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Does the quasi-static polarizability have principal
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Beyond strict statics, the dipole polarizability tensor is a complex symmetric matrix. Such matrices may not be diag-
onalizable by an orthogonal similarity transformation (a rigid rotation of the reference frame). In this paper, we
provide examples of polarizability tensors that have no real principal axes and discuss the conditions under which
this counter-intuitive phenomenon can occur. ©2024Optica PublishingGroup

https://doi.org/10.1364/JOSAA.523449

1. INTRODUCTION

The quasi-static dipole polarizability plays an important role
in the theory of electromagnetic scattering. In the Rayleigh
limit when the wavelength of the incident light is assumed to be
infinite, the extinction and scattering cross sections of a non-
magnetic particle are given (in the Gaussian system of units,
which is used throughout the paper) by the expressions

σe =
4πk
|E0|

2
Im[E∗0 · α̂E0], σs =

8πk4

3|E0|
2

E∗0 · (α̂
∗α̂)E0 . (1)

These formulas are written for a (quasi)-monochromatic inci-
dent plane wave of the complex amplitude E0, k =ω/c is the
wave number at the central frequency ω, and α̂ is the quasi-
static electric dipole polarizability tensor evaluated at the same
frequency. The star in α̂∗ denotes element-wise complex con-
jugation. The expressions in Eq. (1) are well known and appear
in various forms in many textbooks; generalizations to non-
monochromatic light in an arbitrary state of polarization are
also known [1]. The purpose of this paper is to point out that,
contrary to common wisdom, α̂ is not always diagonalizable
by an orthogonal similarity transformation, i.e., by rotation
of the reference frame. In other words, a Cartesian reference
frame X Y Z in which α̂ is diagonal may not exist. One physical
implication of this observation is that some particles can never
be at equilibrium when illuminated by a plane wave but always
experience a nonzero torque. This can create an additional
mechanism for energy dissipation.

In spite of its significance, the question of whether α̂ has
real principal axes is almost never addressed in the textbooks or
even in the specialized literature. There appear to be two main
reasons for this omission. First, it is true that, at zero frequency,
α̂ is a real symmetric matrix and therefore is diagonal in some
real principal axes. However, beyond strict statics, α̂ is complex
symmetric and there is no mathematical guarantee that its eigen-
vectors are real. It may not even have three linearly independent

eigenvectors (such matrices are called defective). Even if α̂ is not
defective, its eigenvectors can be complex and not reducible
to real vectors by multiplication with a constant. Such vectors
do not have a direction and do not correspond to any geomet-
rical axes in the physical space. The second reason is that the
particles considered in the scattering theory often have special
symmetries that force α̂ to be diagonalizable in real axes even
if its elements are complex. Examples of such particles include
spheres, ellipsoids, cuboids, truncated cylinders, cones, toruses,
and many other regular shapes. It may seem that, since in all
these cases the complexity of α̂ does not prevent it from having
real principal axes, the property is general and we just did not
yet find its mathematical proof. However, we will demonstrate
below that the property is not general and can break down quite
dramatically in some cases.

The rest of this paper is organized as follows. In Section 2
we explain the physical model used to compute α̂. We then
provide in Section 3 a couple of numerical examples in which
α̂ is not diagonalizable in real axes. Finally, Section 4 contains a
discussion.

2. MODEL

To provide counter-examples illustrating the main point of this
paper, we need to compute α̂ for particles of complicated shape
and without any special symmetries. We will adopt to this end
the coupled-dipole model. Specifically, we will construct an
aggregated particle whose polarizability α̂ we want to compute
from N equivalent point-like particles whose polarizability α̂0

is known and simple. Then α̂ can be found by solving a set of
3N linear equations. We do not assume that this set of point par-
ticles mimics in any way a continuous particle. Consequently,
our model is different from the discrete-dipole approximation
(DDA) [2,3]. Rather, we assume that there is a collection of
rigidly connected point-like polarizable particles with some
physically reasonable properties and that these particles can
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interact with each other and the external field. We can visualize
this system as a collection of several small spheres with known
dielectric permittivity ε. This physical interpretation is con-
venient and will be used below (we always place the elementary
spheres sufficiently far apart for the dipole approximation to
be accurate), but it is not the only possible interpretation. A
recent review of the coupled-dipole model as applied to a general
collection of particles can be found in [4], and a review focused
more specifically on the DDA in [5].

