# Broken-Ray and Star Transforms and their Inversion 

Vadim A Markel, Institut Fresnel

Joint work with
Fan Zhao (f. @ UPenn)
John Schotland (f. @ Upenn, now @UMich)
Lucia Florescu (f. @ UPenn)

## Interest in using scattered X-rays for tomographic imaging existed at least since 1990-ies

- S.J.Norton, Compton scattering tomography, J.Appl.Phys. 76, 2007, 1994
- J.Wang, Z.Chi and Y. Wang, Analytic reconstruction of Compton scattering tomography, J.Appl.Phys. 86, 1693, 1999.
- J.L.Moretti, E. Matheu, J.F.Cavellier, S.Askienazy and L. Barritault, COMPTON-SCATTERING TOMOGRAPHY TECHNICAL REVIEW, J. Français de Biophysique et Médecine Nucléaire 3, 91, 1979.


## Compton scattering tomography



## Broken-ray transform (BRT) in a slab



We assume here that the Compton shift is much smaller than the width of the energy distribution of the source and the detector is not energy-selective.
For the case of energy-dependent attenuation see Krylov, Katsevich, Phys. Med. Biol. 60, 4313, 2015.


## Reconstruction formula for the BRT

$$
\begin{aligned}
& \mu_{t}(y, z)=\lambda\left\{\left[\frac{\partial}{\partial \Delta}-(1+\kappa) \frac{\partial}{\partial y}\right] \psi(y, \Delta)+\kappa \frac{\partial}{\partial y} \psi\left(y+\lambda z, \Delta_{\max }\right)\right. \\
& \left.-\kappa(1+\kappa) \frac{\partial^{2}}{\partial y^{2}} \int_{\Delta}^{\Delta_{\max }} \psi(y+\kappa(\ell-\Delta), \ell) \mathrm{d} \ell\right\}\left.\right|_{\Delta=(L-z) \tan \theta} \\
& \begin{array}{l|l}
Y \uparrow & \begin{array}{l}
\kappa=\frac{\cos (\theta)}{1-\cos (\theta)} \\
\lambda=\cot (\theta / 2)
\end{array} \\
\hline w & L
\end{array}
\end{aligned}
$$

## Analytical reconstruction formula for one scattering angle (inverse-crime simulations)



Model
$L / h=40$
$L / h=400$

## Reconstruction of a Gaussian




## The Star Transform

$$
\begin{aligned}
& \Phi(\mathbf{R})=\sum_{k=1}^{K} s_{k} I_{k}(\mathbf{R}), \\
& \mathbf{R} \equiv(Y, Z) \in \bar{S}=\{0 \leq Z \leq L\}, \\
& I_{k}(\mathbf{R})=\int_{0}^{\ell_{k}(Z)} \mu\left(\mathbf{R}+\hat{\mathbf{u}}_{k} \ell\right) d \ell
\end{aligned}
$$




## Physical Derivation of the Star Transform

$$
W_{j k}(\mathbf{R})=W_{0} S_{j k} \mu_{s}(\mathbf{R}) \exp \left[-I_{j}(\mathbf{R})-I_{k}(\mathbf{R})\right]
$$

$$
\phi_{j k}(\mathbf{R})=-\ln \left[\frac{W_{j k}(\mathbf{R})}{W_{0} S_{j k} \bar{\mu}_{s}}\right]
$$

$$
\phi_{j k}(\mathbf{R})=I_{j}(\mathbf{R})+I_{k}(\mathbf{R})+\eta(\mathbf{R})
$$

where
$\eta(\mathbf{R})=-\ln \left(\frac{\mu_{s}(\mathbf{R})}{\bar{\mu}_{s}}\right)$


$$
\begin{equation*}
\phi_{j k}(\mathbf{R})=\left[I_{j}(\mathbf{R})+I_{k}(\mathbf{R})+\eta(\mathbf{R})\right]\left(1-\delta_{j k}\right) \tag{1}
\end{equation*}
$$

$j, k=1,2, \ldots, K$
$I_{j}(\mathbf{R})$ depend on total attenuation $\mu(\mathbf{r}) \quad[\mathbf{r}$ is not $\mathbf{R}]$ $\eta(\mathbf{R})$ depends on the scattering coefficient $\mu_{s}(\mathbf{R})$

Strategy:
a) Exclude $\eta(\mathbf{R})$ from the equations by considering linear combitantions of $\phi_{j k}(\mathbf{R})$ :
$\Phi(\mathbf{R})=\frac{1}{2} \sum_{j, \mathrm{k}=1}^{K} c_{j k} \phi_{j k}(\mathbf{R})=\sum_{k=1}^{K} s_{k} I_{k}(\mathbf{R})$
b) Solve for total attenuation.
c) Using the above result, compute the ray integrals $I_{k}(\mathbf{R})$.
d) Use any of the equations in (1) to compute $\eta(\mathbf{R})$.

