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Scattering Resonances in QM
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To find the singularities of [1 ( ) ] ,
we must consider spectral properties of
the linear operator  
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Lorentzian Resonances on Quasi-
Stationary States
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EM Scattering
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Both operators are frequency-dependent
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Scalar parameter

Depends only
on the scatterer
shape
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Symmetric
(but, generally,
non-Hermitian)
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Quasistatic Limit
(QS)
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This operator is Hermitian
within the quasistatics
(because we have neglected
retardation)
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Purely real (quasisatic) eigenvalues



Lorentzian Resonances in the 
Quasistatics
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(Qasiparticle pole approximation)



Resonances Beyond Quasistatics

1

( )

[ ( ) ]  ,
( ) Re[ ( )]

where  ,   1

( ) Im[ ( )]
and  is the solution to   
           ( ) Re[ ( )]

n n

n

n n n n

n n
n

n n n n

n

n

w w
Fz W

X w i
n n

F F
n n

w

X w

ω

ω
ω ω

δ ω ω
ω

ω ω

−

=

− ≈
− − Γ

= =

Γ = −

=

∑

∑



Origin of the Non-Lorentzian 
Resonances

What if  ( ) is a much faster function
than  ( ) ?

nw
X

ω
ω

The quasiparticle pole approximation will
not be valid in this case.



Physical Model
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Dipole Approximation
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Narrow spectral features in extinction spectra
 of an infinite chain of Drudean spheres.

0.1 (a), 1 (b), and 10 (c).

" " - polarization orthogonal to the chain
" "- polarization parallel to
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⊥
 the chain

( from V.A.Markel, J. Mod. Opt., 1993 40(11), 2281-2291)
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Unusual Properties of the Non-
Lorentzian Resonances in 1D 

Dipole Chains
• Transverse dipole oscillations are shifted to the RED (normally, they 

would be shifted to the BLUE) from the plasmon frequency.
• Have negligibly small integral weight.
• Width is not controlled by relaxation.
• Can exists in a chain where the interparticle distance is much larger 

than the particle diameter.
• Can not be excited in the near field (i.e., by a near-field probe). 
• Spectral lines consist of two sharp peaks; extinction in a poit 

between the peaks is exactly zero (in infinite chains).
• In principle, can be arbitrarily narrow (but this would require 

exponentially long chains).



Limitations and Potential Problems

Finite-size and quantum 
effects

Minor effect

Dipole approximation Minor; would not 
broaden the resonances

Short-range disorder Can broaden 
resonances

Long-range disorder Can eliminate 
resonances

Nonlinearity ?

Cause of inaccuracy
Expected effect on the resonance lineshapes
(authors intelligent guess)
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