Let us assume that a set of points ri , i = 1, ..., N, has been
generated by some method. We associate with each point an
elementary sphere of radius a made from a conductor with the
Drude complex permittivity

ε(ω)= 1−
ω2

p

ω(ω+ iγ )
, (2)

where ωp is the plasma frequency and γ is the relaxation
constant. The dipole polarizability of each elementary sphere is

α̂0(ω)= a3 ε(ω)− 1

ε(ω)+ 2
Î , (3)

where Î is the identity tensor. If the system is placed in
the external electric field E(t)= Re[E0e−iωt

], the dipole
moments induced in each elementary sphere would satisfy the
coupled-dipole equation

κ(ω)di = a3E0 +

N∑
j=1, j 6=i

a3Ĝ(ri , r j )d j , (4)

where

κ(ω)= 1− (ω/ωF )
2
− i(γω/ω2

F ). (5)

Here Ĝ(ri , r j ) is the static limit of the Green’s tensor for the
electric field (e.g., given in Eq. 4.13b of [6]) and ωF =ωp/

√
3

is the Frohlich frequency. We have used Eqs. (2) and (3) to arrive
at expression (5) for κ(ω). Given the external field amplitude E0

and the frequency ω, we can solve Eq. (4) and find the elemen-
tary dipole moments di . The cumulative dipole moment of the
aggregate is simply the direct sum of the former quantities:

D=
N∑

i=1

di . (6)

Once D is found, we can compute α̂ from the relation D= α̂E0.
To find all six independent elements of α̂, we can solve Eq. (4)
with three different right-hand sides, taking consecutively
E0 = x̂ , E0 = ŷ, and E0 = ẑ.

3. NUMERICAL EXAMPLES

Our first numerical example was obtained for the aggregate
of elementary spheres of the radius a = 0.25 shown in Fig. 1.
To generate the aggregate, we have placed N = 73 points ri

randomly inside a sphere of the radius R = 2.5 and centered at
the origin. The points were not allowed to approach each other
closer than the distance 1.0 so that all pair-wise distances satisfy
|ri − r j |> 1.0. Consequently, all surface-to-surface distances

Fig. 1. Aggregate of N = 73 spherical particles of radius a = 0.25
each. Center-to-center distance between any two particles is larger than
4a = 1.0. Centers of all particles are contained in a sphere of the radius
R = 2.5 centered at the origin. In the quasi-static approximation, the
physical units in which the lengths are measured are unimportant.

between any two elementary spheres are greater than one sphere
diameter. The volume fill fraction of the elementary spheres
inside the large sphere is approximately 0.073 (not accounting
for the boundary effects), which is much smaller than the theo-
retical maximum of 0.65 for random packing. We emphasize
that, in quasi-statics, the physical units in which the distances
are measured are unimportant [7].

Extinction spectra of the aggregate are shown in Fig. 2 for
E0 = x̂ , 0.94≤ω/ωF ≤ 1.06 (this is the spectral region where
the electromagnetic resonances of the aggregate are supported),
and different ratiosγ /ωp . The dimensionless specific extinction
plotted in the figure is defined as

Q =
σe

kV
, V = N

4πa3

3
, (7)

where V is the total volume of the elementary spheres. The
extinction cross section σe can be computed using the polariz-
ability tensor of the aggregate α̂ and the first formula in Eq. (1)
or using the elementary dipoles di , viz.,

σe =
4πk
|E0|

2
Im

N∑
i=1

E∗0 · di . (8)

Note that the wave number k cancels out of the expression for
Q and therefore Q is independent of the physical dimensions
of the aggregate, as long as the quasi-static approximation is
applicable and all geometrical proportions are fixed. The ratios
γ /ωp = 0.2 [Fig. 2(a)] and γ /ωp = 0.02 [Fig. 2(b)] are typical
for poor to good conductors, and γ /ω= 0.002 [Fig. 2(c)]
is characteristic of silver. Smaller values of this parameter are
unrealistic. In all three panels, we compare the spectrum of
the aggregate to that of a single isolated sphere. It can be seen
that, at γ /ωp = 0.2, the two spectra are indistinguishable (and
fairly flat in the spectral region considered), which indicates
that the electromagnetic interaction of the elementary spheres
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Fig. 2. Extinction spectra of the aggregate shown in Fig. 1 (N = 73)
for different ratios of γ /ωp compared to the spectrum of a single iso-
lated sphere (N = 1). The extinction efficiency Q is defined in Eq. (7).
The spectra were computed for X -polarization of the incident field,
E0 = x̂ , and are qualitatively similar in the other two polarizations.

in this case is negligible. At γ /ωp = 0.02, the spectrum of the
aggregate is moderately broadened but is still quite smooth. At
γ /ωp = 0.002, the spectrum is further broadened by the inter-
action and we start seeing the traces of individual resonances.
Theoretically, there are 3N = 219 such resonances in the sys-
tem, but some of them can have zero or relatively small oscillator
strengths and do not contribute to the spectrum noticeably.

