s tensor, however, does not have
this symmetry. Therefore, the files GTxz num, GTzx num are not redundant and
contain mathematically-independent data.

4.2 GF sde asub.f

This program computes the expansion coefficients K(l) for l = 0, 1, 2, 3. It
also computes the reflected part of dimensionalized Green’s tensor, k−3

1 GR, by
performing summation in Eq.(28). The program adds all terms in this expansion
with l ≤ nord ≤ 3, where nord is an input parameter.

Only the reflected part of the Green’s tensor is computed. Wondering why?
See the IAQ below.

Just like the numerical integration programs, this program is applicable to
substrate of the most general type, including absorbing and strongly dispersive
substrates. See Sec. 6 for details of specifying the substrate permittivity ǫ2.

Note that the expansion (28) given in the Paper reads for the dimensionalized
Green’s tensor:

k−3
1 GR =

∞
∑

l=0

(k1L)l−3K(l) .

Components of GR written to output files are computed according to this for-
mula. Note that same is true for all programs GF sde *.f.

Output. The output of GF sde asub.f is sent to the files named

Kxx asub, Kyy asub, Kzz asub, Kxz asub

GRxx asub, GRyy asub, GRzz asub, GRxz asub

Files Kzx asub and GRzx asub are not created due to the symmetry Kxz =
−Kzx, GR

xz = −GR
zx (the total Green’s tensor does not have this symmetry but

it is not computed by this program).
Each line in the files whose names start with K contains seven numbers. The

first number is the wavelength, λ. The next two numbers are the real and the
imaginary part of the tensor component of K(0) which corresponds to the letters
in the filename. Then, in the same manner, follow the real and imaginary parts
of K(2) and of K(3). K(1) is not given because it is identically zero. There may
be arbitrarily many lines.

The files GRxx asub, GRyy asub, GRzz asub, GRxz asub are completely sim-
ilar to the files GRxx num, GRyy num, GRzz num, GRxz num, except that the suffix

6

https://doi.org/10.1088/1751-8113/42/27/275203
https://doi.org/10.1088/1751-8113/42/27/275203

asub is used to emphasize that these data are obtained by a different method
(and to avoid overwriting previously created output files).

It is important to remember that the Green’s tensor whose components are
given in GRxx asub, GRyy asub, GRzz asub, GRxz asub is computed to the order
specified by the input parameter nord. However, the files Kxx asub, Kyy asub,
Kzz asub, Kxz asub contain all the expansion coefficients K(l) for l ≤ 3, ir-
respectively of nord, even if some of these coefficients have not been used to
compute GR. These output files can later be used as input for the program
GF k2g.f (see Sec. 8).

4.3 GF sde tnds.f

This program is similar to GF sde asub.f but differs from the latter in the
following two respects:

1. The program will only work with purely real, positive and wavelength-
independent (nondispersive) permittivity of the substrate, ǫ2. If you give
a nonzero imaginary part of ǫ2 in the GF.par file (the input parameter
eps 2 i), it will be ignored.

It is possible to run this program several times for different single wave-
lengths specifying each time a different permittivity of the substrate (in-
put parameter eps 2 r). A more direct way to account for dispersion is,
however, to use GF sde tdss.f.

2. The program computes the expansion of the imaginary part of the dimen-
sionalized reflected Green’s tensor GR up to the seventh order. That is,
imaginary parts of all terms in Eq.(28) with l ≤ nord ≤ 7 are summed
up. The real part is still computed to no higher than third order.

