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1.1 INTRODUCTION

Investigation of the optical properties of carbonaceous smoke produced by
incomplete combustion of different types of fuels or wild fires has practical
importance for many application areas, such as climate research and remote
sensing of fires, to name just a few. As the number of references in the end of
this chapter attest, very active and vigorous research into the optical proper-
ties of smoke was being conducted in the past 30 years. Many of the experi-
mental and theoretical questions are now resolved. The geometrical structure
and chemical composition of soot aggregates has been studied in detail (see
the chapter by Mikhailov, Vlasenko and Kiselev in this volume), and many
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analytical and numerical methods for calculating the optical characteristics
and for obtaining physical properties of smoke from optical measurements
have been developed. However, there are several factors that preclude this
topic from being closed.

Most of the quantitatively accurate results in the visible and near-infrared
spectral regions appeared only recently, as increasingly powerful computers
became available. However, when the wavelength is further increased, the
electromagnetic interaction of small carbon nanospheres that comprise soot
particles becomes stronger and more important, and so becomes important
the geometrical structure of soot. This was demonstrated by Bruce and co-
authors [1] who measured optical characteristics of diesel soot from the visible
to the centimeter wavelength range. Unfortunately, most analytical and nu-
merical methods become less effective, or even not applicable, when the inter-
action of primary nanospheres becomes strong. This fact is, of course, evident
for perturbative methods which treat such interaction as a perturbation. But
this is also true for non-perturbative numerical methods based on the multi-
pole expansion of fields scattered by each nanosphere and satisfying boundary
conditions at each surface of discontinuity. Generally, such approaches lead to
an infinite system of linear equations with respect to the unknown expansion
coefficients, which has to be truncated. After the truncation, its dimension-
ality is ∼ N(L + 1)2, where N is the number of monomers in a soot cluster
and L is the maximum order of the spherical harmonics involved in the ex-
pansion. As will be illustrated below, the value of L required for satisfactory
convergence of the method grows with the wavelength, and eventually makes
obtaining a numerical solution not feasible. We will discuss in this chapter
a non-perturbative method based on the geometrical renormalization of clus-
ters. This method allows one to stay within the dipole approximation (L = 0)
and, therefore, lacks the numerical complexity of the full multipole expansion.

Another reason why the research into the optics of carbonaceous soot is far
from being completed is the complexity of the object. Indeed, most of the re-
sults obtained in the literature assume the most simple geometrical structure
and composition of soot clusters. In practice, soot is much more complicated,
both geometrically and chemically. In the atmosphere, soot can interact and
form agglomerates with moisture and other chemical elements, which can lead
to restructuring and a significant change in optical properties. The chapter
by Mikhailov, Vlasenko and Kiselev is largely devoted to this circle of prob-
lems, as well as to experimental and theoretical aspects of studying the soot
structure variability and its implications for optical properties.

In this chapter we focus on analytical and numerical approaches to calcu-
lating optical properties of fractal smoke with a simple fractal structure and
optical constants that are assumed to be known. Thus, we will consider a
purely electromagnetic problem, leaving a lot of complexity that is character-
istic to physical properties of soot out of the frame of discussion. However,
two introductory sections give a brief review of the geometrical properties and
optical constants of fractal soot, since they are used in numerical examples
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throughout the chapter. In the last two sections we will consider two topics
that are, in a sense, non-traditional: fluctuations of light intensity scattered
by random smoke aggregates and the absorption of light by the smoke clusters
placed inside water microdroplets, both in the first Born approximation.

1.2 GEOMETRICAL PROPERTIES

It has been long recognized that smoke usually consists of agglomerates of
hundreds or thousand of small, nearly-spherical particles (monomers) with
typical radii varying from 10 to 50 nm, depending on the origin of the smoke [1,
2, 3, 4, 5, 6]. The distribution of monomer sizes for a specific type of smoke
is, however, significantly more narrow, and it is customary to assume that the
diameters of the spherical monomers are the same. A sample micrograph of
several smoke agglomerates is shown in Fig. 1.1a (courtesy of E.F.Mikhailov,
S.S.Vlasenko and A.A.Kiselev). The reader will recognize that smoke clusters
have fractal geometry. This fact was verified experimentally by digitization of
electron micrograph images similar to the one shown in Fig. 1.1a [3, 5, 7, 8, 9]
and by scattering experiments [7, 8, 10, 11], and the value of fractal dimension
D was shown to be close to 1.8.

The geometrical structure of smoke aggregates is most often simulated us-
ing the cluster-cluster aggregation model introduced by Meakin [12] and Jul-
lien, Kolb and Botet [13]. In this model, monomers are sparsely and randomly
distributed in space at the initial moment of time and then allowed to move
via Brownian trajectories, sticking on contact. The subclusters formed in this
process continue to move, colliding and sticking with other subclusters and
isolated monomers, until large agglomerates are formed. A sample computer-
generated cluster-cluster aggregate is shown in Fig. 1.1b. The Meakin model
accurately describes the statistical properties of soot because it captures the
most important features of the real aggregation process: sub-clusters of vari-
ous sizes and individual particles move in space simultaneously and indepen-
dently, there is no fixed center of aggregation, and the dependence of mobility
of individual subclusters on their mass can be easily taken into account in
simulations.