Next, at each frequency ω that was considered in Fig. 2, we
have computed the polarizability of the aggregate α̂ and its
complex eigenvectors and eigenvalues up andαp defined as

α̂up = αpup , p = 1, 2, 3. (9)

The eigenvectors have been normalized according to
u∗p · up = 1 but are not orthogonal in the usual sense, so that,
in general, u∗p · uq 6= δpq . Instead, eigenvectors of a complex
symmetric matrix are orthogonal with respect to the dot product
without complex conjugation, that is,

up · uq = Z pδpq , p, q = 1, 2, 3. (10)

The complex numbers Z p are the squared pseudo-Euclidean
norms of up , ‖ up‖

2
= Z p . It is possible that a nonzero vector

up 6= 0 has a zero pseudo-Euclidean norm. A simple example
is (1, i, 0). Such vectors are said to be quasi-null. In the case of
complex symmetric matrices, the eigenvector associated with a
defective eigenvalue is always quasi-null. For this and additional
properties of complex symmetric matrices, see [8]. While matrix
deficiency is an exotic property, the occurrence of |Z p |< 1
is rather typical and signifies that the eigenvector up does not
have a well-defined direction in the physical space. Such vectors

Fig. 3. Minimum pseudo-Euclidean norm of the eigenvectors of α̂,
Zmin [defined in Eq. (11)], for the aggregate shown in Fig. 1 and same
parameters as were used to compute the spectra in Fig. 2.

have complex components and cannot be transformed into
purely real vectors by multiplication with any complex con-
stant. If some of the eigenvectors of a non-degenerate matrix
have |Z p |< 1, the matrix cannot be diagonalized in purely real
orthogonal principal axes.

In Fig. 3, we plot as a function of frequency the minimum
absolute value of the pseudo-Euclidean norms of all three
eigenvectors of α̂, viz.,

Zmin :=min(|Z1|, |Z2|, |Z3|) . (11)

For γ /ωp = 0.2, Zmin ≈ 1 and the effect we wish to
demonstrate is suppressed. However, for γ /ωp = 0.02 and
γ /ωp = 0.002, the effect is quite visible. As a specific example,
we summarize in Table 1 the algebraic properties of the matrix
α̂ computed at ω/ωF = 0.97624 for γ /ωp = 0.002. It can be
seen that the matrix is non-degenerate and has three linearly
independent, complex eigenvectors. Since all Z p are non-zero,
we can write

α̂ =

3∑
p=1

Z−1
p αpupuT

p , (12)

where the superscript T denotes transposition. We note that the
eigenvalues in Table 1 are close but not the same; the difference
is larger than the machine precision by many orders of magni-
tude. In fact, we expect α̂ to be quasi-isotropic as the aggregate
was generated by a randomized algorithm that involves no pre-
ferred direction in space. In the limit N→∞, the aggregate is
expected to be isotropic and similar to a sphere, with a degener-
ate α̂. However, the number of elementary spheres we have used
(N = 73) is not large enough to achieve the thermodynamic
limit. An intermediate conclusion is that the effect is present and
can be quite strong in particles that are not too far from spheres
but have broken symmetry with respect to any plane or axis,
e.g., due to defects. Quasi-random aggregates such as the one
shown in Fig. 1 satisfy this condition.

We have performed additional simulations in which spheres
in Fig. 1 were replaced by randomly oriented spheroids (data
not shown). The depolarization factors of the spheroids for
the polarization along the axis of symmetry were taken to be
ν‖ = 0.25 (prolate spheroids) and ν‖ = 0.4 (oblate spheroids).
Qualitatively similar results to those shown in Fig. 3 were
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Table 1. Algebraic Properties of the Cumulative
Polarizability Computed for the Aggregate Shown in
Fig. 1

a

Polarizability tensor α̂

x y z
x (24.98, 8.61) (-1.08, 0.65) (-0.72, -0.65)
y (-1.08, 0.65) (27.12, 6.01) (0.98, 0.06)
z (-0.72, -0.65) (0.98, 0.06) (27.18, 7.89)