Output. The output of GF sde tnds.f is sent to the files named

Kxx tsub, Kyy tsub, Kzz tsub, Kxz tsub

GRxx tsub, GRyy tsub, GRzz tsub, GRxz tsub

Files Kzz tsub and GRzz tsub are not created due to the symmetry Kxz =
−Kzx, GR

xz = −GR
zx (the total Green’s tensor does not have this symmetry but

it is not computed by this program).
The only difference between the output of GF sde tnds.f and GF sde asub.f

is that the files Kxx tsub, Kyy tsub, Kzz tsub, Kxz tsub contain now 15 rather
then 7 numbers. The first number in each line is still the wavelength. The go the
real and imaginary parts of K(0), K(2), K(3), K(4), K(5), K(6), K(7) (14 numbers
total). Note however that the real parts of all K(l) with l > 3 are set to zero.
Do not be surprised to see columns of zeros in files Kxx tsub, etc. Wondering
why? See IAQ.

7

4.4 GF sde tdss.f

This program is completely similar GF sde tnds.f except that it allows the
substrate to be dispersive. That is, its permittivity ǫ2 can depend on the wave-
length. However, the user will need to program a specific formula for this
dependence. Compile and run the program, and it will print out instructions
on how to proceed.

Output of GF sde tdss.f is completely analogous to that of GF sde tnds.f.

4.5 GF k2g.f

This program takes the output of the programs GF sde asub.fAND/OR (GF sde tnds.f

OR GF sde tnds.f) and computes the reflected part of the dimensionalized
Green’s tensor, k−3

1 GR, according to the equation on p.5 of this Guide (this is
equivalent to using Eq. (28) of the Paper).

The behavior of GF k2g.f depends on the input parameter nord. See Sec. 8
for more details.

Output. GF k2g.f sends its output to files named

GRxx k2g, GRyy k2g, GRzz k2g, GRxz k2g

These files are completely analogous to the output files of the program GF num exb.f;
see the description above.

5 Input

The same input file GF.par is used by all programs. However, not every param-
eter in this file is used by every program. The first two lines in GF.par are for
informative purposes and are ignored on input. Deleting or editing these lines
may cause the programs to complain about input or crash.

The remaining 15 lines contain the following input parameters:

1: key [Type: INTEGER*4, allowed values: 0,1,2]
This parameter determines how the permittivity of the substrate, ǫ2, is com-

puted. If key=0, the substrate is assumed to be metallic and the Drude formula
is used for its permittivity. In this case, parameters lambda p, gd and eps0 are
also used to determine ǫ2. If key=1, ǫ2 is taken to be wavelength-independent
with real and imaginary parts specified by the parameters eps 2 r and eps 2 i.

Note that the key=0 option implies that ǫ2 is a function of the wavelength
while key=1 option implies that ǫ2 is a wavelength-independent constant, at
least during a single run of any of the programs described in this Guide. It
is, of course, possible to change the parameters eps 2 r and eps 2 i between
consecutive runs.

The option key=2 is for user-defined permittivity. It requires (very minimal)
additional programming. Set key=2, run the program you wish to use and it
will print instructions on how to proceed.

8

https://doi.org/10.1088/1751-8113/42/27/275203

Not all programs allow all values of key and some programs will ignore the
imaginary part given by the input parameter eps 2 i. Read the runtime mes-
sages carefully.

2: nord [Type: INTEGER*4, allowed values: −7 ≤ nord ≤ 7
This parameter tells to which order to compute GR. Numerical integration

programs GF num *.f ignore this parameter. The programs GF sde *.f ignore
the sign of this parameter. The program GF sde asub.f can not compute the
expansion to orders higher than the third; therefore, if you feed it nord>3, it
will complain and set (with your permission) nord=3.

The only program that uses the sign of nord is GF k2g.f. If on input
nord<-3, it will attempt to use the coefficients from files K** asub for orders
l = 0, 1, 2, 3 and from K* tsub, for l > 3. This is advantageous when ǫ2 has a
small but non-negligible imaginary part and you want to take it into account.
See more details in Sec. 8.

3: output prec [Type: CHARACTER*4, allowed values: S,s,D,d]
This option controls the number of digits in the numbers written to output

files. All computations are done in double precision, but the output can be writ-
ten with single precision to simplify viewing and processing of files. Obviously,
’S’ or ’s’ is for single precision output and ’D’ or ’d’ is for double precision.

