
Fast linear inversion for highly overdetermined
inverse scattering problems

Vadim A Markel

Department of Radiology, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, USA

E-mail: vmarkel@pennmedicine.upenn.edu

Howard Levinson

Department of Mathematics, University of Michigan, Ann Arbor, Michigan
48109, USA

E-mail: levh@umich.edu

John C Schotland

Department of Mathematics and Department of Physics, University of Michigan,
Ann Arbor, Michigan 48109, USA

E-mail: schotland@umich.edu

Keywords: Linear inverse problems

Published in Inverse Problems 35, 124002, 2019

Abstract. In this paper we present a fast numerical method for solving large-
scale inverse scattering problems. The computational efficiency of the proposed
method stems from the utilization of the special structure of the linear forward
scattering operator, and does not require or assume any symmetries of the
measurement geometry. The described approach is especially useful for inverse
problems involving large data sets. As an illustration, we have performed direct
numerical inversions for the problem of diffuse optical tomography in measurement
geometries with up to ∼ 108 independent data points and ∼ 7 · 105 unknowns.

1. Introduction

The computation of the singular-value decomposition (SVD) or the pseudo-inverse of
a matrix is a well-researched subject. The common approach to solving the problem
numerically is based on the Golub-Reinsch (GR) algorithm [1, 2], which consists of
two main steps. In the first step, the matrix is transformed to a bidiagonal form
by a series of unitary Householder transformations, say B = PAQ∗, where A is an
M × N complex matrix whose SVD we wish to compute, B is an upper bidiagonal
N × N matrix, P and Q are products of unitary Householder matrices, and it is
usually assumed that M ≥ N . In the second step, the SVD of B is computed by an
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iterative method. Then, if the SVD of B is of the form B = UΣV ∗, the SVD of A is
A = (P ∗U)Σ(V ∗Q).

The computational complexity of various modifications of the GR algorithm has
been reviewed in [3]. In the case of highly overdetermined problems with M ≫ N ,
which are of primary interest in this paper, the dominant cost is that of the first step,
whose computational complexity is O(MN2), whereas the cost of the second step is
negligible. Indeed, the first J singular values and singular vectors of a bidiagonal
matrix can be computed using O(JN) floating-point operations [4–6]. Alternatively,
one may not need the full SVD of A and seek instead the least-squares solution of a set
of M linear equations in N unknowns, Ax = b. This can be achieved by converting
the above equation to the form By = c where y = Qx and c = Pb. Since B is a
bidiagonal N × N matrix, one can find the least squares solution to the above in
O(JN) operations, where J is the number of iterations, for instance, of a conjugate
gradient descent algorithm.

All this is well known and used in most contemporary linear algebra
computational libraries such as LAPACK. However, the direct application of this
approach to the problems in inverse scattering is often impossible. The reason is that
the computational complexity of the first step in the GR algorithm, O(MN2), can
easily become prohibitive. In some applications, M is so large that it is not even
possible to store A in memory. For example, in some experimental realizations of
optical tomography [7–9], M ≳ 108 and N ≳ 104, which translates into ≳ 1012 matrix
elements. Efficient manipulation of matrices of this size requires many terabytes of
memory.

However, linearized inverse scattering problems often involve matrices of a special
form. This fact can be exploited to avoid the high computational complexity of the
first step in the GR algorithm. In fact, the algebraic problem can be formulated so
that the large numberM never enters the estimates of computational complexity. This
observation is very simple, and we have briefly remarked upon it in Appendix B of [10].
We also draw the reader’s attention to closely related earlier work of Lev-Ari [11]. This
paper builds upon and further develops the theoretical insights of [11]. In particular,
we provide the motivation and full details of a fast inversion method, introduce a
new algorithm based on preconditioning by diagonal scaling, describe two specific
computational algorithms, and give several numerical examples which illustrate the
power of the approach.

The rest of this paper is organized as follows. In Section. 2 we give the algebraic
formulation of the inverse problem and derive a simple but very efficient algorithm
for its solution. In Section 3 we describe a more intricate algorithm, which involves
preconditioning by diagonal scaling (it is this version that was described in Ref. [10]).
In Section 4 we define the basic steps of two computational algorithms and analyze
their computational complexity. In Section 5, several numerical examples with ideal
data are given. In section 6, we show examples with noisy data. Here we illustrate
how the precondition approach can be used to achieve an efficient data reduction in
the presence of noise.

Finally, Section 7 contains a brief discussion of our results.

2. Algebraic formulation

We start with the algebraic formulation of the linearized inverse scattering problem.
As is well-known, the scattering potential of interest V (r) is related to measurements
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Φ(rd, rs) by the integral equation

∫

Ω

G0(rd, r)V (r)G0(r, rs)d
3r = Φ(rd, rs) . (1)

Here rd and rs are the positions of the detector and the source, which are located
outside of the spatial region Ω in which V (r) is nonvanishing, and G0(r, r

′) is the
unperturbed Green’s function for the underlying differential equation. The specific
form of G0(r, r

′) is not important for us now, although some specific examples are
given below. What is important is that (1) can be discretized and written in the form

Nv∑

n=1

AinxnBnj = Φij , 1 ≤ i ≤ Nd , 1 ≤ j ≤ Ns . (2)

Here Ain = G0(rdi, rn), Bnj = G0(rn, rsj), xn = V (rn), rdi is the location of the ith
detector and rsj is the location of the jth source, rn is the center of nth voxel, and Nd,
Ns and Nv are the numbers of detectors, sources and voxels, respectively. There are
many different discretization schemes utilizing point sources and detectors, or phased
arrays, or incident and outgoing plane waves, etc., but all of them result in algebraic
equations of the form (2).

Matrix equations of the form AXB = C, where X is unknown, have been
extensively studied in the literature [11–24]. The problem in which X is restricted
to be diagonal is encountered less frequently [11, 13, 21]. A key insight upon which
the forthcoming discussion is based was made in 2005 by Lev-Ari [11]. Namely it
was noted that the computationally-costly operation of vectorization is not required
to solve the equation (in the minimum L2-norm sense) and an alternative approach
was suggested. However, numerical methods for inverse scattering largely rely on
vectorization. In this traditional approach, (2) is re-written in the form

Kx = b , (3)

where K is an M × N matrix with M = NdNs and N = Nv, x is the vector of
unknowns of length N and b is the vector of data of length M . The components of K
and b are given by

K(ij),n = AinBnj , b(ij) = Φij . (4)

Here (ij) is a composite index; we can replace it with a single index using the operation
of matrix unrolling, e.g., by writing

m = (i− 1)Ns + j , 1 ≤ i ≤ Nd , 1 ≤ j ≤ Ns .