Although the visual resemblance of the experimental and computer-genera-
ted samples in Fig. 1.1 is more or less apparent, a comparison is complicated
due to the random nature of the smoke agglomerates. Therefore, it is essential
to study the statistical characteristics of the clusters. One of the most im-
portant of such characteristics, from the point of view of optical properties, is
the pair density-density correlation function p(r) which can be defined as the
probability density to find a pair of distinct monomers separated by the dis-
tance r. The Fourier transform of p(r) gives the optical structure factor [14].
For fractals, this function obeys the power-law dependence on r in the so-
called intermediate asymptote region l ¿ r ¿ Rg, where l is the distance
between two neighboring monomers (referred to as the “lattice unit” below),
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Fig. 1.1 Experimental (a) and computer-generated (b) smoke clusters.

and Rg is the cluster radius of gyration, defined as Rg =
√

〈(ri −Rcm)2〉,
with ri and Rcm being the radius vectors of the ith monomer in a cluster and
of the cluster’s center of mass. In fact, the above inequalities do not need to
be especially strong (usually, the factor of 2 is sufficient), and since most of the
physically important integrals involving p(r) converge at the lower limit, the
region of applicability of the scaling formula can be extended to r = 0. Then,
for a monodisperse ensemble of random soot clusters, p(r) can be written in
the most general form as

p(r) =
arD−1

NlD
f

[

r

Rg(N)

]

,

∫ ∞

0

p(r)dr = 1 , (1.1)

where N is the number of monomers in a cluster, a is a numerical constant of
the order of unity, D is the fractal dimension and f(x) is the cutoff function,
such that f(0) = 1, |df(0)/dx| <∞. The two-point correlation function found
numerically in [15] is shown in Fig. 1.2a.

The dependence of the gyration radius on N is also governed by the fractal
dimension,

Rg(N) = blN1/D , (1.2)

where b is another dimensionless constant.
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Fig. 1.2 Two-point correlation functions p(r) for cluster-cluster aggregates with
different numbers of particles N (a) and the corresponding cutoff function f(x) (b).
In (b), dashed lines correspond to the generalized exponential cutoff of the form

f(x) = exp(−αxβ), and the centered symbols (circles and triangles) - to the nu-
merical calculations. The values of the constants are α = 0.344, β = 2.238 for
N = 5, 000 and α = 0.273, β = 2.489 for N = 15, 000.

In a recent numerical study [15] we have found that the constants D deter-
mined from Eqs.1.1 and 1.2 can be slightly different 1. We have also evaluated
the constants a and b numerically for computer-generated cluster-cluster ag-
gregates [15] and found that a ≈ 4 and b ≈ 0.6, in qualitative agreement with
other studies. We estimate from the data of Mountain and Mulholland [17]
and Cai, Oh, Sorensen et al. [8, 11, 18] that b ≈ 0.4. The values of a constant
related to b (and of the fractal dimension) obtained from numerical simula-
tions by different authors were reviewed by Wu and Friedlander [19], with
b varying in the range from 0.25 to 0.5. It should be noted that while the
formulas (1.1),(1.2) are quite universal, the specific values of a and b can vary
depending on the regime of aggregation. They are also sensitive to the number
of primary particles employed in numerical calculations. In our calculations,
the maximum value of N employed for the numerical fitting of (1.2) was
20, 000, which is significantly larger than the maximum N in the set of data
presented by Wu and Friedlander [19] (Nmax = 500). The dependence on N
can be explained by the phenomenon of multiscaling, when the characteristic
constants can slowly depend on N [15].

1This phenomenon is related to multiscaling [16].
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Significantly less information can be found on the constant a. However,
when the form of the cutoff function f(x) is specified, a is not an independent
constant because of the normalization condition. The combination abD is
fixed and can be calculated from the form of the cutoff function. We have
estimated that abD ≈ 1.6 [15].

When the physically important integrals involving p(r) converge at the
upper limit while r is still smaller than Rg, and the value of the cutoff function
in (1.1) does not deviate significantly from unity, the knowledge of the exact
form of the cutoff function f(x) is not necessary. This was illustrated by
Berry and Percival in the frame of the mean-field approximation [20], and we
will see such examples below. But in general, the form of f(x) influences the
optical properties. The well-known example is the first Born approximation
for the differential scattering cross section for the “intermediate” values of
the transmitted wave vector q = |k − k′| ∼ 1/Rg [14]. The most frequently
discussed forms of f(x) are the generalized exponential f(x) = exp(−αxβ)
(the Gaussian cutoff is the particular case β = 2) and the so-called overlapping
spheres cut off f(x) = (x − x0)

2(x + 2x0)/2x
3
0 if x < x0, which is the exact

analytic cutoff for a random non-fractal gas of particles enclosed in a spherical
volume.

Mountain and Mulholland found numerically that f(x) is of a generalized
exponential form with α = 0.2 and β = 2.5 [17]. Sorensen and co-authors
studied the cutoff functions by analyzing electron micrographs of soot clus-
ters [11] and also indirectly by analyzing light scattering data [21, 22] (with
the interpretation of the scattering data based on the first Born approxima-
tion) and found that f(x) is decaying with x much faster than exponentially,
with the Gaussian cutoff being a fairly good approximation. Our numerical
results, in qualitative agreement with the above references, also confirm the
a generalized exponential form of f(x) with coefficients α and β exhibiting
a slow systematic dependence on the number of monomers N . An example
of generalized exponential fit to the numerically calculated f(x) is shown in
Fig. 1.2b (see the figure caption for details).

