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Plan of the talk
1. Inverse scattering problem, Ewald sphere, 
discretization

2. Toy Problem 1 (3 dof)

3. Toy Problem 2 (4 dof)

4. Toy Problem 3 (N dof)

5. Distorted Born approximation and tangent spaces

6. Model with a realistic interaction and N degrees of 
freedom (N=2501)  
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1a. Inverse Scattering Problem (Scalar 
Waves)

Source

Everywhere in space (and + boundary
conditions at infinity)

We work in frequency domain:

Identical transformation
of the previous equation

The “potential”  is zero outside of the domain

This can be relative
speed of sound
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1b. Inverse Scattering Problem (cont.)

From previous page

Lippmann-Schwinger
equation

Where
This is the incident field; it would be the 
total field for the given source in the
absence of the scatterer. 

The free-space Green’s function; it
satisfies the radiation (Sommerfeld)
boundary conditions at infinity.

Scattered field
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1c. Inverse Scattering Problem (T-matrix)

Introduce
the “polarization”
field:

(vanishes outside of the domain)

Multiply by V

From linearity

The T-matrix
Higher-order
terms contain
integrals
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1d. Inverse Scattering Problem (cont.)

We will next assume that the incident field is a plane wave and make the 
far-field approximation for the Green’s function

This will lead to loss of high-frequency information about the target
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1e. Inverse Scattering Problem (far-field)

Scattered field (from previous
page)

Point of observation
in the far field
of the scatterer:

O

Far-field approximation

Not a regular Fourier transform of the 
polarization field; can not be inverted.....
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1f. Inverse Scattering Problem (scattering 
amplitude)

recall that

... and let

Scattering amplitude
(measurable quantity)

T-matrix (uniquely defined by V)

ISP: Given measurements of scattering amplitude, reconstruct V
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1g. Inverse Scattering Problem (linear regime)
This is approximately true in the
weak scattering regime when V is
in some sense small

Ewald sphere radius

Resolution limit in 3D? Sphere is not a cube!

(because a circumscribed cube with side 4k
contains the Ewald sphere but has some empty 
corners (we do not know Fourier data in these
regions)

(because we know Fourier data every where in a cube 
inscribed inside the Ewald sphere plus some 
additional data outside of the cube.
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1h. Inverse Scattering Problem (nonlinear 
regime)

We can write this expansion in terms of the Fourier transform of the Potential:

Here we already have Fourier wave vectors outside of
the Ewald sphere



  11 / 51

1i. Some History
The idea to use nonlinearity of ISP to achieve super-resolution, although in a somewhat 
implicit form (Chew and coo-authors)
 
* M. Moghaddam, W. C. Chew, and M. Oristaglio, Int. J. Imaging Syst. Technol. 3, 318, 1991
* M. Moghaddam, W. C. Chew, IEEE Trans. Geosci. Remote Sensing 30, 147, 1992.
* F.-C. Chen and W. C. Chew, Appl. Phys. Lett. 72, 3080, 1998
* T. J. Cui, W. C. Chew, X. X. Yin, and W. Hong, IEEE Trans. Ant. Propag. 52, 1398, 2004.

More explicit claims:

* F. Simonetti, Phys. Rev. E 73, 036619, 2006
* K. Belkebir, P. C. Chaumet, and A. Sentenac, J. Opt. Soc. Am. A 23, 586, 2006
* G. Maire et al., Phys. Rev. Lett. 102, 213905, 2009
* C. Gilmore et al., IEEE Antennas Wireless Propagation Lett. 9, 393, 2010
* T. Zhang et al., Optica 3, 609, 2016 Experimental demonstration of resolution

λ/10 (but with strong a priori constraints)

A review article in which the super-resolution in nonlinear ISP is presented as a fact:

M. T. Testorf and M. A. Fiddy, "Superresolution imaging – Revisited," Adv. Imaging 
Electron Phys. 163, 165, 2010
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1j. Discretization

Number of incidence
directions

Number of
voxels

Data matrix

This is the algebraic statement
of the nonlinear ISP. Namely,
given
-- the data matrix Φ
-- the measurement matrices A,B
-- the algebraic relation between
    T and V
find all elements of the diagonal
matrix V
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2a. Toy Problem 1 with 3 degrees of freedom

We will construct the measurement matrices A and B from the
following three orthogonal basis vectors:
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2b. Toy Problem 1 
(a) Band-limited measurement  (u1 and u2)

(a.i) Linear regime g=0

Condition of
physical admissibility
of data

If satisfied

Two independent equations for
three unknowns, hence, the IP
is “band-limited”
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2c. Toy Problem 1
(a.ii) Non-linear regime g=/=0

Condition of
physical admissibility
of dataIf satisfied

Still only two independent 
equations for three unknowns.

Nonlinearity in the ISP did not
force uniqueness

Consistency requires that
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2d. Toy Problem 1 
Solutions in the case of band-limited 
measurements

Model value
used to generate
the data matrix

Loci of all points
in the (V1,V3)
plane that satisfy
the nonlinear equations,
assuming the data is
physically-admissible 
(in range of the forward
operator) for various values
of the interaction 
parameter g.

