Tomography of Highly Scattering Media with the Method of Rotated Reference Frames

Manabu Machida
George Panasyuk John Schotland Vadim Markel

Radiology/Bioengineering
UPenn, Philadelphia

Outline

Motivation
 (The Forward Problem Perspective)

The Helmholtz Equation

$$
\begin{aligned}
& \left(\nabla^{2}+k_{0}^{2}\right) u=0 \\
& k=\text { const }
\end{aligned}
$$

The Diffusion Equation

$$
(-\nabla \cdot D \nabla+\alpha) u=0
$$

$$
D, \alpha=\mathrm{const}
$$

$$
\begin{aligned}
& \text { RTE } \\
& \qquad \begin{array}{l}
\left(\hat{\mathbf{s}} \cdot \nabla+\mu_{t}\right) I(\mathbf{r}, \hat{\mathbf{s}})= \\
\quad=\mu_{s} \int A\left(\hat{\mathbf{s}}, \hat{\mathbf{s}}^{\prime}\right) I\left(\mathbf{r}, \hat{\mathbf{s}}^{\prime}\right) \\
\mu_{t}, \mu_{s}=\mathrm{const}
\end{array}
\end{aligned}
$$

Plane Wave Modes

$$
\begin{array}{ll}
e^{i \mathbf{k} \cdot \mathbf{r}} & \frac{e^{i k_{0} r}}{r}=\frac{i}{2 \pi} \int Q^{-1} e^{i(q \cdot p+Q z)} d^{2} q \\
\mathbf{k} \cdot \mathbf{k}=k_{0}^{2} & Q=\sqrt{k_{0}^{2}-q^{2}}
\end{array}
$$

$$
e^{-\mathbf{k} \cdot \mathbf{r}}
$$

The Weyl Expanson

$$
\mathbf{k} \cdot \mathbf{k}=k_{0}^{2}=\alpha / D
$$

$$
\frac{e^{-k_{0} r}}{r}=\frac{1}{2 \pi} \int Q^{-1} e^{i q \cdot p-Q z} d^{2} q
$$

$$
Q=\sqrt{k_{0}^{2}+q^{2}}
$$

Not known
Not known

MOTIVATION (The Inverse Problems Perspective)

Given a data function $\phi\left(\boldsymbol{\rho}_{s}, \boldsymbol{\rho}_{d}\right)$
which is measured for multiple pairs $\left(\boldsymbol{\rho}_{s}, \boldsymbol{\rho}_{d}\right)$,
find the absorption coefficient $\alpha(\mathbf{r})$ inside the slab

Linearized Integral Equation

$$
\phi\left(\boldsymbol{p}_{s}, \boldsymbol{\rho}_{d}\right)=\int \Gamma\left(\boldsymbol{p}_{s}, \boldsymbol{\rho}_{d} ; \mathbf{r}\right) \delta \alpha(\mathbf{r}) \mathrm{d}^{3} r
$$

$$
\phi\left(\boldsymbol{\rho}_{s}, \boldsymbol{\rho}_{d}\right)=\frac{I\left(\boldsymbol{\rho}_{s}, z_{s} ; \boldsymbol{\rho}_{d}, z_{d}\right)-I_{0}\left(\boldsymbol{\rho}_{s}, z_{s} ; \boldsymbol{\rho}_{d}, z_{d}\right)}{I_{0}\left(\boldsymbol{\rho}_{s}, z_{s} ; \boldsymbol{\rho}_{d}, z_{d}\right)}
$$

(measurable data-function)

$$
\Gamma\left(\boldsymbol{\rho}_{s}, \boldsymbol{\rho}_{d}\right)=G_{0}\left(\boldsymbol{\rho}_{s}, z_{s} ; \mathbf{r}\right) G_{0}\left(\mathbf{r} ; \boldsymbol{\rho}_{d}, z_{d}\right)
$$

(first Born approximation)

