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Abstract: We propose a novel tomographic method which utilizes visible or near-infrared light
as a probe in the “mesoscopic” scattering regime when the tissue exhibits sufficiently strong
scattering, yet the detected light is not diffuse.
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Traditional tomographic imaging relies on probing tissue with particles or waves which experience almost no
scattering inside the human body. Consequently, scattering has historically been viewed as an obstruction to
imaging. Approximately fifteen years ago, a novel tomographic technique was suggested which makes use of
strongly scattered (diffuse) near-infrared (NIR) light [1,2]. While NIR radiation can easily penetrate many
centimeters into most types of human tissue, it experiences scattering on the characteristic scale of 1 mm.
Diffuse NIR tomography has numerous potential advantages. However, the associated inverse problem is
nonlinear and ill-posed. This has, so far, limited the clinical utility of diffuse optical methods.

Both the limit of geometrical propagation without scattering (typical of x-rays in computerized tomography)
and the limit of strong scattering (typical of NIR light in diffuse optical tomography) have been extensively
explored. However, the intermediate scattering regime has received much less attention. By the intermediate
or “mesoscopic” scattering regime we mean here the situation when scattering is significant enough so
that noncollinear measurements can be performed, yet the characteristic sample size is no larger than a
few scattering lengths. Neither geometrical optics nor the diffusion equation can be used to describe the
propagation of light in this regime. Instead, the radiative transport equation (RTE) must be used. If only
a few scattering events are important the RTE can be readily solved by the collision expansion. If one
retains in this expansion only the first correction to ballistic (geometrical) propagation, a very efficient and
accurate tomographic technique can be obtained. We will refer to this technique as the single scattering
optical tomography (SSOT).

The physical principle of SSOT is quite simple. Consider a sample in the shape of a slab. A narrow collimated
ray of light enters in the normal direction through one of the slab’s surfaces. In the absence of scattering, the
ray would propagate straight through the slab. Detection of such straight (unscattered) rays is the basis of
computerized x-ray tomography. If there is finite scattering in the medium, the ray can “change direction”. In
SSOT, only the intensity of such broken rays is detected by means of angularly-selective detectors which are
non-collinear with the source. It can be shown that the intensity measured by the detector is mathematically
related to the integral of the attenuation coefficient taken along the single-scattered ray.

The potential advantages of SSOT include linearity and well posedness of the inverse problem (in contrast to
the optical diffusion tomography). Further, SSOT does not require phase measurements (in contrast to the
optical coherence tomography (OCT)) and can be performed using a single projection or in backscattering
(in contrast to the x-ray tomography). It utilizes non-ionizing radiation and can exploit additional contrast
mechanisms compared to OCT and x-ray tomography. Finally, the inverse problem of the SSOT is two-
dimensional and image reconstruction can be performed slice-by-slice.

We have performed simulation of SSOT image reconstruction in a rectangular scattering sample with di-
mensions Lx ×Ly ×Lz. The forward data were obtained by solving the RTE numerically. We have used the
isotropic scattering function. In this case, the RTE can be reduced to a three-dimensional integral equation
[3,4]. The equation was solved by discretization of the volume of the sample with the step h. The sample
dimensions were Lx = 11h, Ly = 122h and Lz = 40h. The background absorption coefficient of the sample
was µa = 0.01h

−1 which was spatially modulated by absorbing inhomogeneities (the target) as is explained
below. The scattering coefficient was constant throughout the sample, µs = 0.08h

−1. The sources were nor-
mally incident on the surface z = 0. The detectors were placed on the other side of the sample and measured
the specific intensity exiting the surface z = Lz at the angle of π/4 with respect to the z-axis. Reconstruction
of the total attenuation coefficient µt = µa + µs was performed in slices x = xslice = const separated by the
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Model and reconstructed attenuation for various levels of noise n. Same color scale is used for all panels with the

maximum (white) corresponding to µt = 0.28h−1 and the minimum (black) to µt = 0. Only slices x = 3h, x = 6h

and x = 9h are shown (the missing slices do not exhibit any visible “cross talk”).

distance ∆x = h. For each slice, the source positions were x = xslice, y = nh, z = 0, with n being integers.
Seven consecutive slices were obtained, starting from the slice xslice = 3h. The reconstruction area inside
each slice was 44h ≤ y ≤ 77h, 4h ≤ z ≤ 37h, with the field of view 34h× 34h. In the example shown in the
Figure, the value of µsLz (the number of scattering lengths in the sample thickness) was equal to 3.2.

The target was a set of absorbing inclusions formed in the shape of letters, with absorption varying from
0.06h−1 to 0.2h−1. The inclusions were concentrated only in three layers: x = 3h, x = 6h and x = 9h, as
shown in the columns marked “model”. To model noise in the measured data, we first scaled and rounded
off the specific intensity obtained from the RTE forward solver so that it was represented by a 16-bit integer,
similar to measurements by digital CCD cameras. Then a statistically-independent positive-valued random
variable was added to each measurement. The random variables were evenly distributed in the interval
[0, nIav], where n is the noise level indicated in the figureq and Iav is the average measured intensity (a
16-bit integer).

Images were obtained by the regularized SVD pseudoinverse of the discretized version of broken-ray integral
transform. It can be seen that the spatial resolution of the reconstructed images depends on the noise level
and contrast and can be as good as one discretization step, h. The reconstruction is stable in the presence of
noise and quantitative. Overall, the reconstructions demonstrate the image quality and level of detail which
is customary in x-ray tomography but can hardly be expected in optical tomography with multiply scattered
light.
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