# Unidirectional Wave in Structured Chain Waveguides

Vadim A. Markel
University of Pennsylvania
Philadelphia, USA

vmarkel@upenn.edu

http://whale.seas.upenn.edu/vmarkel/

## Electrically small antenna



A small antenna in vacuum cannot create a collimated beam

#### A simple linear chain waveguide



Excitation can propagate from one end to another



#### Chain Parameters:

$$h = 40 \,\mathrm{nm}$$

$$b = 10 \,\mathrm{nm}$$

$$\xi = \frac{b}{a} = 0.15$$

$$N = 5000$$

$$\tau = \frac{h}{c} = 0.133 \,\text{fsec}$$

#### Metal Parameters

$$\varepsilon = \varepsilon_0 - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$$

$$\lambda_p = \frac{2\pi c}{\omega_p} = 136 \,\text{nm}$$

$$\gamma/\omega_p = 0.002$$

$$\varepsilon_0 = 5$$

#### Host Medium:

$$\varepsilon_h = 2.5$$

$$v_g \approx 0.58c$$

#### **Pulse Parameters:**

$$\omega_0 = 0.1\omega_p \left[\lambda_0 = 1.36 \mu \,\mathrm{m}\right]$$

$$\Delta t = 7.2 \, \text{fsec}$$

$$\Delta \omega / \omega_0 = 0.2$$

## What if we put the antenna in the middle?



Excitation will propagate in both directions

#### What if we use a phased array antenna (not small)?



Phased array source is modulated with the wave number q that is on the dispersion curve of the waveguide at the working frequency





# Can we make an **electrically small** antenna that will send energy in one direction only?



In a simple periodic chain like this one, this is impossible



But in a structured chain with a sense of direction, we can hope to see the effect

Chain must be periodic, or else it is not a waveguide!

# The dispersion relation in a directional chain is still symmetric (from reciprocity)

$$\det[s(\omega)\hat{I} - \hat{W}(\omega, q)]$$

This is the dispersion equation

$$s(\omega) := \frac{\epsilon_h}{\epsilon(\omega) - \epsilon_h}$$

This is the spectral parameter of the theory (the only term that depends on the material of particles) for a unit cell containing p arbitrary ellipsoids (all matrices are of size  $3p \times 3p$ ):



Diagonal matrix containing volumes

Matrix contains depolarization coefficients and rotation angles

Reciprocity of Green's function

$$\hat{S}^T(\omega, q) = \hat{S}(\omega, -q)$$



 $\hat{W}(\omega,q)$  and  $\hat{W}(\omega,-q)$  share the same eigenvalues

We can make an **electrically small** antenna confined to one unit cell that sends energy in one direction only



In empty space, this antenna still radiates as a dipole (because the unit cell is electrically small)

In a directional chain, the effect is possible because

$$\hat{W}(\omega, q) \neq \hat{W}^T(\omega, q)$$

# We can understand why unidirectional propagation is possible if *W* is not symmetric from the quasiparticle pole approximation

$$|d_n
angle=\mathrm{const}\int\limits_{-\pi/h}^{\pi/h}\left[s(\omega)\,\hat{I}-\hat{W}(\omega,\xi)
ight]^{-1}\,|e
angle\,e^{\mathrm{i}\,\xi h n}\,\mathrm{d}\xi\;.$$
 Vector (length 3p) of dipole

moments in *n*-th cell

which are assumed to be localized to 0-th cell

$$\det \left[ s(\omega) \, \hat{I} - \hat{W}(\omega, q) \right] = 0$$

This equation determines the dispersion relation  $q=q(\omega)$  moments in n-th cell

#### We now use spectral properties of the matrix W

For simplicity, let  $\hat{B} = \beta \hat{I}$  (all ellipsoids are of the same volume)



$$\hat{W}(\omega, -q) = \hat{W}^T(\omega, q)$$

$$\hat{W}(\omega, q) |f_i(\omega, q)\rangle = \lambda_i(\omega, q) |f_i(\omega, q)\rangle$$

$$\langle f_i(\omega, -q) | \hat{W}(\omega, q) = \langle f_i(\omega, -q) | \lambda_i(\omega, q)$$

$$\langle f_i(\omega, -q) | f_j(\omega, q) | \rangle = \delta_{ij} Z_i , \quad Z_i \neq 0$$

$$\hat{W}(\omega, q) = \sum_{i=1}^{3p} \frac{1}{Z_i(\omega, q)} \lambda_i(\omega, q) |f_i(\omega, q)\rangle \langle f_i(\omega, -q)|$$