To conclude this section, we briefly discuss higher-order correlation func-
tions. They naturally appear in higher orders of the perturbation theory, or
when fluctuations of the optical characteristics (rather than the ensemble-
average quantities) are considered [15, 23]. In a Gaussian medium, all higher-
order correlation functions can be expressed analytically through the second-
order correlators [24]. This fact significantly simplifies the diagrammatic tech-
nique in the perturbation expansion of the mean-field for wave propagation
in random Gaussian medium [25]. However, as we have verified numerically,
fractal cluster-cluster aggregates are not Gaussian [15]. Because of the many
similarities between the computer-generated cluster-cluster aggregates and
real smoke clusters, it is reasonable to believe that this conclusion is also
true for real smoke. As an example, we have studied in detail the reduced
four-point correlation function p4(r) [15] which is important for describing the
deviations of scattered intensity from the average due to the random nature
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Fig. 1.3 Four-point correlation function p4(r) calculated numerically (centered sym-
bols) and from the analytic expression (1.3) with n = 2, c0 ≈ c1 ≈ 23 (solid line) for
different N . The gyration radius Rg changes from ≈ 50l for N = 5, 000 to ≈ 100l
for N = 20, 000.

of clusters (see Sec. 1.5). The correlator p4(r) is defined as the probability
density to find the distance |ri − rj + rk − rl| [i 6= j, k 6= l, and any of the
pair of indices (i, j) can coincide with any of of the pair (k, l)]. It was found
that p4(r) is not described by a scaling formula with a cutoff similar to (1.1),
but is given by a series of the form

p4(r) =
r2

N3/Dl3

n
∑

k=0

(−1)kck
(

r

Rg

)k(2D−3)

, (1.3)

where ck are dimensionless positive coefficients which have to be determined
numerically. Approximation of p4(r) by the expression (1.3) is illustrated in
Fig. 1.3. By increasing the number of terms n in (1.3), it is possible to fit
p4(r) for increasingly higher values of r. The important feature of (1.3) is that
the coefficients ck do not depend on N (apart from a very weak multiscaling
dependence) and are in that sense universal, which distinguishes (1.3) from an
arbitrary power expansion. Another important feature of Eq.(1.3) is that p4(r)
can not be described by a universal scaling behavior with a cutoff function
of the type p4(r) = r2f(r/Rg)/N

3/Dl3. Although a function f(x) can be
found from (1.3), its first derivative diverges at x = 0 for D < 2 (one of the
requirements for the cutoff function is a finite derivative at x = 0).
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Fig. 1.4 (a): Real and imaginary parts of the complex refraction indexm = n+ik of
carbon calculated from the data of Dalzell and Sarofim [26]. (b): Spectral dependence

of the parameters X and δ defined by 1/χ = −(X+ iδ), χ = (3/4π)(ε−1)/(ε+2).

1.3 OPTICAL CONSTANTS OF CARBON SMOKE

Dalzell and Sarofim [26] studied the optical constants of several soots using
reflectance measurements. They suggested a dispersion formula that describes
quite accurately experimental measurements and is based on the well-known
quantum expression for the complex dielectric function

ε(ω) = 1−
∑

n

f2
n

ω2 − ω2
n + iγnω

. (1.4)

Earlier, Taft and Philipp [27] identified experimentally three optical reso-
nances in graphite, two of which correspond to bound electrons and one to
a conduction electron. The resonance frequencies are ωc = 0 (conduction
electron), ω1 = 1.25 · 1015sec−1 and ω2 = 7.25 · 1015s−1 (or corresponding
wavelengths: λc = ∞, λ1 = 1.51µm, λ2 = 0.26µm). The values of the relax-
ation constants were found to be γc = γ1 = 6.00 · 1015s−1, γ2 = 7.25 · 1015s−1.
Dalzell and Sarofim assumed that the same electronic transitions contribute
to the dielectric constant of carbon soot and used the above values of ωn, γn to
fit the formula (1.4) to their experimental data treating fn, which depend on
concentration of optically active electrons, as free parameters. A very accurate
fit to the experimental data for propane soot was achieved for the following
values of fn: fc = 4.04 · 1015s−1, f1 = 2.93 · 1015sec−1, f2 = 9.54 · 1015s−1 in
the spectral range 0.4µm < λ < 10µm.
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The real and imaginary parts of the complex refraction index m =
√
ε =

n + ik calculated from formula (1.4) with the constants specified above are
illustrated in Fig. 1.4a. The wavelength range in Fig. 1.4a is somewhat ex-
panded compared to the range of experimental measurements by Dalzel and
Sarofim (from 0.4 to 10µm) towards shorter wavelengths, so that the high-
frequency resonance at λ = 0.26µm is clearly visible.

Analogous three-electron dispersion formulas were used by Habib and Ver-
visch [28] to describe optical constants of smoke at the flame temperatures.
The temperature dependence is mainly governed by the temperature depen-
dence of the conduction electron relaxation constant: γc ∝ T 1/2 (Lee and
Tien [29]). Another issue discussed in the literature is the dependence of the
free-electron concentration on the H/C ratio of the fuel [26, 28, 29].

We use the formula (1.4) with the values of constants specified above in all
our numerical examples.

In Fig. 1.4b we also show the spectral dependence of two important optical
parameters, X and δ, originally introduced in [30, 31]2. They are defined
as X = −Re[1/χ], δ = −Im[1/χ], where χ = (3/4π)(ε − 1)/(ε + 2). The
physical meaning of these parameters [30, 31] is that X is the generalized
detuning from the resonance and δ - the generalized absorption strength. As
we will see below, analysis of the spectral dependence of these variables can
be useful even when the number of optical resonances is greater than one
(at least three in the case of black carbon) and the spectral dependence of
ε is more complicated than in the simple Drude model with one optically
active electron. Note that X and δ, as defined above, are dimensionless and
independent of the sample geometry.