Note that the wavelength is always written with single precision, irrespec-
tively of the value of output prec.

4: lambda scale [Type: CHARACTER*4, allowed values: LIN, lin, LOG, log]
All programs perform calculations for multiple wavelength starting from the

minimum value given by lambda min and ending with the maximum value given
by lambda max. The number of wavelength samples is given by nl. The param-
eter lambda scale controls whether the sampling is linear or logarithmic. The
latter option is useful if the ratio lambda max/lambda min is much larger than
unity and you wish to plot the results in a logarithmic scale.

5: lambda min, lambda max, NL [Type: REAL*8, REAL*8, INTEGER*4]
The minimum and the maximum wavelengths (in nanometers), and the total

number of wavelength samples to be used in computations. The samples are cho-
sen to include both lambda min and lambda max. The wavelength can be sam-
pled in both linear and logarithmic scales. See the description of lambda scale.

The programs will warn you if you give invalid or conflicting values for these
parameters. Note that if NL=1, only one wavelength, namely, lambda min will
be used. Also, if lambda min = lambda max, the parameter NL is reset to unity.

6: z1, z2, rho [Type: REAL*8, allowed values: must be positive]
z1 and z2 are the heights of the source and the point of observation above the

substrate. rho is the lateral distance between these two points (in nanometers).
More specifically, this is the distance between the projections of the source and

9

the point of detection onto the plane z = 0.

7: eps 2 r and eps 2 i [Type: REAL*8, allowed values: eps 2 i ≥ 0]
If key=1, these parameters are interpreted as real and imaginary parts of

the substrate permittivity ǫ2. Unlike in the case key=0, it will be assumed to
be wavelength-independent.

The codes GF sde t*.f will ignore the parameter eps 2 i and not allow
eps 2 r to be negative or zero.

8: lambda p [Type: REAL*8, allowed values: must be positive]
If key=0, this variable is interpreted as the wavelength at the plasma fre-

quency in nanometers and is used in the Drude formula for ǫ2. See Sec. 6.

9: gd [Type: REAL*8, allowed values: must be positive]
If key=0, this variable is interpreted as the dimensionless ratio of the Drude

relaxation constant, γ, to the plasma frequency, ωp. For good conductors, this
ratio is significantly less than unity. See Sec. 6.

Although the programs will allow arbitrary positive values of this parameter,
numerical integration will require a very large number of points if gd . 0.001.
Numerical integration programs will issue a warning if such a small value is
given on input. However, the smallest practically attainable value of this con-
stant is about 0.002 (for silver).

10: eps0 [Type: REAL*8, allowed values: no restrictions]
If key=0, this variable is interpreted as the contribution to the substrate per-

mittivity, ǫ2 due to the inter-zone transitions (the non-Drudean part). For noble
metals such as silver or gold, eps0 ≈ 5. In the pure Drude model, eps0 ≈ 1.
There are currently no restrictions imposed on eps0. See Sec. 6.

11: eps 1 [Type: REAL*8, allowed values: must be positive]
This is the permittivity of the upper half-space where the source and the

point of observation are located. If this half space is vacuum, set eps 1=1.

12-14: N1, N2 and N3 [Type: INTEGER*8, allowed values: N∗ ≥ 10]
These are numbers of discretization points used in numerical integration by

programs GF num *.f. In practice, should not be smaller than 103. generally,
much larger numbers are required for metal substrates than for dielectric sub-
strates. See Sec. 7 for details.

It is a very good idea to use the same values for N1, N2 and N3, at least
initially. The possibility to use different values for these parameters is provided
for fine-tuning, but should be used with caution.

In the Simpson integration scheme, the numbers N1, N2 and N3must be even.
If you give an odd number for any of these three parameters (why would you
want to do that?), it will be converted to an even number by subtracting unity.

The variable N1, N2 and N3 are declared as INTEGER*8 in case someone
wants to run integration with more than 2147483647 points, although in prac-

10

tice, this will hardly be ever necessary.

