Nonlinearity of Inverse Scattering Problem and the Resolution Limit: Does Multiple Scattering Provide Subwavelength Information?

Vadim A. Markel
University of Pennsylvania
Department of Radiology Philadelphia, PA
vmarkel@upenn.edu
http://whale.seas.upenn.edu/vmarkel

Plan of the talk

1. Inverse scattering problem, Ewald sphere, discretization
2. Toy Problem 1 (3 dof)
3. Toy Problem 2 (4 dof)
4. Toy Problem 3 (N dof)
5. Distorted Born approximation and tangent spaces
6. Model with a realistic interaction and N degrees of freedom ($N=2501$)

1a. Inverse Scattering Problem (Scalar Waves)
 This can be relative

 speed of sound

We work in frequency domain:

$$
U(\mathbf{r}, t)=\operatorname{Re}\left[u(\mathbf{r}) e^{-i \omega t}\right]
$$

$$
k=\frac{\omega}{c}=\mathrm{const}
$$

$\left[\nabla^{2}+k^{2} \eta(\mathbf{r})\right] u(\mathbf{r})=-4 \pi k^{2} q(\mathbf{r}) \longleftarrow \quad$ Everywhere in space (and + boundary conditions at infinity)
$\left(\nabla^{2}+k^{2}\right) u(\mathbf{r})=-4 \pi k^{2}[V(\mathbf{r}) u(\mathbf{r})+q(\mathbf{r})] \leftharpoonup \quad \begin{aligned} & \text { Identical transformation } \\ & \text { of the previous equation }\end{aligned}$
$V(\mathbf{r}) \equiv \frac{\eta(\mathbf{r})-1}{4 \pi} \triangleleft$ The "potential" is zero outside of the domain

1b. Inverse Scattering Problem (cont.)

$\left(\nabla^{2}+k^{2}\right) u(\mathbf{r})=-4 \pi k^{2}[V(\mathbf{r}) u(\mathbf{r})+q(\mathbf{r})] \quad$ From previous page

Where
Scattered field
This is the incident field; it would be the
$u_{\mathrm{inc}}(\mathbf{r})=\int G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) q\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}$ total field for the given source in the absence of the scatterer.
$G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=k^{2} \frac{\exp \left(i k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$
The free-space Green's function; it satisfies the radiation (Sommerfeld) boundary conditions at infinity.

1c. Inverse Scattering Problem (T-matrix)

Introduce
the "polarization" $P(\mathbf{r})=V(\mathbf{r}) u(\mathbf{r}) \quad$ (vanishes outside of the domain) field:

$$
\begin{aligned}
& u(\mathbf{r})= u_{\mathrm{inc}}(\mathbf{r})+\int_{\Omega} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) u\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime} \\
& P(\mathbf{r})=V(\mathbf{r}) u_{\mathrm{inc}}(\mathbf{r})+\int_{\Omega} V(\mathbf{r}) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) P\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
\end{aligned}
$$

$$
(\mathbf{r} \in \Omega)
$$

- From linearity

Higher-order terms contain integrals

$$
T^{\prime}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=V(\mathbf{r}) \delta\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+V(\mathbf{r}) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right)+\ldots
$$

1d. Inverse Scattering Problem (cont.)

$$
\begin{gathered}
P(\mathbf{r})=\int_{\Omega} T\left(\mathbf{r}, \mathbf{r}^{\prime}\right) u_{\mathrm{inc}}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime} \\
T=(I-V G)^{-1} V \xrightarrow{(\mathrm{if} \mathrm{converges})} V+V G V+V G V G V+\ldots \\
u_{\text {scatt }}(\mathbf{r})=\int_{\Omega} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) P\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime} \\
=\int_{\Omega} G\left(\mathbf{r}, \mathbf{r}_{1}\right) T\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) u_{\mathrm{inc}}\left(\mathbf{r}_{2}\right) d^{3} r_{1} d^{3} r_{2}
\end{gathered}
$$

We will next assume that the incident field is a plane wave and make the far-field approximation for the Green's function

This will lead to loss of high-frequency information about the target

1e. Inverse Scattering Problem (far-field)

Far-field approximation

$$
u_{\mathrm{scatt}}(\mathbf{r})=\frac{k^{2} e^{i k R}}{R} \int_{\Omega} e^{-i \mathbf{k}_{\mathrm{scatt}} \cdot \mathbf{r}} P(\mathbf{r}) d^{3} r
$$

1f. Inverse Scattering Problem (scattering amplitude)

recall that

$$
P(\mathbf{r})=\int_{\Omega} T\left(\mathbf{r}, \mathbf{r}^{\prime}\right) u_{\mathrm{inc}}\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime}
$$

... and let $\quad u_{\mathrm{inc}}(\mathbf{r})=e^{i \mathbf{k}_{\mathrm{inc}} \cdot \mathbf{r}}$

$$
\begin{aligned}
u_{\mathrm{scatt}}(\mathbf{r}) & =\frac{k^{2} e^{i k R}}{R} \int_{\Omega} e^{-i \mathbf{k}_{\mathrm{scatt}} \cdot \mathbf{r}} P(\mathbf{r}) d^{3} r \\
& =\frac{k^{2} e^{i k R}}{R} \int_{\Omega} e^{-i \mathbf{k}_{\mathrm{scatt}} \cdot \mathbf{r}_{1}} T\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) e^{i \mathbf{k}_{\mathrm{inc}} \cdot \mathbf{r}_{2}} d^{3} r_{1} d^{3} r_{2}
\end{aligned}
$$

$$
f\left(\mathbf{k}_{\mathrm{scatt}}, \mathbf{k}_{\mathrm{inc}}\right)=\int_{\Omega} T\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) e^{i\left(\mathbf{k}_{\mathrm{inc}} \cdot \mathbf{r}_{2}-\mathbf{k}_{\mathrm{scatt}} \cdot \mathbf{r}_{1}\right)} d^{3} r_{1} d^{3} r_{2}
$$