1.4 OPTICAL PROPERTIES OF SMOKE

In this section we review some of the theoretical and numerical approaches
to the calculation of optical characteristics of smoke clusters. In particular,
we will discuss optical cross sections of linear scattering, absorption and ex-
tinction. A special emphasis will be made on the extinction, and numerical
examples in this section will be restricted, due to the volume limitations, to
illustration of the extinction cross section. A review of the structure factor
and scattering in the Born approximation can be found in the chapter by
Mikhailov and co-authors.

2X and δ used in [30, 31] differ from the dimensionless parameters defined below by a
multiplicative factor (bl)3 which has the dimensionality of length cubed.
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1.4.1 Basic equations

A very convenient starting point for solving the problem of linear interaction
of electromagnetic waves with smoke clusters is the Lippman-Schwinger for-
mulation or, more specifically, the Maxwell equations in the integral form,
written for the polarization function P(r) inside the soot material:

P(r) = χ

[

Einc(r) +

N
∑

i=1

∫

Vi

ĜR(r− r′)P(r′)d3r′

]

; r ∈ Vk , (1.5)

χ = (3/4π)[(ε− 1)/(ε+ 2)] . (1.6)

In the next few paragraphs we explain the notations used in (1.5) and their
physical meaning.

First, since we are considering only the linear interaction between the EM
fields and matter, Eq. (1.5) is written in the frequency domain for just one
(but yet unspecified) value of the frequency ω. The time-dependence factor,
e−iωt, is common to all time-varying quantities and will be omitted everywhere
below.

The incident field, Einc, can be, in principle, arbitrary, as long as it satisfies
the free-space Maxwell equations. In most practical cases, the curvature of
the wave front of the incident radiation is much larger than the characteristic
system size, and it is sufficient to consider incident plane waves of the form

Einc(r) = E0 exp(ik · r) , (1.7)

where k = ω/c is the free-space wave number. In this section we will consider
only plane incident waves. However, in Sec. 1.6 the smoke aggregates will be
placed inside water microdroplets and the incident field will be replaced by
vector spherical harmonics.

Next, ĜR(r) is the regular part of the free-space Green’s function for the
vector wave equation. If there is a point dipole d at the origin, the electric
field at a point r 6= 0 is given by E(r) = ĜR(r)d. The Green’s function is
a tensor (dyadic) because it transforms one vector into another, which is, in
general, not collinear with the first one. That is why a hat is placed over “G”.
The complete Green’s function Ĝ(r) contains both regular and singular parts:

Ĝ(r) = ĜR(r)−
4π

3
δ(r)Î , (1.8)

where Î is the unity tensor and δ(r) the delta-function. The coordinate rep-
resentation of ĜR(r) is given by

(GR(r))αβ = k3
[

A(kr)δαβ +B(kr)rαrβ/r
2
]

, (1.9)
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A(x) = [x−1 + ix−2 − x−3] exp(ix) , (1.10)

B(x) = [−x−1 − 3ix−2 + 3x−3] exp(ix) , (1.11)

where the Greek indices denote the Cartesian components and δαβ is the
Kronecker delta symbol. However, calculation of spatial integrals that arise
in the perturbation expansion considered in Sec. 1.4.2 is much easier with the
use of the following representation of the complete Green’s function:

Ĝ(r) =

(

Î +
1

k2
∇̂∇̂

)

g(r) , (1.12)

g(r) =
k2eikr

r
, (1.13)

where g(r) is the scalar Green’s function. The notation ∇̂∇̂ can be understood
as ∇̂∇̂F = ∇(∇ · F).

The integral in (1.5) is taken over the region occupied by the soot material
which is composed from many spherical regions denoted by Vi (i = 1, . . . , N).
We will also denote by Vtot the space region occupied by all monomers, i.e.,
Vtot = V1 ∪ V2 ∪ . . . ∪ VN . The center of each spherical region is located at
the point ri, and its radius is Rm (same for all monomers). We denote the
monomer volume by v [v = (4π/3)R3

m] and the total volume of all monomers
by vtot (vtot = Nv). Thus, the capital letter V will be used to denote the
spatial regions, while small v their volumes. Below, we will write sometimes
∫

Vtot
as a shortcut for

∑N
i=1

∫

Vi
.

We also assume that Rm ¿ λ throughout this chapter. This is a fun-
damental assumption used in all derivations and numerical examples below.
Although it is usually quite accurate, the ratio Rm/λ can become not small
in the visible spectral range for some types of smoke produced by huge fires
(in which case the size of prmary spheres tends to be larger), and, of course,
Rm/λ can not be considered as small for shorter wavelengths. The influence
of the finite monomer size was studied by Mulholland and co-authors [32, 33].

Finally, the coupling constant χ (1.6) is, in fact, the dielectric susceptibility
of a sphere in the quasistatic limit. However, no quasistatic approximations
were made in Eq. (1.5).