The data were generated
in each case using
the same model
shown by a circular
dot in the plot.
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2e. Toy Problem 1 
(b) Non-band-limited measurements (u1,u3)

(b.i) Linear regime g=0

This is the only
physical admissibility
condition. Data matrix
must be symmetric 
(reciprocity)

If satisfied

This is the unique 
inverse solution
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2f. Toy Problem 1
(b.ii) Non-linear regime g=/=0

This condition must
still be satisfied 
(reciprocity)

If satisfied

This is the unique nonlinear 
inverse solution
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2g. Toy Problem 1 Solutions in the case of 
non-band-limited measurements
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2h. Toy Problem 1 Why the first measurement 
scheme was band-limited and the second was 
not? Select a pair u’s and form Hadamard 
products:

u1 and u2
(band-limited
scheme):

u1 and u3
(not a
band-limited
scheme):

Two of these vectors are linearly-independent

All three vectors are linearly-independent
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In General:
Linear inverse problem is
band-limited 
(under-determined)

Linear inverse problem is
not band-limited 
(exactly determined or
over-determined)

Khatri-Rao product assuming each
matrix consists of just one block
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3a. Toy Problem 2 with 4 degrees of freedom

a) Cyclic tight-binding model b) Chain tight-binding model
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3b. Toy Problem 2. Measurement matrices

The linear inverse problem is under-determined:
3 linearly-independent equations and 4 unknowns 
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3c. Toy Problem 2. Linear solution (g=0)
The data matrix is 3x3 and therefore has 9 elements. Physical admissibility
conditions are:

Reciprocity

Additional
conditions

So, only 3 data matrix elements are independent.

If conditions hold

So, the linearized solution is
indeed non-unique
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3d. Toy Problem 2. 
Nonlinear solution – Cyclic interaction

Admissibility conditions
(in addition to reciprocity)

Nonlinear inverse solution
is still non-unique
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3e. Toy problem 2. 
Nonlinear solution – Tight-binding in a chain

The coefficients are combinations of rational functions and square root
and some also depend on g.

Formulas are quite lengthy...
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3f. Toy Problem 2. 
Nonlinear solution – Tight-binding interaction 
 in a chain   Expansion in powers of g

Now the solution
is unique if g=/=0



  29 / 51

4a. Toy Problem 3. 
Linear chain with N degrees of freedom; 
Interaction on a fully-connected graph;
The “chain” geometry is only important for
measurement matrix definition;
Inverse problem on a fully connected graph 
can be analytically solved if the solution is 
unique

...............
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4b. Toy Problem 3.
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4c. Toy Problem 3. Linear Regime g=0.

where

Minimum norm
inverse solution
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4d. Toy Problem 3. Nonlinear Regime g=/=0.

Here
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4d. Toy Problem 3. Nonlinear Regime g=/=0
(cont.)

If we set the unknown DFT coefficients to 0, then

If we do this, here is what would happen:
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Only about 1/10 of
DFT coefficients
are known
(linear problem 
is strongly
band-limited)

Unknown coefficients set to 0
Not the minimum norm of V solution.
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Toy Problem 3: This is what happens if we fill the unknown coefficients with 
random values, which does not make sense but we tried it anyway
2L/M=0.1
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TOY PROBLEM 3: Reconstructions with noise in the known coefficients (unknown are set to 0)

Phase of Z is random

g=0.2,R=0.1 g=0.4,R=0.1

g=0.2,R=0.2 g=0.4,R=0.2
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5a. Distorted Born Approximation and 
Tangent Spaces 

Some initial
guess

Total potential

Small deviation from initial
guess

where

Linear equation for V

New data matrix
(known)
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5b. Distorted Born Approximation 

Some initial
guess

Total potential

Small deviation from initial
guess

where

Linear equation for V

New data matrix
(known)
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6a. Example 4 -- Realistic Interaction
Chain with  N=51x51 = 2601 voxels/particles

Dimensionless parameter characterizing the strength of interaction
(multiple scattering)

projection of the incident (detected) wave vector onto the chain

(Distorted Born)
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6b. Example 4: Pseudo-inverse for V
using  shifted Born 

Tikhonov regularization 
parameter
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6c. Example 4: Pseudo-inverse at D=0, 
inverse  crime

Error of the linearized 
pseudo-inverse of a model 
(sown below)
at D=0
with N=1,601 

Inverse crime

Band-limited measurements

Non-band-limited 
measurements

Here “chi” is shown where “chi-squared” is
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6c. Example 4: 
Pseudo-inverse 
reconstructions 
with band-limited 
measurements 
L=51

(inverse crime)
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6d. Example 4: 
Pseudoinverse 
reconstructions 
with
non-band-limited 
measurements 
L=650
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6e. Eigenvalues of W[D], size N=2,601  
Model 1 for D [pulses] Model 2 for D [constant]

Band
limited

Not 
band
limited
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6f. Eigenvalues of W[D], different interactions 
Model 1 for D [pulses] Model 2 for D [constant]

Band
limited

Also 
band
limited

E-Exponential (realistic)   T-Tight-binding    C-Fully connected       



  48 / 51

6g. Eigenvalues 
of W[D]

L=51
Number of
”significant”
eigenvectors:
4L+1=205

Transition region:
205 to 350

Model 1 for D

g=0 g=0.4 g=1.0
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6h. Eigenvalues 
of W[D]

L=51
Number of
”significant”
eigenvectors:
4L+1=205

Transition region:
205 to 350

 

g=0 g=0.4 g=1.0
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CONCLUSIONS

● Nonlinearity of ISP is unlikely to help significantly 
with resolution. At least, it is an uphill struggle.

● On the other hand, nonlinearity can easily make 
the ISP ill-posed even if it is/qs well-posed in the 
linear regime.

● Perturbation of inverse solutions in the strength 
of interaction can be singular. This makes 
analysis difficult.

● Resolution limit exists
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Several Lorentzians
FT
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