# Let only one eigenvalue be at resonance at the working frequency

$$|d_{n}\rangle = \operatorname{const} \int_{-\pi/h}^{\pi/h} d\xi \, e^{i\xi h n} \, Z_{r}(\omega, \xi) \, \frac{|f_{r}(\omega, \xi)\rangle \, \langle f_{r}(\omega, -\xi)|e\rangle}{s(\omega) - \lambda_{r}(\omega, \xi)}$$

$$|d_{n}\rangle = \operatorname{const} e^{[iq(\omega) - \gamma(\omega)]h|n|} \left\{ \begin{array}{l} |d_{+}\rangle \,, & n > 0 \\ \frac{|d_{+}\rangle + |d_{-}\rangle}{2} \,, & n = 0 \\ |d_{-}\rangle \,, & n < 0 \end{array} \right.$$

$$|d_{+}\rangle = |f_{r}(\omega, q)\rangle\langle f_{r}(\omega, -q)|e\rangle$$
$$|d_{-}\rangle = |f_{r}(\omega, -q)\rangle\langle f_{r}(\omega, q)|e\rangle$$

The trick of unidirectional coupling is to make such |e> that one vector is zero but the other is not.

In directional chains this is possible.

# Example: Simplest directional chain (prolate spheroids viewed from top)



Polarization is out of plane of drawing

#### Algebraic properties of W

$$\hat{W} = \begin{bmatrix} a & b & c \\ d & a & d \\ c & b & a \end{bmatrix}$$
 This is the algebraic structure of W: it is neither symmetric nor Hermitian

$$\lambda_1=a-c\ ,\quad \lambda_2=a+\frac{c-\sqrt{c^2+8bd}}{2}\ ,\quad \lambda_3=a+\frac{c+\sqrt{c^2+8bd}}{2}$$
 Eigenvalues

$$|f_1\rangle = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$|f_2\rangle = \begin{bmatrix} 1 & \frac{-\sqrt{c^2 + 8bd} - c}{2b} & 1 \end{bmatrix}$$

$$|g_1\rangle = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$|g_2\rangle = \begin{bmatrix} 1 & \frac{-\sqrt{c^2 + 8bd} - c}{2d} & 1 \end{bmatrix}$$

$$|g_3\rangle = \begin{bmatrix} 1 & \frac{\sqrt{c^2 + 8bd} - c}{2d} & 1 \end{bmatrix}$$
Right eigenvectors
$$|g_3\rangle = \begin{bmatrix} 1 & \frac{\sqrt{c^2 + 8bd} - c}{2d} & 1 \end{bmatrix}$$
Left eigenvectors

$$|g_1\rangle = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$|g_2\rangle = \begin{bmatrix} 1 & \frac{-\sqrt{c^2 + 8bd} - c}{2d} & 1 \end{bmatrix}$$

$$|g_3\rangle = \begin{bmatrix} 1 & \frac{\sqrt{c^2 + 8bd} - c}{2d} & 1 \end{bmatrix}$$
Left eigenvectors

$$|d_+\rangle = |f_2\rangle\langle g_2|e\rangle \;, \quad |d_-\rangle = |g_2\rangle\langle f_2|e\rangle \; \longleftarrow \; {\hbox{Assuming 2}^{\hbox{\scriptsize nd mode is}} \over \hbox{\scriptsize in resonance}} \;$$

#### Dispersion relation



Simulation for prolate spheroids; h=25.3nm, H=2h=50.6nm, a=6.325nm, b=42.17nm Drude metal with eps\_0=5.0

Propagation



n

1000

500



0

 $e = g_3$ 

-500

1

 $10^{-1}$ 

 $10^{-2}$ 

 $10^{-3}$ 

-1000

#### Choose these vectors for excitation:

$$|e\rangle = |f_3\rangle =$$

$$\begin{bmatrix} 1 & -(1.37131 + 0.471286 i) & 1 \end{bmatrix}$$

$$|e\rangle = |g_3\rangle =$$

$$\begin{bmatrix} 1 & -(1.37131 - 0.471286 i) & 1 \end{bmatrix}$$

#### Here we have used orthogonality:

$$\langle f_2|g_3\rangle = \langle g_2|f_3\rangle = 0$$

### Realistic losses



Here  $\gamma/\omega_p = 0.002$  (as in silver)

### Absorptive traps



Without absorptive traps there will be reflections from each end of the chain!

#### Chains with active segments



It is possible to show theoretically that the chain with active segment defined above produces the same excitation as in previous slides

## Conclusions

- Unidirectional propagation due to an electrically small antenna is possible
- The modes are stable with respect to perturbations that preserve periodicity, but not to general defects!
- Defects produce back scattering
- There are also reflections from the chain ends; these can be suppressed by absorptive traps
- Will there be unidirectional propagation in simple chains made of non-reciprocal materials? I do not think so; directionality of the chain is required.
- But in non-reciprocal directional chains there will be no reflections from true defects or chain end (because there might be no back-propagating mode at the working frequency)
- So far I see this as the only way to suppress back-reflections