15: y max and div [Type: REAL*8, allowed values: must be positive]
These parameters are used by GF num *.f programs for numerical integra-

tion.
The parameter y max should be large; it’s a good idea to start with 104 and

check convergence by increasing this number in multiples of 10.
The parameter div in most case should be equal to 10. The capability to

change this parameter is provided but should be used with caution. See Sec. 7.

6 Defining the substrate permittivity

6.1 key=0.

If the option key = 0 is used, the substrate is assumed to be metal and its
permittivity is determined by the formula

ǫ2 = ǫ0 −
ω2
p

ω(ω + iγ)
= ǫ0 −

1

(λp/λ)[(λp/λ) + i(γ/ωp)]
.

In the above formula, ǫ0 is specified by the parameter eps0. For purely Drudean
metals, ǫ0 should be unity. A deviation of this constant from unity is usually
attributed to interzone transitions.

The constant λp = 2πc/ωp is the wavelength at the plasma frequency, in
nanometers. It is specified by the parameter lambda p.

The free-space wavelength λ = 2πc/ω is sampled by the programs. The
number of samples is determined by the parameter NL and the interval and
scale of sampling by parameters lambda min, lambda max, lambda scale.

Experimental values of the input parameters are listed below for several
metals

Metal lambda p = λp [nm] gd = γ/ωp

Al 84 0.0054
W 207 0.0089
Pb 161 0.023
Cu 157 0.0018
Ag 136 0.0019
Au 138 0.0027

6.2 key=1.

If this option is chosen, then ǫ2 is determined by reading the parameters eps 2 r

and eps 2 i. The first is interpreted as the real part of ǫ2. The second parameter
may or may not be interpreted as the imaginary part. More specifically, the
programs GF num *.f and GF sde asub.f will read the parameter eps 2 i and
interpret it as the imaginary part of ǫ2. However, the programs GF sde t*.f do
not allow complex values of ǫ2. These programs will simply ignore eps 2 i.

11

If key=1 is selected, each program will assume that ǫ2 is independent of λ
(during a single run, of course). If you wish to use wavelength-dependent ǫ2 of a
type different from the Drudean-type formula which is used if key=0, use key=2
and program your own formula.

6.3 key=2

This option is used to allow the user to program his/her own formula for ǫ2.
To do so, open the program you wish to use and find the following piece of

code:

if(key .eq. 2) then

! Enter your own formula for eps_2 here

or

else if(key .eq. 2) then

! Enter your own formula for eps_2 here

This piece of code is within a loop in which the variable lambda gives the free-
space wavelength in nanometers. Use it to program your own formula. You can
define any additional constants you wish, but remember that all variables must
be declared.

7 Details of numerical integration

Let us multiply Eq. (17) from the Paper by k−3
1 and write the result here:

k−3
1 GR(R,Z) =

1

k1

∫

∞

0

qdq

κ1(q)
exp [−κ1(q)Z]F (q,R) .

Here κ1(q) =
√

q2 − k21 and the function F (q,R) is defined in the Paper.
We then consider the intervals q ∈ (0, k1) and q ∈ (k1,∞) separately (recall

that k1 is a purely real, positive number). We then make the change of variables
√

1− (q/k1)2 = y in the first interval and
√

(q/k1)2 − 1 = y in the second
interval, which yields

k−3
1 GR(R,Z) = I1 + I ′ ,

where

I1 = −i

∫ 1

0

exp [i(k1Z)y]F
(

k1
√

1− y2,R
)

dy ,

I ′ =

∫

∞

0

exp [−(k1Z)y]F
(

k1
√

1 + y2,R
)

dy .

The integrand in the second of these integrals changes rapidly when y is small
and slow when y is large. It is, therefore, necessary to break the integral I ′ in two

12

https://doi.org/10.1088/1751-8113/42/27/275203
https://doi.org/10.1088/1751-8113/42/27/275203

parts, one over the interval (0, d) and the other over the inter over the interval
(d,∞). Numerically, we can not handle infinities, so that the last integral is
evaluated over the interval (d, ymax). The values of d and ymax are specified by
the input variables div and y max, respectively.

