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Abstract: We describe two types of surface plasmons in ordered and disordered chains. The
second kind is mediated by far-field interaction and is affected by Ohmic and radiative losses
much less than the first kind.
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Surface plasmons (SPs) are states of polarization that can propagate along metal-dielectric interfaces without
radiative losses. Polarization in an SP excitation can be spatially confined on scales that are much smaller than
the free-space wavelength. This property proved to be extremely valuable for manipulation of light energy
on subwavelength scales and miniaturization of optical elements. SP excitations in ordered one-dimensional
arrays of nanoparticles have attracted significant attention in recent years due to numerous potential ap-
plication in nanoplasmonics. For example, a periodic chain of high conductivity metal nanospheres can be
used as an SP wave guide - an analog of an optical waveguide [1]. High-quality SP modes in ordered and
disordered chains may be utilized in random lasers [2]. Electromagnetic forces acting on linear chains of
nanoparticles can produce the effect of optical trapping [3]. Various spectroscopic and sensing applications
have also been discussed [4,5].

Although, under ideal conditions, SP excitations can propagate without loss of energy, in practice this is not
so. There are two physical effects that can result in decay of SP excitations. The first effect is Ohmic losses
due to the finite conductivity of the metal. The second effect is radiative losses due to disorder in the chain
(scattering from imperfections). The latter effect is more subtle and is closely related to the phenomenon of
localization. We first focus on decay due to Ohmic losses and show that it can be suppressed at sufficiently
large propagation distances. The main idea is based on exploiting an exotic non-Lorentzian resonance in
the chain which originates due to radiation-zone interaction of nanoparticles [6]. From the spectroscopic
point of view, the non-Lorentzian resonances are manifested by very narrow lines in extinction spectra [4].
The author has argued previously that the small integral weight of the spectral lines associated with these
resonances precludes them from being excited by a near-field probe [6]. However, numerical simulations reveal
that the corresponding SP has relatively small yet nonzero amplitude and is also characterized by very slow
spatial decay. Therefore, in sufficiently long chains, this SP becomes dominant and can propagate, without
significant further losses, to remarkable distance. We stress that the non-Lorentzian SP is an excitation
specific to discrete systems; it does not exist, for example, in metal nanowires. But the above consideration
applies only to ordered chains. Therefore, we consider next the effects of disorder. To isolate radiative losses
due to scattering on imperfections from Ohmic losses, we consider nanoparticles with infinite conductivity
(equivalently, zero Drude relaxation constant). An equivalent system can be constructed experimentally by
embedding metallic particles into a dielectric medium with positive gain.

Consider a linear chain of N nanospheres with radiuses an centered at points xn and work in the dipole
approximation which is valid if xn+1−xn & (an+1+an)/2. The n-th nanosphere is characterized by a dipole
moment with amplitude dn oscillating at the electromagnetic frequency ω. The dipole moments are coupled

to each other and to external field by the coupled-dipole equation [7] dn = αn

[

En +
∑

n′ 6=n Gk(xn, xn′)dn′

]

,

where αn is the polarizability of the n-th nanosphere, En is the external electric field at the point xn,
k = ω/c is the free space wave number and Gk(x, x

′) is the appropriate element of the free space, frequency-
domain Green’s tensor for the electric field. The polarizability of the n-th sphere is taken in the form
α−1

n = a−3
n (εn +2)/(εn − 1)− 2ik

3/3, where the first term is the Lorenz-Lorentz quasistatic polarizability of
a sphere of radius an and 2ik

3/3 is the first non-vanishing radiative correction. We further adopt the Drude
model for εn, namely, εn = 1−ω2

pn/ω(ω+ iγn), where ω is the electromagnetic frequency, ωpn is the plasma
frequency, and γn is the Drude relaxation constant in the n-th nanosphere.
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Left: propagation of a SP in an ordered chain of N = 1000 nanospheres for orthogonal (ORT) and parallel (PAR)

polarization of oscillations with respect to the chain. Parameters: ω = ωF, γ/ωF = 0.002, λ = 10h, h = 4a. Right: same

as in the left panel but for different ratios γ/ωF and for SP polarized orthogonally to the chain. The slowly-decaying

segments of the curves are due to the extraordinary SP discussed in the text.

Suppose that SP is excited at a given site (say, n = m) by a near-field probe. Then the external field can be set
to En = E0δnm. The solution with En = δnm is, essentially, the Green’s function for polarization. We denote
this Green’s function by Dk(xn, xm). We also define the normalized Green’s function Fk(xn − xm;xm) =
Dk(xn, xm)/Dk(xm, xm). In an infinite periodic chain, this function is independent of the second argument;
in finite or disordered chains, such dependence exists, but will be suppressed in the list of formal arguments.

In the case of infinite ordered chains, the coupled-dipole equation can be solved analytically by Fourier
transform. For finite and disordered chains, it must be solved numerically. This has been done for ordered
and disordered chains of length N up to 104. The simulations reveal the existence of two types of plasmons:
ordinary (quasistatic) and extraordinary (non-quasistatic) SPs. The ordinary SP is characterized by short-
range interaction of nanospheres in a chain. The retardation effects are inessential for its existence and
properties. The ordinary SP behaves as a quasistatic excitation. It can not radiate into the far zone in perfectly
periodic chains because its wave number is larger than the wavenumber k = ω/c of free electromagnetic waves.
However, it can experience decay due to absorptive dissipation in the material. The second, extraordinary,
SP propagates due to long-range (radiation zone) interaction in a chain and may experience some radiative
loss but is much less affected by absorptive dissipation and disorder. As a result, it can propagate to much
larger distances along the chain. A cross over from ordinary to extraordinary SP is illustrated in the Figure.
Finally, simulations suggest that even small disorder in the position or properties of nanoparticles results in
localization of the ordinary SP. However, the extraordinary SP appears to remain delocalized for all types
and levels of disorder considered.
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