ISP: Given measurements of scattering amplitude, reconstruct V

1g. Inverse Scattering Problem (linear regime)

$$
\begin{gathered}
T\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \approx V\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
f\left(\mathbf{k}_{\text {scatt }}, \mathbf{k}_{\mathrm{inc}}\right)=\int_{\Omega} V(\mathbf{r}) e^{i\left(\mathbf{k}_{\mathrm{inc}}-\mathbf{k}_{\text {scatt }}\right) \cdot \mathbf{r}} d^{3} r \\
\text { weak some sentering small }
\end{gathered}
$$

This is approximately true in the

$$
\text { weak scattering regime when } \mathrm{V} \text { is }
$$

Resolution limit in 3D? Sphere is not a cube!

$$
\Delta>\lambda / 4, \quad \lambda=2 \pi / k
$$

(because a circumscribed cube with side 4 k contains the Ewald sphere but has some empty corners (we do not know Fourier data in these regions)
$\Delta<\sqrt{3} \lambda / 4, \quad \lambda=2 \pi / k$
(because we know Fourier data every where in a cube inscribed inside the Ewald sphere plus some additional data outside of the cube.

1h. Inverse Scattering Problem (nonlinear regime)

$f\left(\mathbf{k}_{\text {inc }}, \mathbf{k}_{\text {scatt }}\right)=\int e^{i \mathbf{k}_{\text {inc }} \cdot \mathbf{r}} V(\mathbf{r}) e^{-i \mathbf{i}_{\text {scatt }} \cdot \mathbf{r}} d^{3} r$

$$
+\int e^{-i \mathbf{k}_{\mathrm{scatt}} \cdot \mathbf{r}_{1}} V\left(\mathbf{r}_{1}\right) G\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) V\left(\mathbf{r}_{2}\right) e^{i \mathbf{k}_{\mathrm{inc}} \cdot \mathbf{r}_{2}} d^{3} r_{1} d^{3} r_{2}+\ldots
$$

We can write this expansion in terms of the Fourier transform of the Potential:

$$
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\int g(\mathbf{q}) e^{i \mathbf{q} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} d^{3} q
$$

$$
f\left(\mathbf{k}_{\mathrm{inc}}, \mathbf{k}_{\text {scatt }}\right)=\tilde{V}\left(\mathbf{k}_{\mathrm{inc}}-\mathbf{k}_{\mathrm{scatt}}\right)
$$

$$
+\int \tilde{V}\left(\mathbf{k}_{\mathrm{inc}}-\mathbf{q}\right) g(\mathbf{q}) \tilde{V}\left(\mathbf{q}-\mathbf{k}_{\mathrm{scatt}}\right) d^{3} q+\ldots
$$

1i. Some History

The idea to use nonlinearity of ISP to achieve super-resolution, although in a somewhat implicit form (Chew and coo-authors)

* M. Moghaddam, W. C. Chew, and M. Oristaglio, Int. J. Imaging Syst. Technol. 3, 318, 1991
* M. Moghaddam, W. C. Chew, IEEE Trans. Geosci. Remote Sensing 30, 147, 1992.
* F.-C. Chen and W. C. Chew, Appl. Phys. Lett. 72, 3080, 1998
* T. J. Cui, W. C. Chew, X. X. Yin, and W. Hong, IEEE Trans. Ant. Propag. 52, 1398, 2004.

More explicit claims:

* F. Simonetti, Phys. Rev. E 73, 036619, 2006
* K. Belkebir, P. C. Chaumet, and A. Sentenac, J. Opt. Soc. Am. A 23, 586, 2006
* G. Maire et al., Phys. Rev. Lett. 102, 213905, 2009
* C. Gilmore et al., IEEE Antennas Wireless Propagation Lett. 9, 393, 2010
* T. Zhang et al., Optica 3, 609, $2016 \longleftarrow$ Experimental demonstration of resolution N/10 (but with strong a priori constraints)

A review article in which the super-resolution in nonlinear ISP is presented as a fact:
M. T. Testorf and M. A. Fiddy, "Superresolution imaging - Revisited," Adv. Imaging Electron Phys. 163, 165, 2010

1j. Discretization

$$
\int_{\Omega} \underbrace{e^{-i \mathbf{k}_{\mathrm{scatt}} \cdot \mathbf{r}_{1}}}_{\mathrm{A}} \underbrace{T\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)}_{\mathrm{T}} \underbrace{e^{i \mathbf{k}_{\mathrm{inc}} \cdot \mathbf{r}_{2}}}_{\mathrm{B}} d^{3} r_{1} d^{3} r_{2}=\underbrace{f\left(\mathbf{k}_{\text {scatt }}, \mathbf{k}_{\text {inc }}\right)}_{\Phi \text { Data matrix }}
$$

Number of voxels

Number of incidence directions

2a. Toy Problem 1 with 3 degrees of freedom

$$
\mathbf{G}=\left[\begin{array}{lll}
0 & g & g \\
g & 0 & g \\
g & g & 0
\end{array}\right] \quad \begin{gathered}
T_{n m}=V_{n} \delta_{n m}+g \frac{\kappa_{n} \kappa_{m}}{1-g S} \\
\kappa_{n}=\frac{V_{n}}{1+g V_{n}}, \quad S=\sum_{n=1}^{3} \kappa_{n}
\end{gathered}
$$

$$
\bullet V_{2}
$$

$$
g / \quad g
$$

We will construct the measurement matrices A and B from the following three orthogonal basis vectors:

$$
\mathrm{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathrm{u}_{2}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right] \quad, \quad \mathrm{u}_{3}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

