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Motivation
● Diffusion approximation is not accurate in regions 

with low scattering, near sources or boundaries, 
in thin samples, etc.

● Under these circumstances, one must use the 
RTE instead of the DE.

● But RTE is notoriously difficult to solve, especially 
for highly forward-peaked scattering typically 
encountered in biological tissues.

● Efficient numerical methods for solving the RTE 
are needed



Background (Spectral Methods)
Solve system of equations :
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"Naive" method:

1) Choose 
2) Make a matrix 
3) Solve 
4) Goto step (1)

Computational complexity: 
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Spectral method:
1) Diagonalize  (find eigenvectors  
    and eigenvalues )
2) For every ,

Computational complexity: 

However, if the whole vector  is not
needed, the complexity may 
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Spectral Method for the RTE ?
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Where is the "spectral variable"  ?
How can we write this equation in the form ( )  ?
           and  do not qualify...
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ˆWe can try to expand ( , ) into a a 3D Fourier integral 
with respect to  and into the basis of ordinary spherical
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Conventional Method of Spherical 
Harmonics

( ) ( ) ( )
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This results in the following system of equations with respect
 to the vector of expansion coefficients ( )  (  - Fourier variable) :
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“This rather awe-inspiring set of equations … has perhaps only 
academic interest”.

K.M.Case, P.F.Zweifel, Linear Transport Theory



Rotated Reference Frames
The usual sperical harmonics are defined in the laboratory
reference frame. Then  and  are the polar angles of the 

ˆunit vector  in that frame.
θ ϕ

s

THE MAIN IDEA:
For each value of the Fourier variable ,
use spherical harmonics defined in a
reference frame whose z-axis is aligned with
the direction of . 

k

k

We call such frames "rotated".
Spherical harmonics defined in the rotaded frame are

ˆˆdenoted by   ( , ).Y s k



Rotation of the Laboratory Frame 
(x,y,z).

x

y

z
z'

y'

x'
ϕ

kθ

θ

ˆˆ ˆ( , ) ( , ,0) ( )
l

l
lm m m k k lm

m l
Y D Yϕ θ′ ′

′=−

= ∑s k s
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Spherical functions
in the laboratory
frame



RTE in the Angular Basis of Rotated 
Spherical Functions 

ikA I S I ε+ =
Scalar spectral 
parameter Block-tridiagonal 

real symmetric matrix

Diagonal matrix

Source term
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Parameters of the phase
function. (For the HG
model,               )l
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The Spectral Solution
3
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Eigenvectors and eigenvalues of a real 
Symmetric tridiagonal matrix 
(easy to compute)

To get the real-space
solution, substitute
(2) into (1) and compute 
the integral.

The integral is not easy…
but doable.

Details in
J.Phys.A 39, 115 (2006)



Infinite Space, Point Uni-Directional 
(Sharply-Peaked) Source

(a) forward and backward propagation

-5
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Angular dependence of the specific intensity for forward (a) and backward (b) 
propagation obtained at  = 21, g = 0.98 and /  = 6 · 10 . The distance to the
source  is assumed to be positive fo

l
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μ μ
r forward propagation and negative 

for backward propagation.



Infinite Space, Point Uni-Directional 
(Sharply-Peaked) Source
(b) off-axis propagation

α

β

x

y

z
s

s

s0
Two cases:
a) s is in the xy plane
b) s is in the yz plane



-5
a s

Angular distribution of specific intensity for off-axis propagation (relatively small absorption)
Parameters: g = 0.98 and /  = 6 · 10  (a), (b),  = 0.03 (c), (d).μ μ



a s

Angular distribution of specific intensity for off-axis propagation (relatively large absorption)
Parameters: g = 0.98 and /  =  0.2.μ μ



Evanescent Waves and the BVP in a Slab
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Plane waves:
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Application to Diffusion Tomography 
in the Slab Imaging Geometry

● This method gives analytical plane-wave  expansion of the RTE GF in a slab

● This expansion is needed for fast image reconstruction algorithms that we 
have recently developed [>108 data points in the recent experiment, Z. Wang, 
G.Y.Panasyuk, V.A.Markel, J.C.Schotland OL 30, 3338 (2005).]

● The method has been developed for constant optical properties. It can be 
used for linearized image reconstruction, OR, using the analytical series 
inversion techniques [V.A.Markel, J.A.O'Sullivan, J.C.Schotland, JOSA A 20, 
903 (2003)], even for solving the nonlinear inverse problem.

● The method has been used to generate forward data in a thin sample 
[G.Y.Panasyuk, V.A.Markel, and J.C.Schotland, Applied Physics Letters 87, 
101111 (2005).]



CONCLUSIONS
● The method of rotated reference frames takes advantage 

of all symmetries of the RTE (symmetry with respect to 
rotations and inversions of the reference frame).

● The angular and spatial dependence of the obtained 
solutions is expressed in terms of analytical functions.

● The analytical part of the solution is of considerable 
mathematical complexity. This is traded for relative 
simplicity of the numerical part. We believe that we have 
reduced the numerical part of the computations to the 
absolute minimum allowed by the mathematical structure 
of the RTE
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(a) Dependence of the position of maximum  on the distance to the source, , for

physiological parameters:   0.98 and /  = 6 · 10 . 

(b) Schematic illustration of typical "photon trajectories" t
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specific intensity.
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