$$
\alpha(\mathbf{r})=\alpha_{0}+\delta \alpha(\mathbf{r})
$$

Analytical SVD approach: Making use of the translational invariance

$$
\begin{aligned}
& \tilde{\phi}\left(\mathbf{q}_{s}, \mathbf{q}_{d}\right)=\int \phi\left(\boldsymbol{p}_{s}, \mathbf{\rho}_{d}\right) e^{i\left(\mathbf{q}_{s} \cdot \mathbf{p}_{s}+\mathbf{q}_{d} \cdot \mathbf{p}_{d}\right)} \mathrm{d}^{2} \rho_{s} \mathrm{~d}^{2} \rho_{d} \\
& \mathbf{q}_{s}=\mathbf{q} / 2+\mathbf{p}, \quad \mathbf{q}_{d}=\mathbf{q} / 2-\mathbf{p} ; \\
& \text { Data function: } \psi(\mathbf{q}, \mathbf{p})=\tilde{\phi}(\mathbf{q} / 2+\mathbf{p}, \mathbf{q} / 2-\mathbf{p}) \\
& \psi(\mathbf{q}, \mathbf{p})=\int_{0}^{L} g_{s}(\mathbf{q} / 2+\mathbf{p} ; z) g_{d}(\mathbf{q} / 2-\mathbf{p} ; z) \delta \tilde{\alpha}(\mathbf{q} ; z) \mathrm{d} z \\
& \delta \tilde{\alpha}(\mathbf{q} ; z) d z=\int \delta \alpha(\mathbf{\rho}, z) e^{i \cdot \mathbf{p} \cdot \mathbf{d}} \mathrm{~d}^{2} \rho \\
& G_{0}\left(\boldsymbol{p}_{s}, z_{s} ; \boldsymbol{\rho}, z\right)=\int \frac{\mathrm{d}^{2} q}{(2 \pi)^{2}} g_{s}(\mathbf{q} ; z) e^{i \mathbf{q} \cdot\left(\boldsymbol{\rho}-\boldsymbol{p}_{s}\right)} \\
& G_{0}\left(\mathbf{p}, z ; \boldsymbol{p}_{d}, z_{d}\right)=\int \frac{\mathrm{d}^{2} q}{(2 \pi)^{2}} g_{d}(\mathbf{q} ; z) e^{i \mathbf{q} \cdot\left(\boldsymbol{p}_{d}-\boldsymbol{p}\right)}
\end{aligned}
$$

S.D.Konecky, G.Y.Panasyuk, K.Lee, V.Markel, A.G.Yodh and J.C.Schotland Imaging complex structures with diffuse light

In the case of RTE, we need the plane-wave decomposition of the Greens function, of the form
$G_{0}\left(\mathbf{r}, \hat{\mathbf{s}}, \mathbf{r}^{\prime}, \hat{\mathbf{s}}^{\prime}\right)=\int \frac{\mathrm{d}^{2} q}{(2 \pi)^{2}} g\left(\mathbf{q} ; z, \hat{\mathbf{s}} ; z^{\prime}, \hat{\mathbf{s}}^{\prime}\right) e^{i q \cdot\left(\boldsymbol{\rho}-\boldsymbol{\rho}^{\prime}\right)}$
and the integral kernel
$\Gamma(\mathbf{q}, \mathbf{p} ; z)=\int g\left(\mathbf{q} / 2+\mathbf{p} ; z_{s}, \hat{\mathbf{z}} ; z, \hat{\mathbf{s}}\right) g\left(\mathbf{q} / 2-\mathbf{p} ; z, \hat{\mathbf{s}} ; z_{d}, \hat{\mathbf{z}}\right) \mathrm{d}^{2} s$
We then get the integral equations of the form
$\psi(\mathbf{q}, \mathbf{p})=\int_{z_{s}}^{z_{d}} \Gamma(\mathbf{q}, \mathbf{p} ; z) \delta \tilde{\alpha}(\mathbf{q} ; z) \mathrm{d} z$

THE METHOD

Rotated Reference Frames

The usual sperical harmonics are defined in the laboratory reference frame. Then θ and φ are the polar angles of the unit vector $\hat{\mathbf{s}}$ in that frame.

For each value of the Fourier variable \mathbf{k}, use spherical harmonics defined in a reference frame whose z -axis is aligned with the direction of \mathbf{k}.

We call such frames "rotated".
Spherical harmonics defined in the rotaded frame are denoted by $Y(\hat{\mathbf{s}} ; \hat{\mathbf{k}})$.

Rotation of the Laboratory Frame

 ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).

Spherical functions
in the laboratory
frame

Advantages of the Method

- Numerical problem is reduced to diagonalization of a set of tridiagonal matrices
- Once the eigenvalues and eigenvectors are computed, the Green's function, the plane-wave modes and the Weyl expansion for the GF can be obtained in analytical form
- The Weyl expansion can also be obtained in a slab with appropriate boundary conditions

RESULTS: SIMULATIONS

A set of 5 point absorbers in an $\mathrm{L}=6{ }^{*}$ slab The field of view is 16^{*}

A bar target in the center of the same slab

RTE
Diffusion approximation

RESULTS: SIMULATIONS

Two thin vertical wires in a 1 cm thick slab filled with intralipid solution (looks like milk)

RTE

Publications:

1. V.A.Markel, "Modified spherical harmonics method for solving the radiative transport equation," Waves in Random Media 14(1), L13-L19 (2004).
2. G.Y.Panasyuk, J.C.Schotland, and V.A.Markel, "Radiative transport equation in rotated reference frames," Journal of Physics A, 39(1), 115-137 (2006).
3. J.C.Schotland and V.A.Markel , "Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation," Inverse Problems and Imaging 1(1), 181188 (2007).

Available on the web at http://whale.seas.upenn.edu/vmarkel/papers.html

CONCLUSIONS

- The method of rotated reference frames can be used in optical tomography of mesoscopic samples
- The images are of superior quality compared to those obtained by using the diffusion approximation
- The quality of images can be comparable to that in X-ray tomography because the RTE retains some information about ballistic rays, single-scattered rays, etc.