2b. Toy Problem 1

(a) Band-limited measurement (u 1 and u 2)

$$
\mathrm{A}=\left[\begin{array}{l}
\mathbf{u}_{1}^{T} \\
\mathbf{u}_{2}^{T}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -2 & 1
\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{ll}
\mathrm{u}_{1} & \mathrm{u}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
1 & -2 \\
1 & 1
\end{array}\right]
$$

(a.i) Linear regime $g=0$

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
V_{1}+V_{2}+V_{3} & V_{1}-2 V_{2}+V_{3} \\
V_{1}-2 V_{2}+V_{3} & V_{1}+4 V_{2}+V_{3}
\end{array}\right]=\left[\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right]} \\
\phi_{12}=\phi_{21} & \text { AND } \phi_{22}=2 \phi_{11}-\phi_{12} \longleftarrow \begin{array}{l}
\text { Condition of } \\
\text { physical admissibility } \\
\text { of data }
\end{array} \\
\text { If satisfied }
\end{array}
$$

$$
V_{1}+V_{2}+V_{3}=\phi_{11}
$$

$$
V_{1}-2 V_{2}+V_{3}=\phi_{12}
$$

2c. Toy Problem 1

(a.ii) Non-linear regime $g=/=0$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\frac{\kappa_{1}+\kappa_{2}+\kappa_{3}}{1-g\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)} & \frac{\kappa_{1}-2 \kappa_{2}+\kappa_{3}}{1-g\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)} \\
\frac{\kappa_{1}-2 \kappa_{2}+\kappa_{3}}{1-g\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)} & \kappa_{1}+4 \kappa_{2}+\kappa_{3}+\frac{g\left(\kappa_{1}-2 \kappa_{2}+\kappa_{3}\right)^{2}}{1-g\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)}
\end{array}\right]=\left[\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right]} \\
& \text { Consistency requires that } \\
& \kappa_{n}=\frac{V_{n}}{1+g V_{n}} \\
& \phi_{12}=\phi_{21} \quad \text { AND } \quad \phi_{22}=\frac{2 \phi_{11}-\phi_{12}+g \phi_{12}^{2}}{1+g \phi_{11}} \\
& \text { If satisfied } \\
& \text { Condition of } \\
& \text { physical admissibility } \\
& \text { of data } \\
& \frac{V_{1}}{1+g V_{1}}+\frac{V_{3}}{1+g V_{3}}=\frac{1}{3} \frac{2 \phi_{11}+\phi_{12}}{1+g \phi_{11}} \\
& V_{2}=\frac{\phi_{11}-\phi_{12}}{3+g\left(2 \phi_{11}+\phi_{12}\right)} \\
& \text { Still only two independent } \\
& \text { equations for three unknowns. } \\
& \text { Nonlinearity in the ISP did not } \\
& \text { force uniqueness }
\end{aligned}
$$

2d. Toy Problem 1 Solutions in the case of band-limited measurements

Loci of all points in the (V1,V3) plane that satisfy the nonlinear equations, assuming the data is physically-admissible (in range of the forward operator) for various values of the interaction parameter g.

The data were generated in each case using the same model shown by a circular dot in the plot.

2e. Toy Problem 1
 (b) Non-band-limited measurements (u1,u3)

$$
A=\left[\begin{array}{l}
u_{1} \\
u_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 0 & -1
\end{array}\right], \quad B=\left[\begin{array}{ll}
u_{1} & u_{3}
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
1 & 0 \\
1 & -1
\end{array}\right]
$$

(b.i) Linear regime $g=0$

$$
\left[\begin{array}{cc}
V_{1}+V_{2}+V_{3} & V_{1}-V_{3} \\
V_{1}-V_{3} & V_{1}+V_{3}
\end{array}\right]=\left[\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right]
$$ $\phi_{12}=\phi_{21} \quad \begin{aligned} & \text { This is the only } \\ & \text { physical admissibility }\end{aligned}$ condition. Data matrix must be symmetric (reciprocity)

$$
\begin{aligned}
& V_{1}^{\text {inv }}=\left(\phi_{22}+\phi_{12}\right) / 2 \\
& V_{2}^{\text {inv }}=\phi_{11}-\phi_{22} \\
& V_{3}^{\text {inv }}=\left(\phi_{22}-\phi_{12}\right) / 2
\end{aligned}
$$

This is the unique inverse solution

2f. Toy Problem 1
(b.ii) Non-linear regime $g=/=0$

2g. Toy Problem 1 Solutions in the case of non-band-limited measurements

$$
\begin{array}{rrr}
& g=0.1 & \\
\phi_{12} \approx 2.5 & \phi_{11} \approx 1.5 & \phi_{11} \approx 1.5 \\
\phi_{22} \approx 0.5 & \phi_{22} \approx 0.5 & \phi_{12} \approx 2.5
\end{array}
$$

$\left(\phi_{11}, \phi_{12}, \phi_{22}\right) \approx(1.5,2.5,0.5)$
$\Leftrightarrow\left(\mathrm{V}_{1}, V_{2}, V_{2}\right)=(1,2,-1)$

2h. Toy Problem 1 Why the first measurement scheme was band-limited and the second was not? Select a pair u's and form Hadamard products:

Two of these vectors are linearly-independent

u1 and u3

 (not a band-limited scheme):$$
u_{1} \circ u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad u_{1} \circ u_{2}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right], \quad u_{2} \circ u_{2}=\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]
$$

| u1 and u3
 (not a
 band-limited
 scheme): |
| :--- | \(\mathrm{u}_{1} \circ \mathrm{u}_{1}=\left[\begin{array}{l}1

1

1\end{array}\right] \quad, \quad \mathrm{u}_{1} \circ \mathrm{u}_{3}=\left[$$
\begin{array}{r}1 \\
0 \\
-1\end{array}
$$\right] \quad, \quad \mathrm{u}_{3} \circ \mathrm{u}_{3}=\left[$$
\begin{array}{l}1 \\
0 \\
1\end{array}
$$\right]\)

In General:

$$
\operatorname{rank}[\mathrm{A} * \mathrm{~B}]<N
$$

Linear inverse problem is band-limited
(under-determined)
$\operatorname{rank}[\mathrm{A} * \mathrm{~B}] \geq N$
Linear inverse problem is not band-limited (exactly determined or over-determined)

Khatri-Rao product assuming each matrix consists of just one block

$$
\mathrm{A}_{i n} \mathrm{~B}_{n j}=(\mathrm{A} * \mathrm{~B})_{(i j), n}
$$

3a. Toy Problem 2 with 4 degrees of freedom

a) Cyclic tight-binding model

$$
\mathbf{G}=\left[\begin{array}{llll}
0 & g & 0 & g \\
g & 0 & g & 0 \\
0 & g & 0 & g \\
g & 0 & g & 0
\end{array}\right]
$$

b) Chain tight-binding model

$$
\mathbf{G}=\left[\begin{array}{llll}
0 & g & 0 & 0 \\
g & 0 & g & 0 \\
0 & g & 0 & g \\
0 & 0 & g & 0
\end{array}\right]
$$

3b. Toy Problem 2. Measurement matrices

$$
\begin{gathered}
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad u_{3}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right] \\
A=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 0 & -1 & 0
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 1 & -1 \\
1 & -1 & 0
\end{array}\right]
\end{gathered}
$$

$\operatorname{rank}[\mathrm{A} * \mathrm{~B}]=3<N=4$
The linear inverse problem is under-determined: 3 linearly-independent equations and 4 unknowns

3c. Toy Problem 2. Linear solution ($g=0$)

The data matrix is 3×3 and therefore has 9 elements. Physical admissibility conditions are:

$$
\phi_{i j}=\phi_{j i} \leftharpoonup \text { Reciprocity }
$$

$$
\phi_{13}=\phi_{23}, \quad \phi_{12}+\phi_{22}=2 \phi_{33}, \quad \phi_{11}=\phi_{22} \longleftarrow \begin{gathered}
\text { Additional } \\
\text { conditions }
\end{gathered}
$$

So, only 3 data matrix elements are independent.
If conditions hold

$$
\begin{aligned}
V_{1}^{\mathrm{inv}} & =\frac{1}{2}\left(\phi_{33}+\phi_{23}\right) \\
V_{3}^{\mathrm{inv}} & =\frac{1}{2}\left(\phi_{33}-\phi_{23}\right) \\
V_{2}^{\mathrm{inv}}+V_{4}^{\mathrm{inv}} & =\phi_{22}-\phi_{33}
\end{aligned}
$$

3d. Toy Problem 2. Nonlinear solution - Cyclic interaction

$$
\begin{aligned}
& \frac{\phi_{13}}{\phi_{23}}=\frac{1+g\left(\phi_{22}-3 \phi_{33}\right)+g^{2}\left(\phi_{22} \phi_{33}-\phi_{23}^{2}\right)}{1-g \phi_{22}-g^{2} \phi_{23}^{2}-g \phi_{33}+g^{2} \phi_{22} \phi_{33}} \quad \begin{array}{l}
\text { Admissibility conditions } \\
\text { (in addition to reciprocity) } \\
\phi_{12}=\frac{2 \phi_{33}-\phi_{22}+g\left(\phi_{23}^{2}-\phi_{22} \phi_{33}-\phi_{13} \phi_{23}\right)}{1-g \phi_{33}} \\
\phi_{11}\left(\phi_{22}-\phi_{33}\right)=\phi_{12}^{2}-\phi_{13}^{2}+\phi_{23}\left(2 \phi_{13}-\phi_{23}\right)+\phi_{33}\left(\phi_{22}-2 \phi_{12}\right)
\end{array}, l \text {) }
\end{aligned}
$$

$$
\begin{array}{ll}
V_{1}^{\mathrm{inv}}=\frac{1}{2} \frac{\left(\phi_{12}+\phi_{22}\right) \phi_{33}-\left(\phi_{13}+\phi_{23}\right) \phi_{23}}{\phi_{12}+\phi_{22}-2 \phi_{33}} & \begin{array}{l}
\text { Nonlinear invers } \\
\text { is still non-uniqu }
\end{array} \\
V_{3}^{\mathrm{inv}}=\frac{1}{2} \frac{\left(\phi_{12}+\phi_{22}\right) \phi_{33}-\left(\phi_{13}+\phi_{23}\right) \phi_{23}}{\phi_{12}+\phi_{22}+2 \phi_{33}} & \\
V_{2}^{\mathrm{inv}}+V_{4}^{\mathrm{inv}}=\frac{\phi_{13}\left(\phi_{22}-\phi_{23}\right)+\phi_{23}\left(\phi_{23}-\phi_{12}\right)+\phi_{33}\left(\phi_{12}-\phi_{22}\right)}{\phi_{12}+\phi_{13}+\phi_{22}-4 \phi_{33}+2 g\left(\phi_{22} \phi_{33}-\phi_{23}^{3}\right)}
\end{array}
$$

3e. Toy problem 2. Nonlinear solution - Tight-binding in a chain

$$
\begin{aligned}
& V_{n}^{\mathrm{inv}}=\frac{\mathcal{N}_{n}}{g \mathcal{D}_{n}}, \quad n=1,2,3,4 \\
& \mathcal{N}_{n}=a_{n}+b_{n} g+c_{n} g^{2}+d_{n} g^{3}+e_{n} g^{4} \\
& \mathcal{D}_{n}=p_{n}+q_{n} g+r_{n} g^{2}+s_{n} g^{3}+t_{n} g^{4}
\end{aligned}
$$

The coefficients are combinations of rational functions and square root and some also depend on g.