## Local Methods

$-\left(\hat{\mathbf{u}}_{k} \cdot \nabla\right) I_{k}(\mathbf{R})=-\nabla \cdot\left[\hat{\mathbf{u}}_{k} I_{k}(\mathbf{R})\right]=\mu(\mathbf{R})$

Unfortunately, we can not make measurements of
ray integrals $I_{k}(\mathbf{R})$ directly. However, we can formulate the star transfrom so that the coefficients $\mathbf{s}_{k}$ and $\boldsymbol{\Phi}$ are vectors. Then it is possible to invert the star transform by the local formula
$\mu(\mathbf{R})=\nabla \cdot \boldsymbol{\Phi}(\mathbf{R})$
[Katsevich and Krylov, Inverse Problems 29, 075008 (2013)]

What if we allow the coefficients $\mathbf{c}_{j k}$ to be vectors?
Moreover, let

$$
\sum_{j=1}^{K} \mathbf{c}_{j k}=\mathbf{s}_{k}=\sigma_{k} \hat{\mathbf{u}}_{k} \quad \text { and } \quad \sum_{k=1}^{K} \mathbf{s}_{k}=\sum_{k=1}^{K} \sigma_{k} \hat{\mathbf{u}}_{k}=0
$$

Then define

$$
\boldsymbol{\Phi}(\mathbf{R}) \equiv \frac{1}{2} \sum_{j, k=1}^{K} \mathbf{c}_{j k} \phi_{j k}(\mathbf{R})
$$

and
$\boldsymbol{\Phi}(\mathbf{R})=\sum_{k=1}^{K} \sigma_{k} \hat{\mathbf{u}}_{k} I_{k}(\mathbf{R})$
$-\nabla \cdot \boldsymbol{\Phi}(\mathbf{R})=\left(\sum_{k=1}^{K} \sigma_{k}\right) \mu(\mathbf{R})$
$\mu(\mathbf{R})=-\frac{1}{\sum_{k=1}^{K} \sigma_{k}} \nabla \cdot \boldsymbol{\Phi}(\mathbf{R})$

$$
\mathbf{c}_{j k} \text { matrix for } K=3
$$



Here $\sigma_{k}$ are chosen so that $\sigma_{1} \hat{\mathbf{u}}_{1}+\sigma_{2} \hat{\mathbf{u}}_{2}+\sigma_{3} \hat{\mathbf{u}}_{3}=0$
Reconstruction formula:
$\mu=-\frac{1}{\sigma_{1}+\sigma_{2}+\sigma_{3}} \nabla \cdot\left[\sigma_{1} \hat{\mathbf{u}}_{1}\left(\phi_{12}+\phi_{13}\right)+\sigma_{2} \hat{\mathbf{u}}_{2}\left(\phi_{21}+\phi_{23}\right)+\sigma_{3} \hat{\mathbf{u}}_{3}\left(\phi_{31}+\phi_{32}\right)\right]$

Symmetric case $\hat{\mathbf{u}}_{1}+\hat{\mathbf{u}}_{2}+\hat{\mathbf{u}}_{3}=0$ :

$$
\mu=-\frac{1}{3} \nabla \cdot\left[\hat{\mathbf{u}}_{1}\left(\phi_{32}-\phi_{21}\right)+\hat{\mathbf{u}}_{2}\left(\phi_{31}-\phi_{12}\right)\right]
$$

