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The nonlinear system of equations to determine 

the unknown resistors  , ,  from the 

measurements of resistance between all pairs

of vertices, ,  ,  
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Linearization:
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oblem (matrix is invertible).



Simplest inverse scattering problem: Two scatterers
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Nonlinear inverse solutions:

1 ( )

1 ( )

What if  =1  ?

1
We will obtain the spurrious solution 

(In reality a d.p.  is unphysical in thi

g

g

g

 


  

 


  



 

 


   


 

   

  

 s case)



lin
lin inv2 1 1
1 12 lin

2

lin
lin inv1 2 2
2 22 lin

1

Linearized inverse solutions:
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Inverse Born series convergence condition (nec.&suff.):
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Region of convergence of the inverse Born series for the model parameters
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How is the T-matrix defined in this simple case?
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What do we know about the T-matrix from the data?

Row-wise sums of the T-matrix elements are known from the data 
(and given by the linearized inversions).



Is there a general relationship between the T-matrix and the unknowns?
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There is a one-to-one correspondence between T and V (one matrix uniquely
defines the other).   

But not every T corresponds to a physically-meaningful (or even diagonal) V.  



MAIN IDEA(S) OF DCTMC:

1. Use data to obtain information on the elements of the T-matrix.
-- this is a linear problem
-- a larger data set is factored into two much smaller data sets
-- if we could find all elements of T, we would solve the nonlinear

inverse problem immediately and exactly. But in most cases
data do not allow this (requires internal measurements).

2. From the information obtain in Step 1, complete the T-matrix (find all 
its elements) given the constraint that the V is physically meaningful
(e.g., diagonal).

3. It turns out that this approach helps solve even linear inverse problems
with very large data sets. The factorization of a large data set into two much
smaller sets works even in this case, and there are essentially no approximations.



Still a toy problem but now N
particles….
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We know that the functional T[V] is invertible numerically…
… but in this case it is invertible analytically. 

So we can gain some insight about WHAT we need to know about the T-matrix
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It is sufficient to know column-wise (or row-wise) sums of the T-matrix to find V

Conjecture: it is sufficient to know ANY  (or almost any) N linearly-independent
combinations of the elements of the T-matrix 
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DCTMC motivation 1: Local minima
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DCTMC motivation 2: Large data sets
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Algebraic Structure of the Inverse Problem
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Every variable is a matrix!
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The Experimental T-Matrix
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Data-compatible T-matrix

Representation: SV

kT

Data-compatible T-matrix
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Shortcut 1: Fast Rotations
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Computational Shortcut: Fast Rotations

1

1

1 1

5:  [ ]

6:   [ ]

1:   [ ]

k k

k k

k k

T T

T T

T T





 

 





R

O

R

exp exp[ ] [ ] [ ]

[ ] [ ]

T T T T T T

T T T

    

 

O M N

M N

1 1

1 exp[ [ [ ]]] - [ [ [ ]]]k k k kT T T T T 


    R O R R N R

1 * *[ [ [ ]]] ( )A A B BT P P TP P R N R



Operation of “Diagonalization” and Linear Reconstructions
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Practical tip: Richardson iteration is a very slow way to arrive at the linearized solution.
Use direct solver of CG to compute linearized solution and then use this result as an initial guess
For the nonlinear iterations.
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No improvements: 900 iterations



With improvements: 70 iterations

• Start from linearized reconstruction (can be computed fast using our method)
• Use weighted summation to the diagonal for “force-diagonalization”
• Use reciprocity of source-detector pairs to improve symmetry of the 

experimental T-matrix
•Method starts to break down due to incorrect assignment of non-interacting 

voxels (this can be avoid altogether – not a problem of convergence)
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Diffusion tomography:                     Contrast:                 Optical depth:   Noise:
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DCTMC works when Newton-Gauss fails (Convergence of Levenberg-Marquardt 
Iterations for the inverse diffraction problem, moderate contrast 0.0175)



CONCLUSIONS

• DCTMC works for nonlinear ISP with fairly strong nonlinearity

• DCTMC is, unfortunately, a complicated method: it requires 
many tweaks, attention to detail, and good programming to 
work

• As any other method, DCTMC breaks at some point. Not every 
nonlinear ISP can be solved!

H.W.Levinson and V.A.Markel, Solution of the nonlinear inverse scattering problem 
by T-matrix completion. I. Theory, Phys. Rev. E 94, 043317 (2016)

H.W.Levinson and V.A.Markel, Solution of the nonlinear inverse scattering problem 
by T-matrix completion. II. Simulations, Phys. Rev. E 94, 043318 (2016)

https://www.cbica.upenn.edu/vmarkel/EPUBS/PhysRevE.94.043317.pdf
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.043317
https://www.cbica.upenn.edu/vmarkel/EPUBS/PhysRevE.94.043318.pdf
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.043318