Formulas are quite lengthy...

$$
\begin{aligned}
& a_{1}=2(1-R) \\
& b_{1}=2\left[\phi_{11}+8 \phi_{23}+7 \phi_{33}-2 \phi_{22}+\left(3 \phi_{33}-\phi_{23}\right) R\right] ; \\
& c_{1}=\phi_{11}\left(6 \phi_{23}-\phi_{22}-\phi_{33}\right)+\phi_{22}\left(\phi_{22}-12 \phi_{23}-19 \phi_{33}\right)+28 \phi_{23}^{2} \\
& +2 \phi_{33}\left(5 \phi_{23}-6 \phi_{33}\right)+2\left[\phi_{23}\left(2 \phi_{33}+\phi_{23}\right)-\phi_{33}\left(2 \phi_{33}+\phi_{22}\right)\right] R \text {; } \\
& d_{1}=2\left[\phi_{11}\left(3 \phi_{23}^{2}-\phi_{22} \phi_{23}-\phi_{22} \phi_{33}-\phi_{23} \phi_{33}\right)+\phi_{23}\left(8 \phi_{23}^{2}-3 \phi_{23} \phi_{33}-2 \phi_{33}^{2}\right)\right. \\
& +\phi_{22}\left(\phi_{22} \phi_{23}+4 \phi_{22} \phi_{33}+7 \phi_{33}^{2}-9 \phi_{23} \phi_{33}-6 \phi_{23}^{2}\right) \\
& \left.+\left(\phi_{22} \phi_{33}^{2}+\phi_{23}^{3}-\phi_{23}^{2} \phi_{33}-\phi_{22} \phi_{23} \phi_{33}\right) R\right] \text {; } \\
& e_{1}=\phi_{11} \phi_{22}\left(\phi_{33}^{2}+\phi_{22} \phi_{33}-2 \phi_{23} \phi_{33}-\phi_{23}^{2}\right)+\phi_{23} \phi_{33}\left(4 \phi_{22}^{2}-\phi_{11} \phi_{23}-2 \phi_{23}^{2}\right) \\
& +\phi_{22} \phi_{23}\left(\phi_{23} \phi_{33}+2 \phi_{33}^{2}+\phi_{22} \phi_{23}-4 \phi_{23}^{2}\right)-\phi_{22}^{2} \phi_{33}\left(3 \phi_{33}+\phi_{22}\right) \\
& +2 \phi_{23}^{3}\left(\phi_{11}+\phi_{23}\right) \text {; } \\
& p_{1}=32 \text {; } \\
& q_{1}=8\left(\phi_{11}+8 \phi_{23}-4 \phi_{33}-5 \phi_{22}\right) \text {; } \\
& r_{1}=8\left(\phi_{33}+2 \phi_{22}-2 \phi_{23}-\phi_{11}\right)\left(\phi_{22}+\phi_{33}-2 \phi_{23}\right) ; \\
& s_{1}=2\left(\phi_{11}-\phi_{22}\right)\left(\phi_{22}+\phi_{33}-2 \phi_{23}\right)^{2} \text {; } \\
& t_{1}=0 \\
& a_{4}=2\left[\phi_{22}-\phi_{11}-2\left(\phi_{23}+\phi_{33}\right)+2\left(\phi_{23}+\phi_{33}\right) R\right] ; \\
& b_{4}=2\left[\phi_{11}\left(\phi_{22}-2 \phi_{23}+\phi_{33}\right)+\phi_{22}\left(4 \phi_{23}-\phi_{22}\right)+\phi_{33}\left(7 \phi_{22}+2 \phi_{23}-4 \phi_{33}\right)+2\left(\phi_{23}^{2}-2 \phi_{33}^{2}-\phi_{33}\left(\phi_{22}+2 \phi_{23}\right)\right) R\right] \\
& c_{4}=4\left[\phi_{11} \phi_{23}\left(\phi_{22}+\phi_{33}\right)+\phi_{22}\left(3 \phi_{23}^{2}+3 \phi_{23} \phi_{33}+3 \phi_{33}^{2}\right)-\phi_{22}^{2}\left(\phi_{23}+3 \phi_{33}\right)\right. \\
& \left.+\phi_{23}\left(2 \phi_{23}^{2}-3 \phi_{23} \phi_{33}-6 \phi_{33}^{2}\right)+\left(\phi_{22} \phi_{33}\left(\phi_{23}+3 \phi_{33}\right)-\phi_{23}^{2}\left(\phi_{23}+3 \phi_{33}\right)\right) R\right] ; \\
& d_{4}=2\left[\left(\phi_{22} \phi_{33}-\phi_{23}^{2}\right)\left(\phi_{22}^{2}-\phi_{11}\left(\phi_{22}+2 \phi_{23}+\phi_{33}\right)+10 \phi_{23} \phi_{33}-\phi_{22}\left(4 \phi_{23}+3 \phi_{33}\right)+2\left(\phi_{23}^{2}-\phi_{22} \phi_{33}\right) R\right)\right] ; \\
& e_{4}=2\left(\phi_{11}+\phi_{22}-2 \phi_{23}\right)\left(\phi_{23}^{2}-\phi_{22} \phi_{33}\right)^{2} \text {; } \\
& p_{4}=\phi_{11}-\phi_{22}+4\left(\phi_{23}+\phi_{33}\right) ; \\
& q_{4}=4\left(\phi_{23}\left(\phi_{11}-\phi_{22}+4 \phi_{23}\right)-2\left(\phi_{22}-3 \phi_{23}\right) \phi_{33}+4 \phi_{33}^{2}\right) \text {; } \\
& r_{4}=2\left[3 \phi_{23}^{2}\left(\phi_{11}+4 \phi_{23}-\phi_{22}\right)+\phi_{33}\left(16 \phi_{23}^{2}+\phi_{22}^{2}\right)-\phi_{22} \phi_{33}\left(12 \phi_{23}+\phi_{11}\right)-8 \phi_{33}^{2}\left(\phi_{22}+\phi_{33}\right)\right] ; \\
& s_{4}=4\left(\phi_{23}^{2}-\phi_{22} \phi_{33}\right)\left[\phi_{23}\left(\phi_{11}-\phi_{22}+4 \phi_{23}\right)+2 \phi_{33}\left(\phi_{23}-\phi_{22}\right)-4 \phi_{33}^{2}\right] ; \\
& t_{4}=\left(\phi_{11}-\phi_{22}+4 \phi_{23}-4 \phi_{33}\right)\left(\phi_{23}^{2}-\phi_{22} \phi_{33}\right)^{2}
\end{aligned}
$$