The polarization function P(r) can be used to calculate all optical proper-
ties of the smoke clusters. The scattering amplitude f(k′) is given by

f(k′) = k2

∫

Vtot

{

P(r)− 1

k2
[P(r) · k′]k′

}

exp(−ik′ · r)d3r , (1.14)

with k′ being the scattered wave vector and k the incident wave vector, where
|k| = |k′| = k = ω/c.
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The differential scattering cross section is given by

dσs
dΩ

=
|f(k′)|2
|E0|2

, (1.15)

and the integral extinction, scattering, and absorption cross sections, σe, σs,
and σa, respectively, can be found from the optical theorem:

σe =
4πIm[f(k) ·E∗

0]

k|E0|2
, (1.16)

σs =
1

|E0|2
∫

|f(k′)|2dΩ , (1.17)

σa = σe − σs , (1.18)

where we have assumed excitation by a plane wave of the form (1.7).
The expression for the extinction cross section follows readily from (1.16)

and (1.14):

σe =
4πk

|E0|2
Im

∫

Vtot

P(r) ·E∗
inc(r)d

3r . (1.19)

The expressions for the integral scattering and absorption cross sections con-
tain double volume integration, since σs is quadratic in f . However, the
angular integration in (1.17) and one of one of the volume integrals can be cal-
culated in the most general form with the use the main equation (1.5) [34, 35],
which leads to expressions for the integral cross sections that contain only one
volume integration. The result for the absorption has a more compact form:

σa =
4πkδ

|E0|2
∫

Vtot

P∗(r) ·P(r)d3r , (1.20)

where the parameter δ = −Im[1/χ] was introduced in Sec. 1.3. The integral
scattering cross section can be found as the difference between (1.19) and
(1.20).

The above formulas take an elegant form if we introduce operator notations.
First, we notice that the integral transformation on the r.h.s. of Eq. (1.5) has
the form of a linear integral operator acting on what can be viewed as an
element of an infinite-dimensional Hilbert space L2(Vtot) of vector functions
that are square-integrable in Vtot. Thus, we can introduce a linear operator
W that acts on an arbitrary element |f〉 of L2(Vtot) according to the rule

W |f〉 →
∫

Vtot

ĜR(r− r′)f(r′)d3r′; r ∈ Vtot . (1.21)

The operator W is an infinite-dimensional symmetrical operator. It is a
“mixed” operator in the sense that it is both tensorial and integral. We
can easily verify that if |f〉 is an element of L2(Vtot), then W |f〉 is also an
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element of L2(Vtot). Further, we can define a scalar product of two vectors
|f〉 and |g〉 and a norm in L2(Vtot) as

〈g|f〉 =
∫

Vtot

g∗(r) · f(r)d3r , (1.22)

||f || =
√

〈f |f〉 , (1.23)

respectively. Using the above notations, we can rewrite (1.5) as

|P 〉 = χ [|Einc〉+W |P 〉] , (1.24)

where the vector |P 〉 corresponds to the polarization function P(r) and |Einc〉
to the incident field. The expressions for the optical cross sections take the
following forms:

σe =
4πk

|E0|2
Im〈Einc|P 〉 ; σa =

4πkδ

|E0|2
〈P |P 〉 . (1.25)

To conclude this section, we raise the consideration to a slightly higher level
of abstraction. The solution to the operator equation (1.24) can be written
in symbolic form as

|P 〉 = [1/χ−W ]
−1 |Einc〉 (1.26)

The operator R(E) = [E−W ]−1, where E is an arbitrary (complex) scalar is
called the resolvent of the operator W . The extinction cross section is given
by the diagonal matrix element of the resolvent, 〈Einc|R(1/χ)|Einc〉.

For an arbitrary Hermitian operator H, the resolvent can be expanded in
terms of the eigenvectors of H as

R(E) =
1

E −H =
∑

n

|n〉〈n|
E − En

, (1.27)

where |n〉 and En are the eigenvectors and eigenvalues of H. However, W is
not Hermitian but complex and symmetrical. The symmetry of W should be
understood as the following property of the kernel ĜR:

ĜR(r) = ĜR(−r), (GR(r))αβ = (GR(r))βα . (1.28)

These two equalities provide that, for two arbitrary elements of L2(Vtot), |f〉
and |g〉,

〈f∗|W |g〉 = 〈g∗|W |f〉 , (1.29)
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where the asterisk denotes the complex conjugation of the corresponding func-
tion. 3 Eq. (1.29) can be viewed as a generalized symmetry condition for W .
It can be used to prove that if |f〉 and |g〉 are two different (linear indepen-
dent) eigenvectors of W , they obey 〈f∗|g〉 = 0 [34], which is an analog of
the orthogonality condition for eigenfunctions of Hermitian operators (which
is 〈f |g〉 = 0). This property, in turn, can be used to write an analog of
expansion (1.27) for the non-Hermitian operator W :

R(E) =
1

E −W =
∑

n

|n〉〈n∗|
〈n∗|n〉[E − wn]

. (1.30)

Analogously to the notations of Eq. (1.27), we denote the eigenvectors and
eigenvalues of W by |n〉 and wn. However, now wn is, generally, a complex
number, as well as the factor 〈n∗|n〉 in the denominator of (1.30). We em-
phasize that 〈n∗|n〉 6= 〈n|n〉. The latter value is equal to unity for normalized
eigenvectors, while the former is a complex number.

Now we recall that the generic variable E has to be substituted by 1/χ in
(1.30). This fact and the structure of Eq. (1.30) emphasize the importance
of the parameters X and δ introduced in the end of Sec. 1.3. According to
the definition, 1/χ = −(X + iδ). If the interaction between monomers is
turned off, for example, by disaggregating a smoke cluster and moving the
monomers far from each other, all the eigenvalues wn turn to zero. Then X
plays the role of the generalized detuning from the resonance of an isolated
(noninteracting) monomer, while δ is the energy loss parameter (again, in the
absence of interaction). In the presence of interaction, the eigenvalues wn

become nonzero. The real parts of wn’s describe frequency shifts of collective
resonances, while the imaginary parts can change the collective radiative losses
due to constructive or destructive interference.