$$
\begin{aligned}
& c_{j k} \text { matrix for } K=4 \text { (method of Katsevich and Krylov) } \\
& \sigma_{1}=0, \sigma_{2}=1 \\
& \hat{\mathbf{u}}_{2}+\sigma_{3} \hat{\mathbf{u}}_{3}+\sigma_{4} \hat{\mathbf{u}}_{4}=0 \\
& \begin{array}{cccc|c}
0 & \hat{\mathbf{u}}_{2} & \sigma_{3} \hat{\mathbf{u}}_{3} & \sigma_{4} \hat{\mathbf{u}}_{4} & 0 \\
\hat{\mathbf{u}}_{2} & 0 & 0 & 0 & \hat{\mathbf{u}}_{2} \\
\sigma_{3} \hat{\mathbf{u}}_{3} & 0 & 0 & 0 & \sigma_{3} \hat{\mathbf{u}}_{3} \\
\sigma_{4} \hat{\mathbf{u}}_{4} & 0 & 0 & 0 & \sigma_{4} \hat{\mathbf{u}}_{4} \\
\hline 0 & \hat{\mathbf{u}}_{2} & \sigma_{3} \hat{\mathbf{u}}_{3} & \sigma_{4} \hat{\mathbf{u}}_{4} & 0
\end{array}
\end{aligned}
$$

Reconstruction formula:

$$
\mu=-\frac{1}{\sigma_{3}+\sigma_{4}+1} \nabla \cdot\left[\hat{\mathbf{u}}_{2} \phi_{12}+\sigma_{3} \hat{\mathbf{u}}_{3} \phi_{13}+\sigma_{4} \hat{\mathbf{u}}_{4} \phi_{14}\right]
$$



## Fourier Methods

$$
\Phi(\mathbf{R})=\sum_{k=1}^{K} s_{k} I_{k}(\mathbf{R}), I_{k}(\mathbf{R})=\int_{0}^{\ell_{k}(2)} \mu\left(\mathbf{R}+\hat{\mathbf{u}}_{k} \ell\right) d \ell
$$

$$
\mu(y, z)=\int_{-\infty}^{\infty} \frac{d q}{2 \pi} e^{i q y} \tilde{\mu}(q, z)=\int_{-\infty}^{\infty} \frac{d q}{2 \pi} \pi^{i q y} \frac{1}{L} \sum_{n=-\infty}^{\infty} \mu_{n}(q) e^{i \kappa_{n} z}
$$

$$
\mu_{n}(q)=\int_{-\infty}^{\infty} d y e^{-i q y} \int_{0}^{L} d z e^{-i \kappa_{n} z} \mu(y, z),
$$

$$
\kappa_{n}=\frac{2 \pi n}{L} .
$$

Fix $q$. For each $q$, we obtain a set of linear equations (different $q$ 's are not mixed)

$$
\begin{aligned}
& d_{n} \mu_{n}+\sum_{k=1}^{K} s_{k} \alpha_{k} \frac{1}{\beta_{k}+\kappa_{n}} \sum_{m=-\infty}^{\infty} \frac{\mu_{m}}{\beta_{k}+\kappa_{m}}=\Phi_{n} \\
& \alpha_{k}=\frac{e^{i \beta_{k} \xi_{k}}\left(e^{-i \beta_{k} L}-1\right)}{L u_{k z}}, \quad \xi_{k}=0, L \\
& \beta_{k}=q \frac{u_{k y}}{u_{k z}} \\
& d_{n}=\sum_{k=1}^{K} \frac{i s_{k}}{u_{k z}\left(\beta_{k}+\kappa_{n}\right)}=\sum_{k=1}^{K} \frac{i s_{k}}{\hat{\mathbf{u}}_{k} \cdot\left(q, \kappa_{n}\right)}
\end{aligned}
$$

## In matrix notations:

$D|\mu\rangle+\sum_{k=1}^{K} s_{k} \alpha_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k} \mid \mu\right\rangle=|\Phi\rangle$
$D$ is diagonal
$\left|\psi_{k}\right\rangle$ are known vectors

## Analysis of Stability

a) $q L \ll 1$ : Can be easily analyzed
b) $q L \gg 1$ : Main concern. Not so simple but can also be analyzed
c) $q L \sim 1$ : No analytical condition obtained; empirically, we have found that, if all rays cross the same boundary (reflection geometry), there can exist an instability in reconstructions. However, corresponding artifacts are localized near the the boundaries and are not of major concern.