$$
R=\sqrt{1-2 g\left(\phi_{11}+\phi_{23}-2 \phi_{33}\right)+g^{2}\left(\phi_{23}^{2}-\phi_{22} \phi_{33}+\phi_{11} \phi_{22}-2 \phi_{11} \phi_{23}+\phi_{11} \phi_{33}\right)}
$$

3f. Toy Problem 2.

 Nonlinear solution - Tight-binding interaction in a chain Expansion in powers of $g$$$
\begin{aligned}
& V_{1}^{\mathrm{inv}}=\frac{\phi_{11}-\phi_{22}}{8}+\frac{\phi_{33}+\phi_{23}}{2}+O(g) \\
& V_{3}^{\mathrm{inv}}=\frac{\phi_{22}-\phi_{11}}{8}+\frac{\phi_{33}-\phi_{23}}{2}+O(g)
\end{aligned}
$$

$$
\begin{aligned}
V_{2}^{\mathrm{inv}}=\frac{2}{g} \frac{\phi_{11}-\phi_{22}}{\phi_{11}-\phi_{22}+4\left(\phi_{23}+\phi_{33}\right)} & +\frac{\phi_{11}-\phi_{22}+4\left(\phi_{23}-\phi_{33}\right)}{\left(\phi_{11}-\phi_{22}+4\left(\phi_{23}+\phi_{33}\right)\right)^{2}}\left[\phi_{22}^{2}+\phi_{22}\left(2 \phi_{23}+\phi_{33}\right)\right. \\
& \left.-\phi_{11}\left(\phi_{22}-2 \phi_{23}-3 \phi_{33}\right)-4 \phi_{33}\left(\phi_{23}+\phi_{33}\right)\right]+O\left(g^{1}\right)
\end{aligned}
$$

$$
V_{4}^{\mathrm{inv}}=\frac{2}{g} \frac{\phi_{22}-\phi_{11}}{\phi_{11}-\phi_{22}+4\left(\phi_{23}+\phi_{33}\right)}+\frac{2}{\left(\phi_{11}-\phi_{22}+4\left(\phi_{23}+\phi_{33}\right)\right)^{2}}
$$

Now the solution

$$
\begin{aligned}
& \times\left[\phi_{22}\left(\phi_{11}-\phi_{22}\right)\left(\phi_{11}-\phi_{22}+4 \phi_{23}\right)+4 \phi_{23} \phi_{33} \times\left(\phi_{11}+3 \phi_{22}\right)\right. \\
& \left.+8 \phi_{33}^{2}\left(\phi_{11}+\phi_{22}-2\left(\phi_{23}+\phi_{33}\right)\right)-\phi_{33}\left(\phi_{11}-\phi_{22}\right)^{2}\right]+O\left(g^{1}\right)
\end{aligned}
$$

is unique if $g=/=0$

4a. Toy Problem 3.
Linear chain with \mathbf{N} degrees of freedom; Interaction on a fully-connected graph; The "chain" geometry is only important for measurement matrix definition;
Inverse problem on a fully connected graph can be analytically solved if the solution is unique

4b. Toy Problem 3.

$$
\begin{aligned}
& G_{n n^{\prime}}=g\left(1-\delta_{n n^{\prime}}\right) \\
& T_{n n^{\prime}}=\kappa_{n} \delta_{n n^{\prime}}+g \frac{\kappa_{n} \kappa_{n^{\prime}}}{1-g S}, \quad 1 \leq n, n^{\prime} \leq N \\
& \kappa_{n}=\frac{V_{n}}{1+g V_{n}}, \quad S=\sum_{n=1}^{N} \kappa_{n} \\
& A_{l n}=e^{-\mathrm{i} \frac{2 \pi}{N} l n}, \quad B_{n l}=e^{\mathrm{i} \frac{2 \pi}{N} n l}, \quad-L \leq l \leq L
\end{aligned}
$$

We send plane waves with the wave number $k=2 \pi L / N h$ at different angles to the chain. Here h is the spacing in the chain. The wavelength is $\lambda=N h / L$.