It can be seen that m takes values from 1 to M = NdNs and there exists a one-to-one
correspondence between (ij) and m. We note that K can be viewed as the Khatri-Rao
product [25] of A and B∗. From this point on, the traditional approach treats K as a
generic M ×N matrix. In particular, equation (2) with a generic K has been used in
diffuse optical tomography [26] and in diffraction tomography [27].

In this paper we make the simple observation that K is not generic, but is given
by (4). The number of degrees of freedom in K is therefore (Nd + Ns)Nv, which is
much smaller than the number of elements of K, that is, NM = NdNsNv. We can



Fast linearized inversion 4

use this observation to derive inversion methods that are much more computationally
efficient than seeking the pseudoinverse of K.

As a first elementary example, assume that we have decided to compute K∗K
instead of using the GR algorithm. Generically, the computational complexity of
computing the matrix-matrix product K∗K is O(MN2), the same as the complexity
of the first step in the GR algorithm. However, if we use the specific representation
(4), we immediately notice that

(K∗K)nm = (A∗A)nm(BB∗)mn . (5)

The complexity of computing A∗A and BB∗ is obviously much smaller than O(MN2).
Assuming Ns ∼ Nd < Nv, the number of required operations to evaluate the right-
hand side of (5) is smaller by the factor ∼ 2/Nv, and if Ns ∼ Nd > Nv then it is
smaller by the factor ∼ 2/Ns. There is also no need to store the large matrix K in
memory, which in many cases is not feasible.

We also note that

cn ≡ (K∗b)n = (A∗ΦB∗)nn . (6)

Computing N elements of the vector c takes O(MN) operations, which is again much
smaller than O(MN2). Therefore, one can compute K∗K according to (5), compute
c according to (6) and then solve the regularized equation

(K∗K + λ2I)x = c , c = K∗b, (7)

I is the N × N identity matrix, and λ is the regularization parameter. Since the
matrix in (7) is symmetric and positive-definite, x can be found iteratively by the
conjugate gradient descent method in O(JN2) operations, where J ≤ N is the number
of iterations required for convergence. A related observation was also made in [11],
where the traditional approach to solving the least squares problem is replaced by a
reduced-order vector form involving the Khatri-Rao product.

3. An algorithm with preconditioning by diagonal scaling

In principle, we can apply the procedure outlined in the previous section to solve
highly over-determined linear inverse problems in a way that avoids dealing directly
with a generic matrix K of the size M ×N . Importantly, none of the numerical steps
involved in this procedure scale as O(MN2). There is also no need to store a large
matrix K in memory. However, we now wish to further explore the properties of the
matrices A and B. The motivation is that we expect the ranks of A and B can be
smaller or even much smaller than Nd and Ns, respectively, where we have assumed
that Nd, Ns < Nv for simplicity.

Let the SVDs of A and B be given by

A =

Nd∑

µ=1

σA
µ f

A
µ gA∗

µ , B =

Ns∑

µ=1

σB
µ fB

µ gB∗
µ . (8)

Here σA
µ (1 ≤ µ ≤ Nd) and σB

µ (1 ≤ µ ≤ Ns) are the singular values of A and B,

and fA
µ , gAµ , f

B
µ , gBµ are the corresponding singular vectors. Note that fA

µ are of the
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length Nd, g
B
µ are of the length Ns, and gAµ , f

B
µ are of the length Nv. Star denotes

transposition and complex conjugation of all elements. Then we have

K(ij),n =

Nd∑

µ=1

Ns∑

ν=1

σA
µ σ

B
ν fA

µi g
A∗
µn fB

νn gB∗
νj . (9)

Let us now introduce a unitary matrix U with elements U(µν),(ij) = fA∗
µi g

B
νj . We

multiply (3) by U on the left to obtain

(UK)x = Ub . (10)

Note that multiplication of a linear set of equations by a unitary matrix does not
change the pseudoinverse solution. However, the expressions for UK and Ub in terms
of the singular vectors of A and B are of a very simple form:

(UK)(µν),n = σA
µ σ

B
ν gA∗

µn fB
νn , (11a)

(Ub)(µν) =
∑

(ij)

fA∗
µi Φijg

B
νj = (fA

µ ,ΦgBν ) ≡ Φ̃µν . (11b)

Here the scalar product of two complex vectors of the same length, x and y, is defined
as (x, y) =

∑
n x

∗
nyn. Now, with the use of (11), we can re-write (10) in components

as

σA
µ σ

B
ν

N∑

n=1

gA∗
µn fB

νn xn = Φ̃µν . (12)

Eq. (12) is equivalent to (3). However, we now see that each line in this equation
contains an overall factor σA

µ σ
B
ν , which can be very small or zero for some (µν). Some

equations in (12) can therefore be irrelevant; they do not contain any meaningful
information about x. This fact is not evident when the equation is written in the form
(3).

We now introduce the operation of diagonal scaling. Consider the diagonal matrix
D defined by

D(µν),(µ′ν′) = δ(µν),(µ′ν′)

{
1

σA
µ σB

ν
, σA

µ , σB
ν > ϵ

0 , σA
µ , σB

ν ≤ ϵ
(13)

where ϵ is a cut-off parameter. Then multiplication of (10) by D results in

(DUK)x = (DU)b (14)

or, in components,

N∑

n=1

gA∗
µn fB

νn xn =
1

σA
µ σ

B
ν

Φ̃µν . (15)

The set (15) contains equations with µ and ν such that σA
µ > ϵ and σB

ν > ϵ. If these
conditions hold for all µ and ν in the range 1 ≤ µ ≤ Nd and 1 ≤ ν ≤ Ns, then (15) and
(12) contain the same number of equations M = NsNd. In this case, D is invertible.
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This does not mean however that (15) is equivalent to (12). The equivalence holds if
K is also invertible (U is unitary and therefore invertible). If both D and K are both
invertible, (15) and (12) have the same unique solution. However, we do not generally
know whether K is invertible and, in many practical problems, it is not.

