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Problem: calculate optical (more generally, electromagnetic) responses of large 
fractal aggregates of metal nanospheres.



MOTIVATION

• Giant enhancement of effective nonlinear 
optical susceptibilities

• Localization of electromagnetic energy
• Optical memory
• Soot particles often have fractal geometry 

(of interest in atmospheric optics).



Theoretical and Computational 
Approaches

1) Dipole approximation
- 3N equations (N – number of nanospheres)
- Easy to generalize beyond quasistatics
- Inacurate for touching spheres

2) Geometrical renormalization
- An approximation
- Corrects to some extent the deficiency of the dipole approximation
- Still 3N equations

3) Coupled multipoles
- L(L+2)N equations (L – maximum order of multipole moment included in  
computations)
- Slow convergence with L for conducting spheres in close contact
- Computational complexity grows as L6



General Approach (Extinction And 
DOS)
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Definition of DOS
Γ(w) = Σn |cn|2δ(w-wn)

W|n> = wn|n>

Operator W is, in general, infinite-dimensional.
Dipole approximation: size 3N
Truncated coupled multipoles: size L(L+2)N

Is W sparse? Yes, approximately. But scarcity 
factor is not that large and using sparse solvers 
(e.g., PARDISO) does not help much.



Numerical Methods of Calculating 
the Spectra
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Numerical Methods of Calculating 
the Spectra (cont.)
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Three approaches for calculating :
a) By expressing  as a sum
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b) By expressing  as a continued fraction
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Numerical Methods of Calculating 
the Spectra (cont.)

a) Expressing  as a sum requires diagonalization
    of a matrix of the size ( 2) where
     - number of spherical particles
     - maximum multipole order 
          (i) Numerical complexity:  O(
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Numerical Methods of Calculating 
the Spectra (cont.)

2

b) Expressing  as a continued fraction requires
     matrix-vector multiplications for a matrix of
    the size ( 2) 
          (i) Numerical complexity:  O( )
          (ii) Memory requirement: 
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Sum Rules
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Spectral Variable z=X-iδ for 
Drudean Materials
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Long-Wavelength Limit
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Convergence with CF order (N=50)



Convergence of Extinction Cross 
Section with L (N=2)



Convergence of Extinction Cross 
Section with L (N=50 vs N=2)



Convergence of DOS with L: (N=2, 
Parallel Polarization)
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Convergence of DOS with L: (N=2, 
Parallel Polarization)

inf. cyl.w⊥

2
3
π

−
8
3
π

−

flat discw⊥

0.1( )XΓ

X

inf. cyl.w&

4
3
π



Comparison of DOS: Two Spheres 
and Cylinder (Parallel Polarization)
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DOS for an Infinite Linear Chain



DOS for Linear Chains of Different 
Length (Parallel Polarization)



DOS for Linear Chains of Different 
Length (Orthogonal Polarization)



DOS for a lattice CCA cluster for 
Different L (D=1.8)



Convergence of the First few 
Moments of DOS with L



Rotationally Averaged DOS for 
Different Types of Aggregates



Rotationally Averaged DOS for Offlattice 
Fractal Aggregates with Different D



Local Anisotrropy Factor



Local Dipole Moments vs. Local Anisotropy 
Factor

L=16

h = 0.05R
(surface layer)



Correlation of Local Dipole Moments and 
Local Anisotropy Factors



CONCLUSIONS
• For touching metal spheres, very high orders of multipole 

meoments must be taken into account
• Correspondingly, internal fields inside the nanospheres 

is highly inhomogeneous
• This has important consequences for nonlinear 

susceptibilities (more work must be done)
• Optical properties of large fractal aggregates are much 

more determined by local geometry than previously 
thought. Large scale structure plays, perhaps, a minor 
role.

• Lattice and off-lattice fractal aggregates have similar 
electromagnetic properties after rotationalo averaging.



Fractals: Dipole approximation vs 
L=64
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Renormalized Dipole 
Approximation DOS vs L=64 DOS

X

0.2 ( )XΓ

From analogy with DDA:
                           =1.612
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chain of spheres has the 
same depolarization 
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Wavelength Dependence:
Clusters with different D: Fe
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Wavelength Dependence:
Clusters with different D: Pd
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Wavelength Dependence:
Clusters with different D: Al
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CCA Cluster vs. Two Spheres: Fe
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CCA Cluster vs. Two Spheres: Pd
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