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Motivation: Resolution limit and search 
for super-resolution

Scattering amplitude in the first Born approximation

Scattering potential (can be complex)

Ewald sphere



Methods to obtain super-resolution
● Use analytic continuation of Fourier data beyond the Ewald sphere 

- all measurements are discrete
- it is not possible to analytically continue a discrete data set, at least, not 
without making assumptions about the unavailable frequencies (defeats 
the purpose)  

● Near-field optics 
- ill-posed IP due to exponential decay of evanescent waves
- requires a model for tip-object interaction
- slow

● STORM (stochastic optical reconstruction microscopy), 
PALM (photo-activation localization mocroscopy)
- not really tomographic imaging methods; rather, map-builders
- sparsity is required + some additional assumptions

● Solve nonlinear ISP
- V.A.Markel, Investigation of the effect of super-resolution in nonlinear 
inverse scattering, Phys.Rev. E 102, 053313, 2020
- Conclusions are not optimistic        

● Use physical constraints on the potential
- subject of this talk



Physical constraints: Positivity (or 
more general bounds)

Useful but not quite enough



Simplest case of a compositional prior

Here we assume for simplicity
that N is odd QUESTIONS:

Under which conditions can we reconstruct the
original vector uniquely?

Is there a stable and sufficiently fast way to 
find the solution?



Reduction to binary vectors

It is sufficient to consider 
inversion of binary vectors

Problem:



Further details



A numerical example: 
Fourier space distances of 
all vectors with given N 
and r to a model

Model (a)

Model (b)

(a) N=31 is prime, and there is no false
solutions in this example, even with L=1

(b) N=33 is not prime, and there are 2 false
solutions in this example with L=1 
(and L=2); no false solutions with L=3



Uniqueness of inversion with L=1 for prime N

N=7

Red dots: N-th order roots of unity 

Blue dots: their opposites

All dots: 2N-th order roots of unity

For odd N:

If N is prime, the non-zero terms in the sum cannot form
a regular polygon. However, roots of unity sum to zero
only if they can be partitioned into regular polygons
(with possible cancellations of opposing roots – so-called
asymmetric sums).



For prime N, all vectors in Ω(N,r) are (L=1)-distinguishable

If N is not prime, some of vectors in Ω(N,r) have 
(L=1)-indistinguishable pairs but others are still uniquely
recoverable with L=1

Model (b) with N=33



Difficult to compute the number of uniquely-recoverable 
vectors in Ω(N,r), but here is some statistical analysis 



More statistical analysis... 



Uniqueness of inversion for non-prime N

m=1 m=2 m=3



How to reconstruct? 

Optimization in Fourier
space will not work



Combinatorial method: 
works for relatively small N
1. Start with band-limited inverse DFT (not
binary)

2. Use thesholding to obtain a binary
approximation (initial guess for the
combinatorial search)

3. Use recursive pairwise switches to search
for solution 

a) Not the same as exhaustive search (faster)
b) Still NP-hard
c) Critically depends on initial guess
d) Useful to run a cycle over recursion depth

Reconstruction shown is for N=35, r=17

Exact solution found with L=1 and L=5
(faster with L=5)



Complexity of 
combinatorial 
inversion

Complexity for some N and r as 
a function of depth of recursion.
Depth must be at least equal to 
the distance  between initial 
guess and solution.

Average distance between
initial guess and solution
as a function of popcount 
for N=61, various L



Non-convex optimization (can work for larger N)
We start from the band-limited reconstruction but do not use thresholding at
this stage. Instead, we work with non-binary vectors and optimize the 
functional

General update step:

Steepest descent direction:

Updated vector stays
consistent with the data

where



Non-convex optimization (cont.)

Finally, the length of the step β is determined from the cubic equation



Non-convex optimization (cont.)

Problem: there are many local minima

However, we can tell that a minimum is not the global minimum by looking
at its depth

If we end up in a local minimum, make a random jump and search for a 
minimum again
                
              - can jump in random directions from the original initial guess
              - can jump from the most recent minimum (random walk over
                local minima)

Random jumps work if the initial guess is not too far from the solution.

This requires that the number of known DFT coefficients is not too small.

The problem is hardest for random models and much simpler for models
with structure (i.e., one or two pulses)



Non-convex optimization: Example with N=199, L=29

Blurred initial
guess

If approximated
by a binary vector,
16 bits are wrong

Reconstruction
by non-convex
optimization
(about 50sec on
my laptop)

Reconstruction
is exact



Generalization to 2D

(This is proved by mapping the DFT of a matrix onto that of a
vector)



Example: Reconstruction of a rectangular 13x11
image from only four DFT coefficients 
(minimum required for uniqueness).  

Severely low-pass filtered at L=1
(blurred) image

Reconstruction (exact)



Example: Reconstruction of a square 29x29 
image with L=5 (band limit M=(29-1)/2=14)  

Blurred image (band limit is
approximately 1/3 of complete)

Reconstruction (exact)

No a priori knowledge (i.e., corners)
was used



Concluding Remarks
● We can hope to reconstruct not very large images from severely 

blurred versions using the binarity constraint

● The reconstruction of QR code shown is reproduible (was tested 
on ~100 random images with consistent success).

● Random images are much harder to reconstruct than images with 
structure and connectivity. So, in many applications, the methods 
will be more powerful than in our simulations, which consider the 
most difficult case

● We are looking for exact reconstructions, not approximations

● The method can tolerate some noise in the data. The larger L, the 
better noise tolerance

● Connection to medical imaging – discrete tomography
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