In the quasistatic approximation, when the system size is much smaller
than the wavelength, the operator W becomes Hermitian, and all wn’s are
real and independent of the optical frequency [31]. The only source of the
spectral dependence of the solution is in this case the spectral dependence of
X and δ on λ.

1.4.2 Perturbative methods

It is convenient to build the perturbation expansions of the optical cross sec-
tions starting from the operator form (1.24) of the integral Maxwell equations.
The Born expansion for the polarization function |P 〉 is obtained by iterating
(1.24):

3In our notations the symbol 〈f | stands for the complex conjugate of the function f , and
hence, 〈f∗| is, in fact, the function f itself. This system of notations may seem to be
artificial, but we have decided to follow the standard Dirac notations, though they are
more appropriate for Hermitian operators, while the operator W is not Hermitian.
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|P 〉 = χ

∞
∑

k=0

(χW )k|Einc〉 . (1.31)

The corresponding expansion for the extinction cross section follows from
(1.25) and (1.31):

σe = 4πkvtotIm

[

χ

∞
∑

k=0

Bkχ
k

]

; Bk ≡
〈Einc|W k|Einc〉
〈Einc|Einc〉

, (1.32)

where we have taken into account that 〈Einc|Einc〉 = vtot|E0|2. Because
W is an integral operator (see (1.21)), a calculation of the coefficients Bk

requires a calculation of k+ 1 volume integrals over Vtot. The approximation
in which only the first non-zero term in (1.32) is left is often called the first
Born approximation (the corresponding coefficient is B0 in our notations).
Multiple scattering is completely neglected in this approximation. In the next
order (second Born approximation), the coefficient B1 is retained. Physically,
this is equivalent to taking into account double scattering. The convergence
condition for the Born expansion is max[|χwn|] < 1.

One can improve the convergence of the perturbation expansion for σe by
adopting a more sophisticated approach. According to (1.25),(1.26), σe ∝
Im〈Einc|R(1/χ)|Einc〉, where R(E) = [E −W ]−1. To obtain an expansion of
this matrix element of the resolvent, we build an infinite sequence of vectors
|Pk〉 and complex numbers Qk such that († stands for Hermitian conjugation)

W †|Pk〉 = Q∗
k+1|Einc〉+ |Pk+1〉 , k = 0, 1, 2, . . . , (1.33)

〈Pk|Einc〉 = 0, ∀k > 0 , (1.34)

|P0〉 = |Einc〉 . (1.35)

It is straightforward to show that recursion (1.33) defines a unique set of |Pk〉
and Qk and

|Pk〉 = (TW †)k|Einc〉 , k = 0, 1, 2, . . . (1.36)

Qk =
〈Einc|W (TW )k−1|Einc〉

〈Einc|Einc〉
, k = 1, 2, 3, . . . (1.37)

T ≡ 1− |Einc〉〈Einc|
〈Einc|Einc〉

. (1.38)

Here T is the projection operator with respect to the vector |Einc〉. Note that
the vectors |Pk〉 are, in general, not normalized or mutually orthogonal.

Next, we define a vector |ψ〉 ≡ [1/χ−W ]−1|Einc〉, so that 〈Einc|R(1/χ)|Einc〉 =
〈Einc|ψ〉, and notice that 〈Einc|ψ〉 must satisfy the equation
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〈Einc|ψ〉 = χ [〈Einc|Einc〉+ 〈Einc|W |ψ〉] . (1.39)

It also follows from the definition of |ψ〉 that

〈Pk|W |ψ〉 = Qk+1〈Einc|ψ〉+ χ〈Pk+1|W |ψ〉, k ≥ 0 . (1.40)

Acting repeatedly n times by the operator W to the left in Eq.(1.39) and
using the recursion (1.40), we obtain

〈Einc|ψ〉 = χ
[

〈Einc|Einc〉+ (Q1 +Q2χ+Q3χ
2 + . . .

+Qnχ
n−1)〈Einc|ψ〉+ χn〈Pn|W |ψ〉

]

. (1.41)

The above equation can be rewritten as

〈Einc|R(1/χ)|Einc〉 = 〈Einc|ψ〉 =
χ〈Einc|Einc〉

1−∑n
k=1Qkχk

+ ξn . (1.42)

The residual term, ξn, still depends on the unknown vector |ψ〉 and is given
by

ξn = χn〈Pn|ψ〉
[

1−
n
∑

k=1

Qkχ
k

]−1

. (1.43)

Neglecting ξn, we can write the expansion for the extinction cross section:

σe = 4πkvtotIm

[ 〈Einc|R(E)|Einc〉
〈Einc|Einc〉

]

= 4πkvtotIm

[

χ

1−∑∞
k=1Qkχk

]

.

(1.44)
Equivalently, this can be rewritten as

σe = 4πkvtotIm

[

1

1/χ−Q1 − Σ(χ)

]

, (1.45)

where the self-energy Σ(χ) is given by Σ(χ) =
∑∞

k=1Qk+1χ
k. The expan-

sion (1.45) has the form of the Dyson equation. In the first order, by neglect-
ing the self-energy, we recover the result of the mean-field approximation,
which was introduced by Berry and Percival [20] for the problem of scattering
of light by fractal smoke clusters (the constant Q1 in (1.45) above is analogous
to the constant P in Ref. [20]). In fact, the mean-field result serves as the
first-order approximation for the above expansion.