Let us assume that the inequality σA
µ > ϵ holds for 1 ≤ µ ≤ MA ≤ Nd and

similarly the inequality σB
ν > ϵ holds for 1 ≤ µ ≤ MB ≤ Ns. Then (15) contains

MAMB equations. This number can be smaller or even much smaller than M = NdNs

but still significant and, more importantly, (15) is not square. However, we can
compute W ≡ (DUK)∗(DUK) using the same approach as in Section 2, i.e.,

Wmn =

MA∑

µ=1

(gAµmgA∗
µn)

MB∑

ν=1

(fB
νnf

B∗
νm) (16a)

= (A+A)mn(BB+)nm , (16b)

where we have introduced the pseudo-inverses of A and B,

A+ =

MA∑

µ=1

1

σA
µ

gAµ f
A∗
µ , B+ =

MB∑

µ=1

1

σB
µ

gBµ fB∗
µ . (17)

The convention here is that the singular values are arranged in descending order
so that σA

µ > ϵ and σB
µ > ϵ holds for all terms in (17). Thus, Wmn is the direct

(Hadamard) product of the matrices A+A and BB+ where the pseudoinverses A+

and B+ were defined above. By comparing this to the expression (5) for K∗K, we
see that the operation of preconditioning by diagonal scaling amounts to replacing the
factors A∗A and BB∗ with A+A and BB+. Obviously, W is different from K∗K.
Moreover, W and K∗K can have different rank.

With these definitions and the use of Tikhonov regularization, (15) is transformed
to

Nv∑

m=1

(Wnm + λ2δnm)xm = cn , (18)

where

cn =

MA∑

µ=1

MB∑

ν=1

gAµnΦ̃µνf
B∗
νn

σA
µ σ

B
ν

(19a)

=
∑

(ij)

(
MA∑

µ=1

gAµnf
A∗
µi

σA
µ

)
Φij

(
MB∑

ν=1

gBνjf
B∗
νn

σB
ν

)
(19b)

= (A+ΦB+)nn . (19c)

We could have started the derivations of this Section with (16b) and (19c), which can
be obtained in a straightforward manner by acting with A+ on the left and B+ on the
right on (2). However, we have outlined above a series of steps that are better suited
for numerical implementation.

4. Computational algorithms

We can now describe two algorithms for finding a solution to (2). Algorithm 1
yields the pseudoinverse of this equation; its basic steps as well as the estimates
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# Operation Complexity [O(·)]
1 Compute or read from disk A, B, Φ (Nd +Ns)Nv +NsNd

2 Compute cn by (6) NvNdNs

3 Compute A∗A and BB∗ (Nd +Ns)N
2
v

4 Compute K∗K by (5) N2
v

5a Compute x+ = (λ2I +K∗K)−1c JN2
v

5b Compute full SVD of K∗K N3
v

Table 1. Steps involved in Algorithm 1. Here 5a and 5b are alternative steps.
Step 5a entails computing the pseudoinverse x+ by an iterative method such as the
conjugate gradient descent and J is the number of iterations (typically, J ≪ Nv).
Step 5b entails computing the full SVD decomposition of K∗K.

of computational complexity of each step are listed in Table 1. The estimates were
performed for the typical case Nd, Ns < Nv < NdNs. We do not list the memory
requirements since this depends on programming. However, the memory bottleneck of
Algorithm 1 is roughly 2N2

v words, where one word is 8 bytes for double-precision real
arithmetic. This estimate arises from the requirement to have at least two matrices
of size Nv × Nv allocated simultaneously at Step 4 (note that three matrices are
not required). For example, if the medium is discretized on a 41 × 41 × 41 grid
(Nv = 68, 921), the memory requirement is roughly 76Gb. For the discretization of
21× 21× 21 voxels (Nv = 9, 261), less than 2Gb is required. We emphasize that these
estimates are independent of the numbers of sources and detectors. Also, the memory
requirement can be halved at the cost of degrading the computational performance.

Algorithm 2 yields the pseudoinverse of (2) after preconditioning by diagonal
scaling. The basic steps of this algorithm are listed in Table 2. A few differences
relative to Algorithm 1 can be noted. First, Algorithm 2 computes the matrices AA∗

and B∗B, which are smaller than A∗A and BB∗ that are required by Algorithm
1. Second, the memory bottleneck of Algorithm 2 is (MA + MB)Nv words, which
can be significantly smaller than the respective bottleneck 2N2

v words of Algorithm
1. Algorithm 2 is more intricate and involves more steps. One needs to pay close
attention to memory management since Algorithm 2 requires temporary storage that
can be allocated and deallocated when needed. Overall, Algorithm 2 is slightly faster
than Algorithm 1 and can be significantly less memory intensive. The reason for this
improvement is the useful data reduction that is involved in the operation of diagonal
scaling (14). In some cases, Algorithm 2 also provides better reconstructions, as is
illustrated in the numerical examples below. Finally, we note that all computationally
expensive steps of both algorithms are easily amendable to parallelization.

5. Numerical examples with ideal data

To illustrate the algorithms described in Section 4, we have performed numerical
simulations for the inverse problem of reconstructing a three-dimensional cubic sample
represented by an array of L×L×L voxels. In this Section, we show inversions with
ideal (noiseless) data. Choosing the most efficient algorithm in the presence of noise
in the data, and the associated problem of data reduction are discussed in Section 6
below.

We introduce an unknown xn for each voxel where 1 ≤ n ≤ Nv = L3. The source
and detector positions are shown schematically in Fig. 1. We emphasize that the
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# Operation Complexity [O(·)]
1 Compute or read from disk A, B, Φ (Nd +Ns)Nv +NsNd

2 Compute AA∗ N2
dNv

3 Diagonalize AA∗, compute fA
µ , σA

µ , 1 ≤ µ ≤ Nd N3
d

4 Define MA; truncate fA according to (13) —
6 Compute gAµ , 1 ≤ µ ≤ MA by gAµ = 1

σA
µ
A∗fA

µ MANdNv

7 Compute B∗B N2
sNv

8 Diagonalize B∗B, compute gBµ , σB
µ , 1 ≤ µ ≤ Ns N3

s

9 Define MB ; truncate gB according to (13) —
10 Compute fB

µ , 1 ≤ µ ≤ MB by gBµ = 1
σB
µ
BfB

µ MBNsNv

11 Compute Φ̃ by (11b) MBNd(Ns +MA)
12 Compute cn by (19a) MAMBNv

13 Compute W by (16a) (MA +MB)N
2
v

14a Compute x̃+ = (λ2I +W )−1c JN2
v

14b Compute full SVD of W N3
v

Table 2. Steps involved in Algorithm 2. Same comment regarding the alternative
steps 14a and 14b as in the caption for 1 applies. x̃+ denotes pseudo-inverse after
preconditioning by diagonal scaling (it is in general different from the pseudo-
inverse of (3)).