4c. Toy Problem 3. Linear Regime $g=0$.

$$
\begin{aligned}
& T_{n n^{\prime}}=V_{n} \delta_{n n^{\prime}} \\
& \sum_{n=1}^{N} A_{l n} V_{n} B_{n m}=\phi_{l m}, \quad-L \leq l, m \leq L \\
& \sum_{n=1}^{N} e^{-\mathrm{i} \frac{2 \pi}{N} l n} V_{n} e^{\mathrm{i} \frac{2 \pi}{N} m n}=\phi_{l m} \quad \begin{array}{l}
(2 L+1)^{2} \text { equations, but not } \\
\text { all are independent }
\end{array} \\
& \tilde{V}_{m-l}=\phi_{l m} \quad \text { where } \quad \tilde{V}_{m}=\sum_{n=1}^{N} V_{n} e^{\mathrm{i} \frac{2 \pi}{N} n m}
\end{aligned}
$$

So, we know from data all discrete Fourier coefficients of V_{n} in the band $-2 L \leq$ $m \leq 2 L$. If $2 L \geq M=(N-1) / 2$ (assuming N is odd), then we know all DFT coefficients and can invert the DFT uniquely. If $2 L<M$, some DFT coefficients of V_{n} are fundamentally unknown. The minimum- L_{2} norm solution is low-band pass-diltered version of V_{n} :

Minimum norm
inverse solution
$2 L$

4d. Toy Problem 3. Nonlinear Regime $g=/=0$.

$$
\tilde{\kappa}_{m}^{\text {inv }}=\left\{\begin{array}{llc}
\frac{\phi_{0 m}}{1+g \phi_{00}} & , & -L \leq m \leq L \\
\phi_{-L, m-L}-g \frac{\phi_{0 L} \phi_{0, m-L}}{1+g \phi_{00}} & , & L<m \leq 2 L \\
\phi_{L, m+L}-g \frac{\phi_{0,-L} \phi_{0, m+L}}{1+g \phi_{00}} & , & -2 L \leq m<-L \\
\text { Unknown } & , \quad m>|2 L|
\end{array}\right.
$$

Here $\tilde{\kappa}_{m}=\sum_{n=1}^{N} \kappa_{n} e^{\mathrm{i} \frac{2 \pi}{N} n m}, \quad \kappa_{n}=\frac{V_{n}}{1+g V_{n}}$
If all $\tilde{\kappa}_{m}$ are known with $|m| \leq M=(N-1) / 2$

$$
\kappa_{n}^{\mathrm{inv}}=\frac{1}{N} \sum_{m=-M}^{M} \tilde{\kappa}_{m} e^{-\mathrm{i} \frac{2 \pi}{N} n m}, \quad V_{n}^{\mathrm{inv}}=\frac{\kappa_{n}^{\mathrm{inv}}}{1-g \kappa_{n}^{\mathrm{inv}}}
$$

4d. Toy Problem 3. Nonlinear Regime $g=/=0$ (cont.)

If NOT all $\tilde{\kappa}_{m}$ are known with $|m| \leq M=(N-1) / 2$
we must make some guess about the coefficients that are unknown:
a) Zero
b) Random
c) See solution so the norm of V is minimized (more difficult)

If we set the unknown DFT coefficients to 0 , then

$$
\kappa_{n}^{\mathrm{inv}}=\frac{1}{N} \sum_{m=-2 L}^{2 L} \tilde{\kappa}_{m} e^{-\mathrm{i} \frac{2 \pi}{N} n m}, \quad V_{n}^{\mathrm{inv}}=\frac{\kappa_{n}^{\mathrm{inv}}}{1-g \kappa_{n}^{\mathrm{inv}}}
$$

If we do this, here is what would happen:

$$
\begin{aligned}
& N=1,001 \\
& M=\frac{N-1}{2}=500 \\
& L=25 \\
& M / 2 L=10
\end{aligned}
$$

Only about $1 / 10$ of DFT coefficients are known (linear problem is strongly band-limited)

Unknown coefficients set to 0
Not the minimum norm of \vee solution.

Toy Problem 3: This is what happens if we fill the unknown coefficients with random values, which does not make sense but we tried it anyway $2 L / M=0.1$

TOY PROBLEM 3: Reconstructions with noise in the known coefficients (unknown are set to 0)

$$
\phi_{j l} \longrightarrow \phi_{j l}+R Z \sqrt{\left.\left.\langle | \tilde{\kappa}\right|^{2}\right\rangle} \quad P[|Z|]=\sqrt{2 / \pi} \exp \left(-|Z|^{2} / 2\right)
$$

Phase of Z is random

5a. Distorted Born Approximation and Tangent Spaces

$\mathrm{U}=\underset{\mathbf{\Delta}}{\mathrm{D}}+\mathrm{V} \longleftarrow \quad \begin{aligned} & \text { guall deviation from initial }\end{aligned}$

Some initial guess
Total potential

$$
\mathrm{T}[\mathrm{U}]=\mathrm{T}[\mathrm{D}+\mathrm{V}] \approx \mathrm{T}[\mathrm{D}]+\mathrm{S}[\mathrm{D}] \mathrm{S}^{\mathrm{T}}[\mathrm{D}]
$$

where

$$
\mathrm{S}[\mathrm{X}]=(\mathrm{I}-\mathrm{XG})^{-1}, \quad \mathrm{~S}^{\mathrm{T}}[\mathrm{X}]=(\mathrm{I}-\mathrm{GX})^{-1}
$$

$$
(\mathrm{AS}[\mathrm{D}]) \mathrm{V}\left(\mathrm{~S}^{\mathrm{T}}[\mathrm{D}] \mathrm{B}\right)=\Phi-\mathrm{AT}[\mathrm{D}] \mathrm{B} \equiv \Psi[\mathrm{D}] \longleftarrow \quad \underset{(\text { known })}{\text { New data matrix }}
$$