Eigenvaluesαp and eigenvectors up

p = 1 p = 2 p = 3
αp (24.66, 8.60) (27.72, 7.19) (26.90, 6.73)
u px (0.91, 0.00) (-0.16, 0.04) (-0.11, -0.00)
u py (0.35, 0.03) (0.23, -0.62) (0.73, 0.00)
u pz (0.06, 0.23) (0.74, 0.00) (-0.25, 0.62)

Pseudo-Euclidean orthogonality table, up · uq

q = 1 q = 2 q = 3
p = 1 (0.89, 0.05) (0.00, 0.00) (0.00, 0.00)
p = 2 (0.00, 0.00) (0.23, -0.29) (0.00, 0.00)
p = 3 (0.00, 0.00) (0.00, 0.00) (0.23, -0.31)

aThe cumulative polarizability α̂ was computed for γ /ωp = 0.002 and
ω/ωF = 0.97624. All numbers in the tables have been rounded off to two fig-
ures after the decimal point. Complex numbers z= x + iy are shown as (x , y ).
Zero values for up · uq with p 6= q have been computed with machine precision
(about 15 figures after decimal point). Diagonal elements in the orthogonality
matrix are the squared pseudo-Euclidean norms Z p .

obtained with a somewhat stronger effect, with Zmin < 0.2
for some frequencies in the case of oblate spheroids. Note that,
within the coupled-dipole model, nonsphericity of particles
provides an additional degree of freedom that can be used to
break symmetries of the aggregate.

To gain more insight into the nature of the phenomenon, it
is useful to utilize the spectral theory of polarizability developed
by us in [9]. We re-write the coupled-dipole equation (4) in the
matrix form as

κ(ω)|d〉 = a3
|E0〉 + W |d〉, (13)

where we have used the typewrite-style font to denote 3N-
dimensional vectors and matrices. Thus, |d〉 = (d1, . . . , dN)

T ,
W is a 3N × 3N matrix built of the 3× 3 dimensionless
blocks a3Ĝ(ri , r j ), etc. What is important for us is that, in
quasi-statics, the matrix W is real symmetric and therefore its
eigenvectors and eigenvalues defined as

W|dn〉 =wn|dn〉, n = 1, . . . , N (14)

are real. In addition, the eigenvectors are orthonormal,
〈dn|dm〉 = δnm . We can utilize the orthogonality to write
the solution to Eq. (13) in the form

|d〉 = a3
N∑

n=1

|dn〉〈dn|E0〉

κ(ω)−wn
. (15)

The polarizability of the aggregate is then defined as

αpq (ω)= a3
N∑

n=1

〈Op |dn〉〈dn|Oq 〉

κ(ω)−wn
, p, q = 1, 2, 3, (16)

where |Op〉 has 1s in the positions 3(i − 1)+ p (for
i = 1, . . . , N) and 0s elsewhere. The eigenvalues wn are
supported in an interval of the real axis containing zero (we
have trivially

∑
n wn = 0). For the aggregate shown in Fig. 1,

accounting for a = 0.25, we have wn ∈ [wmin, wmax], where
wmin ≈−0.1 and wmax ≈ 0.06. Writing ω/ωF = 1+ δ and
using Eq. (5), it is easy to see that the resonances in Eq. (16)
(that is, the values of ω for which Re[κ(ω)] =wn) can occur,
approximately, in the interval 0.97<ω/ωF < 1.05. A slightly
larger spectral interval is shown in Figs. 2 and 3. If ω is far out-
side of this interval, or if Im[κ(ω)]�wmax, we can neglect wn

in the denominator of Eq. (16). The summation then collapses
to δpq a3κ−1(ω), which is equivalent to the polarizability of an
isolated sphere. The effect in this case is obviously absent.

Thus, we need resonances in order to obtain a non-
diagonalizable (in real axes) α̂. However, the resonances should
not be too strong. Indeed, consider the case when Im[κ(ω)] is
small, Re[κ(ω)] is close to one of the eigenvalueswm , and there
are no other eigenvalues in a sufficiently large vicinity of wm .
Then we can neglect all the terms in Eq. (16) with n 6=m to
obtain

αpq (ω)≈
a3

κ(ω)−wm
〈Op |dm〉〈dm |Oq 〉. (17)

In this expression, a3/[κ(ω)−wm] is a complex scalar coef-
ficient and 〈Op |dm〉〈dm |Oq 〉 is a real symmetric 3× 3 matrix.
Clearly, α̂(ω) given by Eq. (17) has real orthogonal eigenvec-
tors. Therefore, an essential requirement for observing the
effect is spectral overlap of several strong resonances. When
resonances become too narrow to overlap, the effect disappears.
Indeed, for the aggregate shown in Fig. 1 and γ /ωp = 10−6,
we have Zmin(ω) > 0.97 for all frequencies, so that the effect is
negligible (data not shown).