positions of sources and detectors must be independent sets for the methods of this
paper to be applicable. In other words, we require that all elements of the data matrix
Φ in (2) be known. In the numerical examples shown below, the sets of positions of
sources and detectors are the same. In particular, it is assumed that measurements
can be performed for a source and a detector located at the same point, i.e., if the
physical device used for the measurements can function as a source and a detector
concurrently. Additional details as well as the definitions of the sampling frequency
F and the imaging window W are given in the caption to Fig. 1.

Further, we choose the form of the Green’s function in (1) to be

G0(r, r
′) =

1

|r− r′|
e−kd|r−r′| . (20)

This, together with the locations of the voxel centers, sources and detectors, determine
the matrices A and B in (2). Specifically, we have

Ain =
1

|rdi − rn|
e−kd|rdi−rn| . (21)

where rdi is the location of the ith detector and rn is the center of the nth voxel. A
similar expression can be written for B (involving locations of the sources). However,
since the sets of the sources and detectors are the same in the simulations performed
here, we have B = AT . We emphasize that this is not a general property of A and
B and, in general, these two matrices are independent. In the simulations shown
below, this property was not used (it can be used to save computation time). We also
note that (20) is, up to a constant, the free -space Green’s function of the diffusion
equation, 1

4πD0|r−r′|e
−kd|r−r′|, where kd =

√
α0/D0, and α0 and D0 are the absorption

and diffusion coefficients of the background medium. In the simulations, we chose the
units of length so that kd = 1 and renormalized the contrast of the medium so that
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  F=1; W=2F=2; W=1F=1; W=1

Figure 1. Illustration of the measurement scheme used in the simulations.
The actual sample is a three-dimensional cube and the measurement surfaces are
planes located near each of the six sides of the cube. The centers of the voxels are
located at the intersections of black lines; the sample shown is a two-dimensional
projection of a 6 × 6 × 6 three-dimensional sample. The sets of sources and
detectors are the same; each blue point can represent either a source or a detector
and all source-detector pairs are used in the measurements, including the cases
wherein the location of the source and the detector is the same. Arrangements
with W = 1 correspond to the imaging window being the same size as the side
of the cube (or square in 2D). The case W = 2 corresponds to the window being
twice as large as the side of the cube. Sampling frequency F = 1 corresponds
to the inter-source (inter-detector) separations being equal to the voxel size. The
case F = 2 corresponds to twice larger sampling frequency. The case W = F = 2
is considered in the paper but not shown in this sketch. Finally, the measurement
planes are displaced from the centers of nearest voxles by a distance equal to the
size of one voxel.

4πD0 = 1. Since in many applications kd ∼ 1cm−1, one can say that the distance in
(20) is measured in centimeters.

Thus, the problem considered here is that of linearized diffuse optical tomography
with free boundaries [28, 29]. Methods of linearization that can be used to arrive at
this mathematical formulation are summarized in the above reference. The problem
is notoriously ill-posed and the mathematical origin of the ill-posedness is similar to
that of numerical inversion of Laplace transform [30]. However, we can make use
of the three-dimensional nature of the problem to try to reduce the ill-posedness
as much as possible. In the spirit of references [31, 32], we can place the planes of
sources and detectors adjacent to each face of the cubic sample. It is known that, in
transmission-type measurements, wherein there is a plane of sources on one side of
the sample and a plane of detectors on the opposite side, the transverse resolution
(in the directions parallel to the planes) is much better than depth resolution. In the
geometrical arrangement of this paper, we place the planes of sources and detectors
adjacent to each face of the cubic sample so that any direction can be considered
transverse with respect to some transmission and/or reflection measurement, which
are all included in the data set. This arrangement will indeed allow us to overcome
some of the ill-posedness at the cost of having to deal with extremely large data
sets. The size of the data sets would make it hard or impossible to perform image
reconstruction using conventional methods. However, the methods described in this
paper will prove to be efficient.

In the examples shown below, the side of the cube measured from a voxel center
in a surface layer of a cube to the voxel center at the opposite surface layer is H = 5.
The physical size of the sample (surface to surface) is H + h where h = H/(L− 1) is
the voxel size. The distance between opposing measurement planes is H + 2h. In the
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n

(
σn

σmax

)2

W = 2; F = 1&F = 2

W = 2, F = 2

W = 2, F = 1 & W = 1, F = 2

W = 1; F = 1&F = 2

W = 1, F = 1

9000800070006000500040003000200010000

1

10−5

10−10

10−15

10−20

Figure 2. Squared singular values of the matrix K for a 21 × 21 × 21 cube of
voxels and various source-detector arrangements, as labeled. The total number of
singular values is 213 = 9, 261.

typical setup of optical tomography with the diffuse wave number kd ≈ 1cm−1, this
corresponds to a physical sample being a cube with sides ∼ 5cm. The cube however
will be differently discretized. We will be looking for geometrical features on the scale
of a few millimeters.

5.1. Effects of imaging window and sampling frequency

In Fig. 2, we plot the squared singular values of K (eigenvalues of K∗K) for a cube
of side L = 21. The eigenvalues were computed by Algorithm 1. The purpose of this
simulation is to show that there is virtually no benefit in oversampling the sources and
detectors relative to the voxels of the medium or in using imaging windows larger than
the face of the cube. The geometrical quantities F (the sampling frequency) and W
(the imaging window) are illustrated in Fig. 1 and explained in detail in the caption
to that figure. We have investigated different combinations of parameters with F and
W taking the values 1 or 2.

It can be seen that there exist two distinct regions of singular values. For the
indexes less than ∼ 2, 800, the data points with (F = 1,W = 1) are located somewhat
higher than the data points for (F = 2,W = 2). The data points with either
(F = 1,W = 2) or (F = 2,W = 1) are located roughly in the middle and are
visually indistinguishable from each other. Note that these singular values (and the
corresponding singular vectors) contribute mostly to stable reconstructions while the
smaller singular values (and the corresponding singular vectors) are typically ignored
in computing the pseudo-inverse solution (due to regularization). We thus conclude
that the choice (F = 1,W = 1) yields the most stable reconstructions, although the
differences are really very minor.