## a) Case $q=0$

$$
\begin{array}{rlr}
\mu_{0}= & \frac{2}{L \Sigma_{0}} \sum_{m=-\infty}^{\infty} \Phi_{m}=\frac{2 \tilde{\Delta}(0)}{\Sigma_{0}}, & n=0, \\
\mu_{n}=\mu_{0}-i \frac{\kappa_{n} \Phi_{n}}{\Sigma_{1}}, & n \neq 0 . \\
\Sigma_{0}=\sum_{k=1}^{K} \frac{s_{k}}{\left|u_{k z}\right|}, \quad \Sigma_{1}=\sum_{k=1}^{K} \frac{s_{k}}{u_{k z}}, \quad \Sigma_{2}=-\sum_{k=1}^{K} \frac{s_{k} u_{k y}}{u_{k z}^{2}} . \\
& d_{n}=i\left(\Sigma_{1} \frac{1}{\kappa_{n}}+\Sigma_{2} \frac{q}{\kappa_{n}^{2}}+\ldots\right), \quad|n| \rightarrow \infty,
\end{array}
$$

## Bad imaging geometries (Sigma_1=0)


(a)

(b)
b) Case $q \rightarrow \infty$

The diagonal matrix $D$ dominates the separable terms
Find the condition under which all elements $d_{n}$ of $D$ are simultaneously non-zero

$$
d_{n}(q)=\sum_{k=1}^{K} \frac{i s_{k}}{\hat{\mathbf{u}}_{k} \cdot\left(q, \kappa_{n}\right)}=\frac{i}{\left|\left(q, \kappa_{n}\right)\right|} \sum_{k=1}^{K} \frac{s_{k}}{\hat{\mathbf{u}}_{k} \cdot \hat{\mathbf{v}}}
$$

$$
f(\theta)=\sum_{k=1}^{K} \frac{s_{k}}{\cos \left(\theta-\theta_{k}\right)},
$$

$f(\theta)$ has zeros $\Leftrightarrow$ at least one of the elements $d_{n}(q)$ turns to zero for some $q$ and $n$.
There exists a high-frequency instability

(a)

(b)



## Numerical Examples



Phantoms used

| Case | 2 a | 2 b | 3 a | 3 b |
| ---: | ---: | ---: | ---: | ---: |
| K | 3 | 3 |  |  |
| $s_{1}$ | 1 |  | 1 |  |
| $s_{2}$ | 1 |  | 1 |  |
| $s_{3}$ | 1 |  | -2 |  |
| $\theta_{1} / \pi$ | 1 |  | 0.25 |  |
| $\theta_{2} / \pi$ | 0.25 |  | 1.1 |  |
| $\theta_{3} / \pi$ | -0.25 | $-1 / 6$ | -0.2 | 0.8 |
| NZ | 0 | 0 | 2 | 0 |
| $\Sigma_{0}$ | 3.83 | 3.57 | -0.01 | -0.01 |
| $\Sigma_{1}$ | 1.83 | 1.57 | -2.11 | 2.83 |

CASE 2; $K=3, s 1=s 2=s 3=1$


Case 2a


Case 2b


Case 2a


Case 2b


Case 2a


Case 2b


Case 2a


Case 2b
(a) No noise, $\lambda=0$
(b) $\mathcal{N}=4 \times 10^{4}, \lambda=0$

CASE 2; $K=3, s 1=s 2=s 3=1$


Case 2a


Case 2b


Case 2a


Case 2b
(c) $\mathcal{N}=10^{4}, \lambda=0$


Case 2a


Case 2b


Case 2a


Case 2b
(d) $\mathcal{N}=2.5 \times 10^{3}, \lambda=0$

CASE 3; $K=3, s 1=s 2=1, s 3=-2$


CASE 3a; $K=3, s 1=s 2=1, s 3=-2, N Z=2$; effects of regularization for $\mathrm{N}=1 \mathrm{e} 4$


CASE 3b; K=3, s1=s2=1, s3=-2,NZ=0; effects of regularization for $\mathrm{N}=1 \mathrm{e} 4$


Comparison of local and Fourier methods ( $\mathrm{K}=3$ coefficient matrix)



Local, without noise


Local, with noise


Fourier, without noise


Fourier, with noise

Comparison of local and Fourier methods ( $\mathrm{K}=4$, geometry of Katsevich and Krylov, first ray Canceled in the star transform)


|  | $\alpha_{k} / \pi$ | $c_{k}$ | $s_{k}$ | $\sigma_{k}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0 |  |  |  |
| 2 | 0.25 | 1 | 1 | -0.3468 |
| 3 | -0.1 | -2 | -2 | 1.1085 |
| 4 | 0.8 | 1 | 1 | 1.0000 |



Local, without noise


Local, with noise


Fourier, without noise


Fourier, with noise