Linear equation for \vee

5b. Distorted Born Approximation

$\mathrm{U}=\underset{\Delta}{\mathrm{D}}+\mathrm{V} \triangleleft \quad \begin{aligned} & \text { Small deviation from initial }\end{aligned}$

Some initial guess
Total potential

$$
\mathrm{T}[\mathrm{U}]=\mathrm{T}[\mathrm{D}+\mathrm{V}] \approx \mathrm{T}[\mathrm{D}]+\mathrm{S}[\mathrm{D}] \vee \mathrm{S}^{\mathrm{T}}[\mathrm{D}]
$$

where

$$
\mathrm{S}[\mathrm{X}]=(\mathrm{I}-\mathrm{XG})^{-1}, \quad \mathrm{~S}^{\mathrm{T}}[\mathrm{X}]=(\mathrm{I}-\mathrm{GX})^{-1}
$$

$(A S[D]) V\left(S^{T}[D] B\right)=\Phi-A T[D] B \equiv \Psi[D]$
Linear equation for V

6a. Example 4 -- Realistic Interaction Chain with $N=51 x 51=2601$ voxels/particles

$G_{n m}=g\left(1-\delta_{n m}\right) \frac{e^{i k\left|\mathbf{r}_{n}-\mathbf{r}_{m}\right|}}{\left|\mathbf{r}_{n}-\mathbf{r}_{m}\right| / h}, \quad k=\frac{\omega}{c}$

Dimensionless parameter characterizing the strength of interaction (multiple scattering)

$$
\begin{gathered}
A_{l n}=e^{-\mathrm{i}(l / L) k z_{n}}, \quad B_{n l}=e^{\mathrm{i}(l / L) k z_{n}} \\
-L \leq l \leq L, \quad 1 \leq n \leq N, \quad z_{n}=n h
\end{gathered}
$$

$(l / L) k \longleftarrow$ projection of the incident (detected) wave vector onto the chain

$$
\sum_{n}(\mathrm{AS}[\mathrm{D}])_{l n} V_{n}\left(\mathrm{~S}^{\mathrm{T}}[\mathrm{D}] \mathrm{B}\right)_{n m}=\psi_{l m}
$$

6b. Example 4: Pseudo-inverse for V using shifted Born

$$
W_{n m}[\mathrm{D}]=\left((\mathrm{AS}[\mathrm{D}])^{*}(\mathrm{AS}[\mathrm{D}])\right)_{n m}\left(\left(\mathrm{~S}^{\mathrm{T}}[\mathrm{D}] \mathrm{B}\right)\left(\mathrm{S}^{\mathrm{T}}[\mathrm{D}] \mathrm{B}\right)^{*}\right)_{m n}
$$

v is vector of diagonal elements of V
$\mathrm{b}[\mathrm{D}]$ is data matrix $\Psi[\mathrm{D}]$ unlolled, i.e., $b_{(l m)}=\psi_{l, m}$

$$
\left[\mathrm{W}[\mathrm{D}]+\lambda_{\mathrm{A}}{ }^{2} \mathrm{I}\right] \mathrm{v}=\mathrm{b}[\mathrm{D}]
$$

Tikhonov regularization parameter

6c. Example 4: Pseudo-inverse at $D=0$, inverse crime

Error of the linearized pseudo-inverse of a model (sown below)
at $\mathrm{D}=0$
with $N=1,601$
Inverse crime

Band-limited measurements
Non-band-limited measurements

Here "chi" is shown where "chi-squared" is

$$
\chi^{2}=\frac{\sum_{n}\left|V_{n}^{\mathrm{inv}}-V_{n}^{\bmod }\right|^{2}}{\sum_{n}\left|V_{n}^{\bmod }\right|^{2}}
$$

6c. Example 4: Pseudo-inverse reconstructions with band-limited measurements

L=51
(inverse crime)

(b) Same as in (a) zoom-in

(c) Linearized reconstructions with exact data

(a) Linearized reconstruction with inverse crime data

6d. Example 4: Pseudoinverse reconstructions with non-band-limited measurements

L=650

(b) Same as in (a) zoom-in

(c) Linearized reconstructions with exact data

6e. Eigenvalues of W[D], size $N=2,601$

6f. Eigenvalues of W[D], different interactions

Model 1 for D [pulses]
Model 2 for D [constant]

6g. Eigenvalues of W[D]

$L=51$
Number of
"significant" eigenvectors:
$4 L+1=205$
Transition region: 205 to 350

Model 1 for D

6h. Eigenvalues of W[D]

$$
L=51
$$

Number of
"significant" eigenvectors:
$4 L+1=205$
Transition region: 205 to 350

CONCLUSIONS

- Nonlinearity of ISP is unlikely to help significantly with resolution. At least, it is an uphill struggle.
- On the other hand, nonlinearity can easily make the ISP ill-posed even if it is/qs well-posed in the linear regime.
- Perturbation of inverse solutions in the strength of interaction can be singular. This makes analysis difficult.
- Resolution limit exists

Several Lorentzians

$$
L(x)=\frac{1}{\pi} \frac{\delta}{(x-a)^{2}+\delta^{2}}
$$

FT

$$
\tilde{L}(k)=e^{i k a-|k| \delta}
$$