In the second region where the singular value indexes are between ∼ 2, 800 and
∼ 8, 000 shows a slight benefit of oversampling but not of using a larger window.
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However, the singular values in this region are already so small that this improvement
is not expected to matter in any realistic reconstruction. In order for the benefit of
oversampling to be noticeable, the data must be known with an unrealistically high
precision.

We note that the data of Fig. 2 display no instabilities associated with
diagonalization of K∗K rather than seeking the singular values of K directly, i.e.,
by the GR algorithm. It is widely believed that diagonalization of K∗K is not the
preferred method since the singular values thus computed suffer from loss of relative
precision related to computing the square root of a small number. In our simulations,
the only points affected by this instability are those with indexes ≳ 8, 000. In this
case, the singular values are already so small that they are definitely discarded by any
regularized inversion. Note that diagonalization of K∗K produces eigenvalues that are
very small (on the order of the machine precision) and sign indefinite while it is known
theoretically that all eigenvalues of K∗K are non-negative. Therefore, for such small
eigenvalues we have a total loss of precision. The GR algorithm produces only positive
singular values but they are limited from below by the machine precision and can not
be smaller than a certain machine-defined number. The actual singular values can be
many orders of magnitude smaller. Therefore, even in the GR algorithm computation
of these small singular values is characterized by a total loss of precision. In Fig. 2,
the singular values that are affected by this instability are seen as the data points
of the order of ∼ 10−20 that descend with an almost vertical slope, at the very end
of the “curves”. In fact, there are also negative eigenvalues in that region of indexes
but they can not be displayed using the vertical logarithmic scale. The conclusion is
that the singular values affected by the instability are so small that they can not be
computed reliably by any method.

Another comment needs to be made regarding the imaging windows. That
taking imaging windows larger than the side of the cube does not provide any
additional information about the sample is not unexpected. In the case W = 1, the
sources and detectors sample a closed surface enclosing the sample. Any data points
outside of these closed surface are not independent. However, in purely transmission
measurement schemes, wherein there is one plane of sources on one side of the sample
and one plane of sources on the other side, taking larger windows (than the discretized
region) actually makes sense. In this case, the source-detector planes do not form a
closed surface and using data points in a large window affords additional information
by looking at the sample “from the side”. The effects of imaging windows and sampling
in purely transmission measurements have been investigated by us in [28,29].

Since we have confirmed that the source-detector arrangement with F = W = 1
is optimal and no further image quality improvement can be obtained by over-sapling
or using larger windows, most reconstructions below are performed for F = W = 1,
except for the very last figure below in which we compare the influence of various
source-detector arrangements in order to illustrate the usefulness of large data sets.

5.2. Cube with L = 21

Reconstruction of three different targets contained within a cubic sample discretized
on a L × L × L grid with L = 21 are shown in Fig. 3. For this arrangement, the
total number of voxels is Nv = 213 = 9, 261 ans the numbers of sources and detectors
are Ns = Nd = 2, 646. The total number of source-detector pairs (the leading size
of K) is 7, 001, 316. In spite of the relatively small discretization of the sample, this
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Large Target Asymmetric Target Small Target

Reconstruction A1 Reconstruction A1 Reconstruction A1

Reconstruction A2 Reconstruction A2 Reconstruction A2

Figure 3. Reconstructions of three different targets for the medium discretized
on a 213 cube. Central slice for the cube is shown. A1 and A2 denote
reconstructions by Algorithms 1 and 2. For Algorithm 2, we have used ϵ =
10−3 maxµ[σA

µ ] (this small parameter appears in (13)). Same color scale is used
in all plots with dark blue representing the value of −2 and red representing
+3 (rainbow color scheme). The values of the contrast in the actual target are
form −1 to +2; the extra range was used to depict reconstructed values that are
either larger or smaller than the theoretical bounds (due to the imprecision of
reconstructions).

already can be viewed as a formidable computational problem: the matrix K contains
∼ 6.5 · 1010 elements; only storage of its elements in memory requires about 0.5Tb of
memory (in double precision). However, both Algorithms 1 and 2 require less than
2Gb of memory and complete in under one minute of wall-clock time on a 16-thread
entry-level workstation. Note that this included computation of full SVD of K∗K (for
Algorithm 1) or W (for Algorithm 2) and scanning over 103 different values of λ to
determine the optimal value of this regularization parameter.

We now discuss the results of Fig. 3 in more detail. First, the large and small
target consisted of three cubic shells. The cross section of these shells by the central
plane is shown in the top row of images. The contrast was equal to 2 in the outer-most
shell, to −1 in the middle shell and to 1 in the inner-most shell (actually, a small cube).
The sizes of the shells were 17, 9 and 5 for the large target, and 9, 5 and 3 for the
small target. The asymmetric target shown in the middle column is the large target in
which parts of the outer and middle shells were removed (more precisely, set to zero).
Specifically, assuming that the XY central plane is shown in the reconstructions, all
values to the left of the XZ central plane of voxels were set to zero for the outer shell
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Figure 4. Singular values of A scaled by the maximum singular value and the
cut-off parameter ϵ used in (13) and in the reconstructions of Fig. 3.

and all values below the Y Z central plane were set to zero for the middle shell; the
innermost shell was unchanged.

Reconstructions were performed by both algorithms with comparable time and
results, although the reconstructions according to Algorithm 2 are slightly faster,
less memory-demanding and produce visibly better results for the large target. The
cut-off parameter ϵ that is used in the operation of diagonal scaling (13) was set to
10−3 maxµ[σ

A
µ ]. This choice was made by analyzing the singular values of the matrix

A (identical to those of B). These singular values are shown in Fig. 4. It can be see
that there exists a natural gap between the singular values. The singular vectors gAµ
that correspond to the singular values below the gap are non-radiating states; they
represent the states that do not produce any noticeable signal for any detectors located
on a surface completely enclosing the sample; therefore, these states do not generate
signal that is measurable by any detector or combination of detectors. These singular
vectors can be safely discarded, and the operation of diagonal scaling achieves exactly
that.