Of course, γ /ωp = 10−6 is unrealistically small. We can,
however, illustrate suppression of the effect due to isolated reso-
nances at realistic values of γ /ωp in an aggregate with a smaller
number of elementary spheres since in this case the eigenval-
ues wn are not as densely packed. Consider the aggregate with
N = 4 shown graphically in Fig. 4. The extinction spectra of
this aggregate are plotted in Fig. 5. The ratio γ /ωp = 0.2 still
corresponds to negligibly weak interaction, and the correspond-
ing curve is not shown. In the case γ /ωp = 0.02, there is a
strong interaction and a strong spectral overlap of all resonances,
whereas, at γ /ωp = 0.002, the resonances are strong but the
overlaps are weak. The spectral dependence of Zmin for this
aggregate is shown in Fig. 6. The effect is not as strong as in the
quasi-random aggregate with N = 74, but is still noticeable;
Zmin can become as small as 0.86. It is also obvious that, at
γ /ωp = 0.002, the effect is suppressed compared to the case
γ /ωp = 0.02.

We finally adduce a summary of the algebraic properties of
α̂ for the case N = 4 at γ /ωp = 0.02 and ω/ωF = 0.98812
(close to the spectral minimum of Zmin). The data are displayed
in Table 2. One observation is that the aggregate is far from
being isotropic; all three eigenvalues of α̂ are substantially
different. Secondly, the aggregate has one real principal axis,
u2 = (−

√
2, 0,
√

2). The other two eigenvectors are complex,
with the (squared) pseudo-Euclidean norms Z1 = 0.72+ 0.47i
and Z3 = 0.76− 0.41i being quite far from unity.
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Fig. 4. Aggregate of N = 4 spherical particles of radius a = 0.25
each. Coordinates of the sphere centers are (0,0,0), (1,0,0), (1,1,0), and
(1,1,1). Connecting lines are shown to guide the eye.

Fig. 5. Extinction spectra of the aggregate shown in Fig. 4 with
N = 4 elementary spheres for different ratios of γ /ωp and different
polarizations of the incident field. Spectra for the x and z polarizations
coincide.

4. DISCUSSION

It is well known that the polarizability tensor α̂ is symmetric.
In statics, this implies the existence of a rectangular reference
frame X Y Z in which α̂ is diagonal. If this was not so, we would
have a good recipe for a perpetual motion machine. However,
beyond statics, this argument does not apply. An oscillating
electromagnetic field carries energy, which can be dissipated by a
particle in various ways. Correspondingly, at finite frequencies,
α̂ is, in general, complex symmetric. Properties of complex
symmetric matrices are different from those of Hermitian or
real symmetric matrices. In fact, any square matrix is similar
to a complex symmetric matrix. Therefore, we are considering
here algebraic objects of a very general form. The quasi-static
polarizability is subject to some restrictions; in particular, its
diagonal elements always have positive imaginary parts. It is
an open question whether α̂ can be defective. Most likely, this

Fig. 6. Same as in Fig. 3 but for the aggregate shown in Fig. 4 with
N = 4.

Table 2. Same as in Table 1 but for the Aggregate
Shown in Fig. 4

a

Polarizability tensor α̂

x y z
x (0.44, 1.08) (-0.07, 0.11) (-0.03, 0.01)
y (-0.07, 0.11) (0.58, 1.19) (-0.07, 0.11)
z (-0.03, 0.01) (-0.07, 0.11) (0.44, 1.08)

Eigenvaluesαp and eigenvectors up

p = 1 p = 2 p = 3
αp (0.40, 0.26) (0.48, 1.07) (0.59, 1.02)
u px (0.68, 0.00) (-0.71, 0.00) (-0.41, 0.25)
u py (0.35, 0.03) (0.00, 0.00) (0.73, 0.00)
u pz (0.44, 0.26) (0.71, 0.00) (-0.41, 0.25)

Pseudo-Euclidean orthogonality table, up · uq

q = 1 q = 2 q = 3
p = 1 (0.72, 0.47) (0.00, 0.00) (0.00, 0.00)
p = 2 (0.00, 0.00) (1.00, 0.00) (0.00, 0.00)
p = 3 (0.00, 0.00) (0.00, 0.00) (0.76, -0.41)

aNumber of particles N = 4. Other parameters: γ /ωp = 0.02 and ω/ωF =

0.98812.

can happen, if at all, as a consequence of random (that is, not
related to any symmetry) degeneracy in particles of complicated
shape. However, even if α̂ is non-defective, its eigenvectors can
be complex and not reducible to real vectors by multiplication
with a constant.