The expansion coefficients Qk can be easily expressed in terms of the cor-
responding coefficients for the Born expansion, Bk. For the first few terms,
Q1 = B1, Q2 = B2−B2

1 , Q3 = B3−2B1B2+B
3
1 . Therefore, in order to build
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the expansion (1.45), it is sufficient to calculate the volume integrals involved
in the calculation of the Bk’s.

It is instructive to compare the expansion (1.44) with the Born expansion.
One can show (the details of the derivation are omitted) that the Taylor ex-
pansion of (1.44) with respect to powers of χ where only the n first Qk’s are
left in the denominator exactly coincides with the Born expansion (1.32) up to
the order k = n in χ. For k > n, the absolute value of the difference between
the coefficients in these two expansions is not greater than the absolute values
of the corresponding coefficients Bk. For example, in the n = 2 case, the dif-
ference in the third-order coefficients is B3 − 2Q1Q2 −Q3

3 = 〈Einc|W |Einc〉3,
and |〈Einc|W |Einc〉|3 ≤ |B3| = |〈 Einc|W 3|Einc〉| (generalized Hölder inequal-
ity). Practically, this means that (a) if the expansion (1.32) converges, the
expansion (1.44) also converges and (b) the convergence of (1.44) is at least
as fast as that of (1.32). Even in the first order, the expansion (1.44) con-
tains infinite orders of multiple scattering, which is known to be true for the
mean-field approximation [20].

Now we turn our attention to the calculation of the coefficients Bk. The
first coefficient is trivial, B0 = 1. Next, we recall that W is an integral
operator defined by (1.21) and write B1 as

B1 =
〈Einc|W |Einc〉
vtot|E0|2

, (1.46)

〈Einc|W |Einc〉 =
N
∑

i,j=1

∫

Vi

d3r

∫

Vj

d3r′
[

E∗
inc(r) · ĜR(r− r′)Einc(r

′)
]

. (1.47)

Using the fundamental assumption of small primary particles kRm ¿ 1 (Rm

is the radius of the spherical volumes Vi, Vj) and using Eq. (1.7), we replace
Einc(r

′) by E0 exp(ik · rj) and E∗
inc(r) - by E0 exp(−ik · ri) in the above

integral, and group the terms with i = j together to obtain

〈Einc|W |Einc〉 =
∑

i

∫

Vi

d3r

∫

Vi

d3r′
[

E∗
0 · ĜR(r− r′)E0

]

+

+
∑

i6=j

eik·(rj−ri)

∫

Vi

d3r

∫

Vj

d3r′
[

E∗
0 · ĜR(r− r′)E0

]

. (1.48)

The double integral over the same volume Vi in the first term of (1.48) turns
to zero in the limit Rm ¿ λ. This can be easily illustrated by considering
Eq.(1.5) for a single sphere case (N = 1) and observing that in this limit
P = χE0 = const inside the sphere; hence, the integral on the r.h.s of (1.5)
must go to zero. The integral over the different volumes Vi and Vj can be
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easily evaluated using (1.12),(1.13) and the spherical harmonic expansion of
g(r− r′) [36]:

g(r− r′) = 4πik3
∞
∑

l=0

l
∑

m=−l

jl(kr<)h
(1)
l (kr>)Y

∗
lm(Ωr′)Ylm(Ωr) , (1.49)

where jl(x), h
(1)
l (x) are the spherical Bessel and Hankel functions, r< =

min(r, r′), r> = max(r, r′), and Ylm(Ωr) are spherical harmonics. Choos-
ing the origin at the center of the volume Vj , we find that r> = r, r< = r′,
and

∫

Vj

g(r− r′)d3r′ =

4πik3
∞
∑

l=0

l
∑

m=−l

h
(1)
l (kr)Ylm(Ωr)

∫ Rm

0

jl(kr
′)(r′)2dr′

∫

Y ∗
lm(Ωr′)dΩr′ . (1.50)

Taking account of the fact that
∫

Y ∗
lm(Ωr′)dΩr′ =

√
4πδl0δm0, this is simplified

to

∫

Vj

g(r− r′)d3r′ = 4πih
(1)
0 (kr)

∫ kRm

0

j0(x)x
2dx =

= vβ(kRm)g(r) , (1.51)

β(x) = 3j1(x)/x = 3(sinx− x cosx)/x3 . (1.52)

The Taylor expansion of β(x) near x = 0 is β(x) = 1− x2/10 + . . .. Since we
already neglected the phase dependence of the incident field over the volume
of integration, keeping the terms of the order of x2 amounts to excessive
precision. Therefore, we set β = 1. The integration was performed in a
reference frame where rj = 0. In a general reference frame, one has

∫

Vj

g(r− r′)d3r′ = vg(r− rj) , r /∈ Vj . (1.53)

Consequently, for the integral of the tensor Green’s function ĜR one has

∫

Vj

ĜR(r− r′)d3r′ = v

(

Î +
1

k2
∇̂r∇̂r

)
∫

Vj

g(r− r′)d3r′ = vĜR(r− rj) ,

r /∈ Vj .(1.54)

Repeating analogous integration over the variable r ∈ Vi, we obtain
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∫

Vi

d3r

∫

Vj

d3r′ĜR(r− r′) = v2ĜR(ri − rj) . (1.55)

The above result seems to be obvious for two spheres that are separated
by a distance much larger than their radii, but much less so for two touching
spheres. However, it is exact in the limit kRm → 0. The physical interpreta-
tion of Eq.(1.55) is that in this particular order of the perturbation expansion
each sphere can be adequately represented by a point dipole moment located
in its center. In other words, the integral equations can be replaced by a set
of discrete equations with respect to the dipole moments of the monomers,
which constitutes the essence of the dipole approximation. It might seem that
the dipole approximation must work simply because kRm is small. However,
this is known to be not the case for interacting spheres in close vicinity of
each other (we will return to this in the next subsection). In fact, the dipole
approximation breaks down in the next order of the perturbation expansion.