In Fig. 5 we plot the L2 norm of the reconstruction error (for the large target)
as a function of the Tikhonov regularization parameter λ. Tikhonov regularization is
employed at Step 5 of Algorithm 1 or Step 14 of Algorithm 2. It can be seen that
Algorithm 2 has indeed a slightly deeper minimum of the function χ(λ). The optimal
value of λ was used in the reconstructions of Fig. 3.

We finally note that the sum of the unknowns, X =
∑

n xn, was reconstructed
with very high precision in all cases. Apparently, the measurements are very sensitive
to this integral characteristic. However small features buried deep inside the sample
proved to be difficult to reconstruct. This is not a shortcoming of the algebraic method
proposed here but rather the consequence of the intrinsic ill-posedness of the inverse
problem.
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Figure 5. L2 norm of the reconstruction error χ for the large target as a function
of the Tikhonov regularization parameter λ. Here maxn[wn] is the maximum
eigenvalue of K∗K for Algorithm 1 and of W for Algorithm 2.

5.3. Cube with L = 35

We now show reconstructions for a cube of the same physical size but discretized on
an L3 grid where L = 35. We now have Nv = 42, 875; Ns = Nd = 7, 350 and the
total number of source-detector pairs (the leading dimension of K) is 54, 022, 500. The
matrixK now has ∼ 2.3·1012 elements, which, under normal circumstances, can not be
stored in computer memory (about 18Tb is required). However, the reconstructions by
Algorithm 2 can still be performed on an entry-level workstation in about 90 minutes
of wall-clock time (using 16 threads). The time is mostly used for the operations of
complexity O(N3

v ). Even though this computational time is longer than what one
would hope for, inversion of K by standard methods is simply unfeasible in this case.

Reconstructions obtained by Algorithm 2 are shown in Fig. 6. Algorithm 1 was
not used for L = 35 as it does not provide any improvement and requires more memory.
As in the previous case, the total contrast X =

∑
n xn is reconstructed with very high

precision, but small features buried deep inside the sample are difficult to resolve. We
do not display the data similar to those shown in Figs. 4 and 5 as they all look similar
and do not convey new qualitative information.

5.4. Cube with L = 41

We now show our most ambitious reconstructions with L = 41. Indeed, we have in this
case Nv = 68, 921, Ns = Nd = 10, 086, and the total number of source-detector pairs
(the leading dimension of K) is 101, 727, 396. The matrix K has ∼ 7 · 1012 elements.
The computational bottleneck for this sample is not the number of data points (which
can easily be increased) but the number of voxels. Still, even for L = 41, computational
time is not a significant concern if modern multi-threaded computers are used. Rather,
the method is limited by the available memory. An efficient numerical implementation
requires simultaneous allocation of two matrices of the size N2

v for Algorithm 1 and
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Figure 6. Same as in Fig. 3 but for a cubic sample discretized on a 35×35×35
grid. Definitions of the model targets is slightly different and only reconstructions
by Algorithm 2 are shown as Algorithm 1 requires in this geometry significantly
more memory. Same value ϵ = 10−3 maxµ[σA

µ ] is used as in Fig. 3 (it is still
located in the gap of singular values).

of the sizes MA ×Nv and Nv ×NB for Algorithm 2. This means that about 76Gb of
memory are required for Algorithm 1 to run in two to three hours of wall-clock time.
The memory requirements of Algorithm 2 can be significantly lower (see below) but
are still significant. The required amount of memory is currently not typical in entry-
to moderate-level workstations. In principle, one can program both algorithms so that
they require much less memory, but then the implementation becomes much slower.
For this reason, the reconstructions with L = 41 reported here were performed on a
supercomputer.

Reconstructions obtained by both algorithms are shown in Fig. 7 and appear to
be of comparable quality. However, we note that the reconstructions by Algorithm 2
required approximately 6 times less memory. This is so because the cut-off parameter
ϵ that was used in the operation of diagonal scaling (13) was set to 10−2 maxµ[σ

A
µ ],

which is well above the gap in the singular values of A (or B) as is shown in Fig 8. In
this case, MA = MB = 1724 ≈ Nv/6. We note that, in the case of a very large sample
considered here, this choice is justified; reducing ϵ to a value inside the gap (i.e.,
ϵ ∼ 10−4), as it was done in the case of L = 21, does not result in any improvement
of the image quality. The first MA singular vectors of A already probe the target
with near-optimal precision and keeping more of these singular vectors, even if the
corresponding singular values are not too small, is not useful for solving the inverse
problem. Therefore, the operation of diagonal scaling achieves a useful data reduction
which, in turn, allows one to significantly reduce the memory requirements of the
associated numerical algorithm. This does not mean that not all data were used or
that one can achieve a similar image quality with less real-space data points, and this
point is illustrated below. Rather, the diagonal scaling selects the linear combinations
of the data points that are informative; it is not practically possible or at least very
difficult to realize such linear combinations in a physical experiment directly.

It can be concluded that the use of Algorithm 2 can be justified by computational
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Large Target Asymmetric Target Small Target

Reconstruction A1 Reconstruction A1 Reconstruction A1

Reconstruction A2 Reconstruction A2 Reconstruction A2

Figure 7. Same as in Figs. 3 and 6 but for a cubic sample discretized on
a 41 × 41 × 41 grid. Definitions of the model targets is slightly different from
the previously-considered cases. For reconstructions by Algorithm 2, the small
parameter of diagonal scaling is ϵ = 10−2 maxµ[σA

µ ].

efficiency if not by superior quality of reconstructions. However, a more systematic
comparison of the two methods is required to understand the subtle interplay of the
operation of diagonal scaling, ill-posedness of the problem and round-off errors that
are characteristic of any numerical solution of a large-scale algebraic problem. As
above, the total contrast X =

∑
n xn is reproduced by both algorithms very well but

small deep-buried features are elusive.
Finally, we provide a demonstration that very large data sets can indeed be useful

for obtaining the best possible quality of reconstructions. To this end, we compare the
reconstructions of the large target obtained in the surrounding measurement geometry
shown in Fig. 1 with the sampling frequencies F = 1 and F = 0.5 (so far we have used
only the “perfect” sampling frequency F = 1) with the transmission measurement
geometry wherein the sources are located close to one face of the cube and the
detectors are placed at the opposite face, again, for F = 1 and F = 0.5. To avoid
making an additional choice associated with adjustable the cut-off parameter ϵ, the
reconstructions in this figure were computed by Algorithm 1. The results are shown
in Fig. 9 where we show XY and XZ slices. Both slices are drawn through the center
of the cube, but the XY slices are parallel to the planes of sources and detectors in
the case of transmission measurements while the XZ slices are perpendicular to these
planes and, in the latter case, the direction of the Z-axis (the horizontal direction in
the right column of images) can be regarded as “depth” while the X and Y directions
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Figure 8. Singular values of A scaled by the maximum singular value and the
cut-off parameter ϵ used in the A2 reconstructions of Fig. 7.

are lateral. In the case of surrounding measurements, the XY and XZ slices are
equivalent, as can indeed be seen from the figure.