We thus have:

k−3
1 GR(R,Z) ≈ I1 + I2 + I3 ,

where I1 is given above and I2, I3 are

I2 =

∫ d

0

exp [−(k1Z)y]F
(

k1
√

1 + y2,R
)

dy ,

I3 =

∫ ymax

d

exp [−(k1Z)y]F
(

k1
√

1 + y2,R
)

dy .

Now, each of the integrals I1, I2 and I3 is computed by discretization according
to the Simpson Rule. The number of discretization points for the integrals is
specified by the input variables N1, N2 and N3, respectively.

Examples of numerical convergence are shown in Fig. 1 for a silver substrate.
Here the input file GF.par was the following:

Do not edit: !line! variable ! type !

Do not edit: --

0 ! 1 ! key ! I4 !

2 ! 2 ! nord ! I4 !

S ! 3 ! output_prec ! CHAR4 !

LIN ! 4 ! lambda_scale ! CHAR4 !

400.,2000.,300 ! 5 ! lambda_min, lambda_max, nl ! R8,R8,I4 !

40.,40.,40. ! 6 ! z1, z2, rho ! R8,R8,I4 !

2.5,0.01 ! 7 ! eps_2_r, eps_2_i ! R8,R8 !

136.1 ! 8 ! lambda_p ! R8 !

0.0019 ! 9 ! gd ! R8 !

5.0 ! 10 ! eps0 ! R8 !

1.0 ! 11 ! eps_1 ! R8 !

<VARIABLE> ! 12 ! N1 ! I8 !

<VARIABLE> ! 13 ! N2 ! I8 !

<VARIABLE> ! 14 ! N3 ! I8 !

<VARIABLE>,10. ! 15 ! y_max, div ! R8,R8 !

and the parameters N1, N2 and N3 were taken to be the same and equal to N .

8 Using GF k2g.f

Imagine that the permittivity of the substrate is constant but has a non-negligible
imaginary part. For example: ǫ2 = 2.5+0.1i. The program GF sde asub.f can
only compute the short-distance expansion to third order. The code GF sde tnds.f

13

N = 105
N = 104
N = 103
N = 102

ymax = 103

ReGR
xx

k3

λ, nm 20001200400

20

10

0

ymax = 103
ymax = 102
ymax = 10
ymax = 1

N = 104

ReGR
xx

k3

λ, nm 20001200400

20

10

0

Figure 1: Illustration of numerical convergence of integrals for a silver substrate
(xx-component); k = k1 = 2πc/λ.

can compute the expansion to seventh order, but it will neglect the imaginary
part of ǫ2. What should one do in this situation?

The answer is rather simple. One should compute the expansion coefficients
to third order using GF sde asub.f for ǫ2 = 2.5 + 0.1i. Then one should com-
pute the imaginary parts of the expansion coefficients to seventh order using
GF sde tnds.f. Then one should use GF k2g.f with nord = −7. This will
take the expansion coefficients which account for the small imaginary part of
ǫ2 to third order and the coefficients which do not account for this small imag-
inary part for orders 4 to 7. Since radiative effects are still dominating for this
substrate, this is better than not using the higher order corrections at all or ne-
glecting the imaginary part in all orders. This is illustrated in Fig. 2. The input
file used in calculations (used by all three programs) is given below. The exam-
ple illustrates both the usefulness of higher-order corrections and the usefulness
of the GF k2g.f program.

Note that GF k2g.f must run the last. Otherwise, the order of execution
does not matter. Goodbye.

Do not edit: !line! variable ! type !

Do not edit: ---

1 ! 1 ! key ! I4 !

-7 ! 2 ! nord ! I4 !

S ! 3 ! output_prec ! CHAR4 !

LIN ! 4 ! lambda_scale ! CHAR4 !

