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Why plasmonic chains are of interest?

e Spectroscopy and sensing
 Waveguiding and optical elements
 Advances in manufacturing
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From K.B.Crozier, E.Togan, E.Simsek, T.Yang, Opt.Ex. 15, 17482 (2007)



Physical model (a waveguiding
application)
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Is the dipole approximation adequate?

PRO: CONTRA:

1. It's simple!

2. It allows physical insight. DA does break when the

3. Captures interference particles are close to touching,
phenomena well (DA is not especially for polarization the
the same as quasistatics). TM polarization

4. Allows to deal with complex
shapes as long as the
polarizability is known.

5. Is not that inaccurate for
moderate separations,
especially for TE polarization.

6. After all, the mathematical
shapes we use are
approximations, often rough.



0.7
0.6
0.5
0.4
0.3
0.2
0.1

-0.1

3.5
rw | T
: L =8000 — 3r
| ’ PRS -
25

I'(w)

Fiees

I"'(w)dw
Z—W

2 2 :
Ar o —o" —lyw

o, = 47kV Im |
Z_4ﬂ€+2
3 -1

Drudean metals

2
“is

From V.A.Markel, V.N.Pustovit, S.V.Karpov et al., PRB 70, 054202 (2004)




1. SPECTROSCOPY (NARROW NON-
LORENTZIAN RESONANCES)
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From V.G.Kravets, F.Schedin, A.N.Grigorenko, PRL 101, 087403 (2008)



The dipole approximation
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a. - Polarizability of the n-th particle
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 exp(ikcos@-x,) Plane wave

X ) - Frequency-domain
Green's function
Near-field tip

The coupled-dipole
equations in the
frequency domain
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S =5(k,q)

If kn=¢&, gh=n, then
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SiE =0
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The " L" dipole sum diverges logarithmically if

Exn=(k+q)h=27L
L being an integer




ReS, for some fixed values of frequency

kh=04

vtk et

Quasi-Static Limit




Re[S(kh,gh)]

Orthogonal (TE) bpolarization

1.0

kh/m

Parallel (TM) polarization
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Narrow spectral features in extinction spectra
of an infinite chain of Drudean spheres.
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" 1" - polarization orthogonal to the chain
"||"- polarization parallel to the chain

From V.A.Markel, J. Mod. Opt. 40, 2281 (1993).
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Why is the resonance non-Lorentzian ?
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(Qasiparticle pole approximation)

But ) does not exist at o=w, !
ow



Sensitivity to local environment
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Fig. 2. (Color online) A typical CPR response to a change
in local index of refraction. (a) The difference amplitude
signal 8V and phase signal A for CPR of Figs. 1(¢) and 1(d)

registered for a change in gas RI An=4X10

=5 (b) 8T and

SA for CPR of Figs. 1(e) and 1(f) registered for a change in

liquid RI An=6 X107

From V.G.Kravets, F.Schedin, A.\V.Kabashin A.N.Grigorenko, Opt.Lett. 35, 956 (2010)
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2. DISPERSION RELATIONS
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What is the role of losses (both
radiative and absorptive)?

A few possible approaches:

* Take real @ and seek complex g
* Take real q and seek complex w

* Solve eqn Re| h®/a—S(k,q) |=0fork,qeR

When losses are small, there i1s not much of a difference...
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What is the role of particle
nonsphericity?
 Nanoparticle chains have been studied almost
exclusively for the case of spherical particles

* However, nonsphericity can be expected to
provide a useful additional parameter to

control:
- SPP dispersion curves

- SPP bandwidth
- Propagation distance



Model for the polarizability, o

1 4%( & ] e
= v+ —1—

o &V & e 3
&, 1S the permittivity of the host medium (a transparent
dielectric or vacuum)

£ =g ® s the permittivity of metal (given by
ao\o+1y
the Drude formula)
W = 4ﬂ§bc IS the volume of spheroid; o
C

v IS the depolarization factor




Dispersion curves and group velocities for transversely

polarized SPPs and different aspect ratios a/b of spheroids

Normalized wave humber

Prolate spheroids whose axis of
symmetry is perpendicular to the chain
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Dispersion curves and group velocities for longitudinally
polarized SPPs and different aspect ratios a/b of spheroids

Normalized wave humber

Prolate spheroids whose axis of
symmetry is perpendicular to the chain
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3. PROPAGATION. STEADY STATE
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Simulation for a finite chain of N=1000
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Effect of Ohmic Losses




Effects of disorder

e Off-diagonal disorder (disorder in the
nanoparticle positions)

We assume here that the position of the n-th
particle is evenly distributed in the interval

[h(n-A), h(n+A)], A<<1

 Diagonal disorder

[A more subtle effect, not considered in this talk;
see Phys.Rev.B 75, 085426 (2007)]
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Different Realization of Disorder at the
Level A=0.01
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Different realization of disorder at the
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Non-quasistatic SPP at different levels of

disorder
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Non-quasistatic SPP at different levels
of disorder (continued)
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Specific extinction for excitation by a plane wave
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4. PROPAGATION. TRANSIENT
PHENOMENA

=N

n=1 n

@ 00000

NF tip operating in

2
E ocexp (—j exp(—lwt) the collection mode



d, |, a.u.

f= ) ——
/t} '+ =1000r ——
/t "t =2000r ——
t = 30007 —
t = 400fsec

AN

/ t 10007 ——

t = aDODF ’/\d

0

t = 6000—
t =800fsec
1000 2000 3000 4000

L =200um

5000

Chain Parameters:

h=40nm
b=10nm
L E —0.15
a
N =5000
= h =0.133fsec
¢

Metal Parameters
(Ag)

2

e

o(w+1y)

it eam

P

ylo, =0.002

£ =5

38




d,, |, a.u.

' ' T = 10007 —
—
/QOF B

t = 30007 ——
t = 400fsec
t = 40007 ——— P '
o (But note that special relativity
| . Is not violated. You can ask me why.)

t =800fsec

5000

0 1000 2000 3000 4000
39




5. PROPAGATION DISTANCES

Frequency Prolate spheroid Cylindrical wire
chain, transverse SPP | R=25nm

b/a=0.15
a=40nm, h=25nm

o = 0-15% 7microns 3microns

= 0.05a)p

15microns 3microns

Propagation distances in chains and in wires are generally comparable,
but it seems that in the special case of prolate spheroids, the propagation
distance can be increase by a factor of 2 -5, depending on the working

frequency.
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CONSCLUSIONS

* Plasmonic chains have promissing applications
in spectroscopy, sensing and waveguiding

 Theory and simulations are needed to guide
the experiments and optimize design

 We need to look beyond the “traditional” EM
boundary value solvers.
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