We can conclude from the data of Fig. 9 that reduction of the sampling frequency
from 1 to 0.5 in the surrounding measurement geometry results in a modest loss
of quality. This is illustrated in a more quantitative way in Fig. 10. However,
transitioning from the surrounding measurement scheme to the transmission scheme
leads to a dramatic loss of precision. This can be understood by noting that
the resulting resolution in the depth direction becomes quite poor and the lateral
resolution has also deteriorated. These results are consistent with the theoretical
predictions of optimized resolution that can be achieved by employing “multiple
projection” measurement schemes [31, 32]. In fact, the surrounding measurement
geometry realizes these “multiple projections” so that every direction inside the
sample can be regarded as lateral with respect to some pair of source-detector planes.
However, when we move to the transmission measurement geometry, there is virtually
no difference between the F = 1 and F = 0.5 cases. The reason is that the inverse
problem is now so ill-posed that the advantages of using the perfect sampling frequency
are very insignificant. We emphasize that this is not a general result: for a L = 21
cube, there is substantial difference between F = 1 and F = 0.5 transmission-geometry
reconstructions (results not shown). In any event, the data of Figs. 9 and 10 confirms
that the large data sets can be useful even in inverse problems that are as ill-posed as
the inverse problem of diffusion tomography.

6. Reconstructions with noise and reduction of noisy data

So far, we have considered reconstruction with ideal data; the only cause of imprecision
in the above simulations are round-off errors. In practice, however, all measurements
are affected by noise. In this Section, we will show that Algorithm 2 (with
preconditioning by diagonal scaling) is well-suited for reconstructions of noisy data
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XY Surr F=1 XY Surr F=0.5 XY Tran F=1 XY Tran F=0.5

XZ Surr F=1 XZ Surr F=0.5 XZ Tran F=1 XZ Tran F=0.5

Figure 9. Reconstructions of the large target discretized on a 41 × 41 × 41
cubic grid for various arrangements of sources and detectors. “Surr” denotes the
surrounding arrangement as is illustrated in Fig. 1. “Tran” denotes transmission
measurements with the plane of sources on one side of the cube and plane of
detectors on the other side. The sampling frequency F is defined in the caption
of Fig. 1. Two orthogonal central cross sections through the cube are shown.
The left column shows the cross section by an XY -plane, which is parallel to the
planes of sources and detectors in the case of transmission measurements. The
right column shows cross sections by the XZ plane, which is perpendicular to
these two planes. In the case of transmission measurements, reconstructions in
the XY and XZ cross sections are not equivalent. Reconstructions obtained by
Algorithm 1.

Tran, F=0.5
Tran, F=1.0
Surr, F=0.5
Surr, F=1.0
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Figure 10. L2 norm of the reconstruction error χ for the large target whose
reconstructions are shown in Fig. 9 as a function of the Tikhonov regularization
parameter λ. Here maxn[wn] is the maximum eigenvalue of K∗K for Algorithm
1.
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as it allows one to discard efficiently the equations that are hopelessly corrupted by
noise and do not carry useful information about the target. A similar data reduction
technique can be applied in the traditional approach as well. One can, for example,
exclude from the set (3) the equations for which the data point b(ij) is expected to be
small and therefore overshadowed by noise [33], or is affected by some systematic error
of the model [9]. However, these algorithms do not reduce the data set dramatically.
In contrast, Algorithm 2 allows one to reduce the number of equations well beyond the
number of unknowns while keeping the image quality (attainable at a given noise level)
almost unaffected. This may seem counter-intuitive since under-determined problems
do not have unique solutions. However, we will show that the underdetermined
problem obtained by selecting a large cut-off parameter ϵ in Algorithm 2 contains
almost the same information as all the original equations. Of course, some image
degradation when equations are discarded can be expected but we will see that this
degradation is modest.

The noise model we use is the following. We note that the data point Φ(rd, rs)
in (1) is obtained by a differential measurement of some intensity, i.e, Φ(rd, rs) =
C[I0(rd, rs)−I(rd, rs)], where I is the measurement obtained for the actual sample and
I0 is obtained using a reference homogeneous sample, and C is some overall factor [29].
We assume that each measurement is affected by positive-definite shot noise. This is
typical of CCD cameras that are used for detection in optical tomography [7–9]. For
16-bit cameras operating at the limit of their dynamic range, the average amplitude
of the shot noise is approximately 100 counts, which should be compared to the
maximum possible value of 65536 counts. That is, the noise amplitude for the intensity
measurements is ∼ 0.15% of the maximum measurable intensity. For differential
measurements, the relative noise amplitude can be higher. In the below simulations,
we assumed that each ideal data point Φij is modified by noise as follows:

Φij −→ Φij +
γ

µ
(n1 − n2) , (22)

where n1 and n2 are two statistically independent integer random numbers selected
from the Poisson distribution P (n) = µne−µ/n! and the overall factor γ was varied in
the simulations. Note that ⟨n1 − n2⟩ = 0 and ⟨(n1 − n2)

2⟩ = 2µ. Since the average
number of counts in typical shot noise is ∼ 100, we have selected µ = 100.

The sample and the measurement geometry were exactly the same as in
Section 5.2 (the large target was used). The maximum data point in this geometry is
Φmax ≈ 37 and the minimum is Φmin ≈ 0.026. If we take γ = 1, the maximum data
point is well above the noise level. However, the weakest data points are completely
overshadowed by noise.