In the remainder of this section, we discuss and summarize
several relevant points.

A. Conditions

The most important condition for observing the effect
described in this paper (that is, α̂ not having three real principal
axes) is nonzero absorption. Particles made of a non-absorbing
material with a purely real ε always have real principal axes
regardless of the geometry. But complexity of ε is not enough.
The particles should also lack symmetries, and some symmetries
are not obvious. For example, the aggregate shown in Fig. 4 is
not symmetric with respect to reflection in the plane x + z= 0
or any of its parallel translations; however, α̂ for this aggregate
has a real principal axis lying in that plane, u2 = (−

√
2, 0,
√

2).
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Additionally, interaction with the external field should be
resonantly enhanced; the effect is absent in the first Born
approximation. Accordingly, metals appear to be good candi-
dates for materials in which the effect is present. However, the
resonances should not be too narrow either; spectral overlap
of several neighboring resonances is another condition for the
effect to take place.

B. Generality

We have provided several examples of α̂ not having real princi-
pal axes using the coupled-dipole model. In constructing the
examples, we made an effort to keep the dipole approximation
accurate for the physical interpretation of the coupled dipoles
as interacting metal spheres. We also made the point that this
is not the only possible physical interpretation. However, the
question whether the obtained results are specific to coupled
dipoles was not answered directly. A general statement one can
make is that the linear response of any continuous particle can
be mimicked with arbitrary precision by a collection of point
dipoles, although sometimes establishing the correspondence
may be difficult. The coupled-dipole model therefore does not
entail any loss of generality and, in particular, it does not violate
any of the fundamental laws of electrodynamics.

We can also look at the question from a slightly different point
of view. Instead of coupled dipoles, we could have started from
the integral equation for the polarization field P(r), which is of
the form

κ(ω)P(r)=
3

4π

[
E0 +

∫
V

Ĝ(r, r′)P(r′)d3r ′
]
, r ∈V.

(18)
Here V is the spatial region occupied by the scatterer.
Equation (18) is similar to the coupled-dipole equation in
many important respects. We can introduce the integral oper-
ator W acting in the Hilbert space H(V) of square-integrable
in V vector functions. The operator is real symmetric and has
eigenvalues and eigenvectors wn and |Pn〉. In direct analogy to
Eq. (16), we can write

αpq (ω)=
3

4π

N∑
n=1

〈Op |Pn〉〈Pn|Oq 〉

κ(ω)−wn
, (19)

where, for any |f〉 ∈H(V),

〈Op |f〉 =

∫
V

f p(r)d3r . (20)

The only substantial difference between the spectral solu-
tions (16) and (19) is that, in the latter equation, the summation
is infinite and may include integration over a continuous spec-
trum. Another, less fundamental distinction is that it is much
harder to compute the quantities wn and |Pn〉 for continuous
particles numerically. The algebraic structure of the two solu-
tions is however the same. The effect we are looking for occurs

when κ(ω) is complex and several strong resonances defined by
the equations Re[κ(ω)] =wn spectrally overlap.

C. Radiative Correction and Magnetic Polarizability

Excitation of the magnetic dipole and accounting for the radia-
tive correction to the dipole polarizability are closely related.
However, the effect described in this paper is different from
accounting for a nonzero magnetic polarizability. Indeed, to
obtain a nonvanishing magnetic moment, one must consider
an incident field that is not strictly homogeneous but varies
in space due to a finite wavelength. The electric dipole polar-
izability, in contrast, can be computed by assuming that the
electric field is spatially uniform at any moment of time, i.e.,
given by Re[E0e−iωt

], where E0 is a constant amplitude. In a
physical experiment, the particle under consideration may have
both electric and magnetic dipole polarizabilities. The conclu-
sions of this paper apply to the former. Note that the magnetic
polarizability is not even a tensor.

Also, accounting for the radiative correction is important
in computations involving scattering and energy budgets.
However, the correction is proportional to the identity tensor
and therefore does not affect the eigenvectors; it only shifts
the imaginary parts of all three eigenvalues of α̂ by the same
frequency-dependent amount.
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Data availability. Data underlying the results presented in this paper are
available in Dataset 1, Ref. [10].
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