400.,2000.,300 ! 5 ! lambda_min, lambda_max, nl ! R8,R8,I4 !

40.,40.,40. ! 6 ! z1, z2, rho ! R8,R8,I4 !

2.5,0.01 ! 7 ! eps_2_r, eps_2_i ! R8,R8 !

136.1 ! 8 ! lambda_p ! R8 !

0.0019 ! 9 ! gd ! R8 !

5.0 ! 10 ! eps0 ! R8 !

14

1.0 ! 11 ! eps_1 ! R8 !

10000 ! 12 ! N1 ! I8 !

10000 ! 13 ! N2 ! I8 !

10000 ! 14 ! N3 ! I8 !

1.0d3,10.0 ! 15 ! y_max, div ! R8,R8 !

num
k2g
tnds
asub

ǫ2 = 2.5 + 0.1i

ImGR
zz

k3

λ, nm 20001200400

1

0.5

0

Figure 2: Example of using GF k2g.f; k = k1 = 2πc/λ.

9 IAQ (Infrequently Asked Questions)

• Why do the programs GF sde *.f compute only the reflected part of the
Green’s tensor while the programs GF num *.f can compute both the re-
flected and the total Green’s tensor?

The programs GF num *.f do not use any approximations (other than dis-
cretization of integrals) and, therefore, the reflected Green’s tensor, GR,
the free-space Green’s tensor, GF and the total Green’s tensor, GT , which
is the sum of the former two, are computed to the same level of approx-
imation (in this case, no approximation at all). However, the programs
GF sde *.f all use various levels of approximation to compute GR. It is
not clear whether we should add this result to the exact GF (which is
easily computable) or to its expansion (Eq.(9) in the Paper), computed
to the same order as was used for GR. The choice may depend on the
application and we are leaving it to the user.

• Are the programs optimized for speed? Can the numerical integration run
faster?

15

https://doi.org/10.1088/1751-8113/42/27/275203

The programs have been optimized as much as is allowed by their fairly
generic structure. In the majority of applications, execution time should
not be a problem. Numerical integration, for example, should take less
than a minute for something like 100 different wavelengths. Depending
on the computer speed and the compiler used, one can even expect a few
seconds. The analytical expansion programs run in less than noticeable
time. However, it is not difficult to envision situations when the programs
are converted to subroutines and used in nested loops. Also, if a metallic
substrate with very low losses is used, convergence of numerical integrals
may require a very large number of integration points. So, at least theo-
retically, execution speed may be a concern. Further optimization is quite
possible, for example, by precomputing tables of Bessel functions, square
roots and exponentials. However, we’d need to know the details: available
memory, which parameters change from one run to another, etc. If you
have a worthy scientific application and would like to talk to us about
optimization, send us an e-mail.

• Can’t the programs be converted to subroutines?

Quite easily. But again, this depends on the application. Let us know if
you need help.

• Why are there columns of zeros in the output files K** tsub?

Because the real parts of all tensor coefficients K(l) with l > 3 can not
be computed and are, therefore, set to zero. The columns of zeros could
certainly be omitted from the output but are kept in case we ever derive
higher-order corrections to the real parts as well. Then modification of
the code would be easier for us. The current type of output also simplifies
book-keeping.

• Why the input parameters N1, N2 and N3 are declared as INTEGER*8?

In case someone fancies using more than 2147483647 integration points.

• Why are there two different programs for a transparent substrate, GF sde tnds.f

and GF sde tdss.f?

This is an instance of the so-called optimization, most likely, unnecessary.

16

• Should I use GF num exb.f or GF num inb.f?

GF num exb.f is almost always preferable. GF num inb.f is provided for
comparison in case there is doubt.

• Have the programs been tested?

Yes.

17

	Installation
	Preliminary notes
	List of files
	Description of programs
	Input
	Defining the substrate permittivity
	Details of numerical integration
	Using GF_k2g.f
	IAQ (Infrequently Asked Questions)