Reconstructions are shown in Fig. 11. The left column was obtained by Algorithm
1. The other columns were obtained by Algorithm 2. Optimal regularization
parameter was used at each noise level. In the second column, we show reconstructions
with ϵ = 10−6. As expected, these reconstructions are inaccurate except in the case
of noiseless data. Indeed, the operation of diagonal scaling multiplies the equations
that are most affected by noise by large constants and therefore makes them more
significant. As we increase the cut-off parameter ϵ, the reconstructions are more clear.
At the largest value of noise used, γ = 1, the reconstructions by Algorithm 1 and
Algorithm 2 with ϵ = 0.1 are approximately of the same quality. The outer shell is
clearly visible and is reconstructed more-or-less correctly, but the inner shell is not
visible. However, the Algorithm 2 reconstruction is much more efficient. Indeed, at
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Figure 11. Reconstructions for the large target and the same measurement
geometry as in Section 5.2 obtained by Algorithm 1 (left column) and by
Algorithm 2 (other columns) with different values of the cut-off parameter ϵ.
Reconstructions were obtained at different levels of noise as quantified by the
parameter γ. Areas where the reconstruction exceeds the maximum value used
for the color map (which represents values from −2 to 3) are shown as white.
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ϵ = 0.1, we have MA = MB = 28. The total number of equations retained in this
case is 282 = 784. This is significantly less than the total number of unknowns,
which is Nv = 213 = 9, 261. The computational bottleneck is reduced by the factor
(9, 261/784)3 ≈ 1, 650. This is the approximate computational speed-up that one
obtains for the last (fifth) column of Fig. 11 relative to the computations of the first
column. Nevertheless, the results are approximately the same at γ = 1. Thus, we
have obtained a useful data reduction.

We note that, when we transition from ϵ = 0.1 (third column) to ϵ = 0.5 (forth
column), the problem becomes underdetermined. This is why the quality of the ideal
data reconstruction in the forth column is visibly worse than that in the third column.
However, in the presence of noise, this quality deterioration is not as pronounced.

The data reduction described above can be further illustrated if we consider the
curves χ(λ) (χ is the L2 norm of the reconstruction error and λ is the Tikhonov
regularization parameter) for different levels of noise γ and different cut-off parameters
ϵ. These curves are plotted in Fig. 12. Consider first the case γ = 0.01. It can be seen
that the error obtained in Algorithm 2 with ϵ = 10−6 is much larger than that for
Algorithm 1 for almost all values of λ considered. However, as we increase ϵ, the error
curves for the two algorithms become similar. The curve with ϵ = 0.03 reaches almost
the same minimum value as the A1 curve. A qualitatively similar behavior is observed
at the noise level γ = 1. The curves with ϵ = 0.05, 0.06 and 0.1 reach a minimum
that is only slightly above the minimum of the A1 curve. The related difference in
the reconstruction quality mainly affects the precision of determining the boundaries
of the outer shell, while the inner shell can not be reconstructed by either method at
this noise level (see Fig. 11).

We conclude this Section with a few notes. First, the reconstruction for the under-
determined problem can be obtained by using Algorithm 1 as described above but
this is not the most computationally-efficient approach. Alternatively, one can start
with (15) and compute the singular-value decomposition of the linear operator in this
equation directly or by diagonalizing W(µ1ν1)(µ2ν2) =

∑
n

(
gA∗
µ1ng

A
µ2n

) (
fB
ν1n fB∗

ν2n

)
. We

have implemented both algorithms and, as expected, they yield the same numerical
result. The second algorithm however is much faster since its computational bottleneck
has complexity O((MAMB)

3) rather than O(N3
v ), and we have MAMB < Nv in the

underdetermined case. This is how the computational speed-up mentioned above was
achieved. We emphasize that this speed-up is not limited by the number of data points
or the number of unknowns (voxels in our case). Rather, the limiting factor is the
number of voxels that can be reconstructed reliably given a particular level of noise.

Secondly, the above numerical illustrations utilize a specific expression for the
noise term. In particular, the noise is additive and affects all data points in a
statistically-independent manner. A multiplicative noise of the form Φ → Φ(1 + n),
where n is a statistically-independent random variable is also frequently used in the
literature. Using this form of noise can yield very different results from what is shown
above.

Finally, we note that the algorithm with diagonal preconditioning can be further
modified to moderate the effects of noise on the reconstructions while still achieving
a useful data reduction. To this end, one can define the diagonal operator in (13) as

D(µν),(µ′ν′) = δ(µν),(µ′ν′)

{
1 , σA

µ , σB
ν > ϵ

0 , σA
µ , σB

ν ≤ ϵ
(23)

that is, with a cut-off but without scaling. In this way, we can discard unreliable
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Figure 12. L2 norm of the reconstruction error χ as functions of the
regularization parameter λ for the large target discretized on a 21 × 21 × 21
cubic grid reconstructed using Algorithm 1 (A1) and Algorithm 2 (A2) for the
noise level γ = 0.01 (a) and γ = 1 (b) and for different values of the cut-off
regularization parameter ϵ, as labeled.

equations efficiently but without amplifying the effects of noise. The involved algebra
and the numerical algorithm are only trivially modified in this case, with no increases in
the computational complexity. Since this paper is primarily focused on fast numerical
inversion of generic equations of the form (2), we do not investigate this approach
further, but we expect it to be efficient when reconstructing with noisy data.

7. Summary and discussion

The purpose of this paper is not to study image reconstruction in diffuse optical
tomography but rather to present a general method of efficiently computing the
pseudo-inverse of the linear operator in inverse scattering problems. The underlying
idea of the method is very simple and provides a dramatic improvement in
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computational efficiency. We note that the idea has appeared in the literature
before [11]. Here we have explained it in detail, discussed two algorithmic
implementations of the method (one of them with preconditioning) and illustrated
its power with numerical simulations involving both ideal and noisy data.

It is important to note that the methods described here are purely algebraic and
not dependent on any symmetry of the sample. In our previous work [28, 29] and
references therein, we developed fast inversion methods that require some symmetry
to hold, i.e., translational symmetry in the case of an infinite slab. These methods
require large imaging windows and are inapplicable to the geometry with only a few
discrete symmetries that has been considered in the above numerical examples.

In fact, it can be shown that the methods of [28, 29] are related to the method
described here, when the SVD decomposition of A andB can be computed analytically.
The mathematical connection between the two methods will be explained elsewhere.

We finally note that the efficiency of the proposed methods make them suitable
for use in iterative solvers of nonlinear inverse problems, wherein linearized inversion
is required at each step. This includes, for example, the Newton-type methods.
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