Returning to calculation of B1, we find

B1 =
v

N |E0|2
∑

i6=j

e−ik·rijE∗
0 · ĜR(rij)E0 , rij = ri − rj . (1.56)

Now we proceed with statistical averaging of (1.56). This averaging can be
introduced in two different ways. First, if a soot cluster is large enough, the
probability distribution for the absolute values rij must be given by the pair
correlation function p(rij) that was discussed in Sec. 1.2, while all the spatial
orientations of rij are equiprobable (clusters are spherically symmetrical on
average). This can be called self-averaging. The other approach is ensemble
averaging over a distribution of different realizations of random clusters. The
orientational averaging can be easily carried out in a spherical system of co-
ordinates where the direction of vector k coincides with the z-axis and the
direction of E0 (assuming linear polarization) with the x-axis. Then, using
the tensor structure of ĜR (1.9-1.11), we obtain

B1 = k3v(N − 1)
〈

e−ikrij cos θ
[

A(krij) +B(krij) sin
2 θ cos2 φ

]〉

, (1.57)

where we have taken into account that the total number of terms in the sum
(1.56) is N(N − 1) and 〈. . .〉 stands for statistical averaging. Orientational
averaging is easily achieved by integrating (1.57) over sin θdθdφ/(4π). The ra-
dial averaging is done with the use of the correlation function p(r) (1.1) which
is, by definition, the probability density to find a distinct pair of monomers
in a cluster separated by the distance r. Using the functional form (1.1) for
p(r), we arrive at
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B1 =
πa

6
(kl)3−D

∫ ∞

0

xD−1f(x/kRg)F (x)dx , (1.58)

where a ≈ 4 is the numerical constant, f(x) is the cutoff function discussed
in Sec. 1.2, we have used v = (π/6)l3, and F (x) is the result of angular
integration of (1.57):

F (x) =
sinx

x
A(x)−

(

cosx

x2
− sinx

x3

)

B(x) , (1.59)

and A(x), B(x) are defined by (1.10),(1.11). The power series expansion of
F (x) near x = 0 is F (x) = (11/15)x−1 +2i/3− (46/105)x− (2i/9)x2 +O[x3].
Therefore, the radial integral in (1.58) converges at the lower limit for D > 1,
i.e., for any physically reasonable fractal dimension. As was discussed in
Sec. 1.2, this fact justifies the extension of the region of applicability of the
scaling formula (1.1) to r = 0.

Convergence at r =∞ is guaranteed by the cutoff function f(x). However,
for D < 2, (1.58) converges at the upper limit of integration even if we set
f(x/kRg) = 1. Therefore, for large clusters with kRg À 1, the integral (1.58)
converges while the cutoff function f is still close to unity. This means that
for sufficiently large clusters with D < 2 (which is usually the case), the
particular form of the cutoff function is not important, and we can calculate
the integral (1.58) analytically [20]. The final result of integration is

B1 =
πa

24
(2kl)3−D exp

[

iπ(D + 1)

2

]

K(D) , (1.60)

1 < D < 2 , kRg À 1

K(D) =
Γ(D)

(D − 1)(2−D)(3−D)

[

4(5D − 18)

(4−D)(6−D)
+D + 1

]

, (1.61)

where Γ(x) is the gamma-function.
Note that the function K(D) in (1.61) diverges as D approaches 2. This

result indicates that the perturbation expansion for large clusters becomes
less accurate as D approaches 2. However, there is no real divergence even for
D > 2 because of the cutoff function f(x/kRg) which was set to unity for the
derivation of (1.60). Therefore, the result (1.60) should be used with caution.
In particular, progressively larger values of kRg are required for convergence
of the integral when D approaches 2. In general, when kRg is not sufficiently
large, or D > 2, the value of B1 depends on the exact form of f(x) and on
the gyration radius of the cluster, Rg. The dependence of the integral of the
type (1.58) on D for the simple exponential cutoff was considered by Berry
and Percival [20] and by Shalaev, Botet and Jullien [37].

The result (1.60) was obtained in the “intermediate” wavelength limit
Rm ¿ λ ¿ Rg. It is also possible to calculate B1 in the long-wavelength
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limit Rm ¿ Rg ¿ λ (the quasistatic approximation). This can be easily done
by observing that, when kRg À 1, the integral (1.58) converges for small val-
ues of x. Therefore, we can keep only the first two terms in the power series
expansion of F (x) near x = 0 (which is necessary to calculate both the real
and imaginary parts of B1): F (x) ≈ (11/15)x−1 + 2i/3. Substituting this
expression into (1.58), and using (1.2), we obtain

B1 = abDk3vtot

[

11

15kRg

∫ ∞

0

xD−2f(x)dx+
2i

3

∫ ∞

0

xD−1f(x)dx

]

. (1.62)

In the above expression, a, b are the numerical coefficients (see formulas (1.1)
and (1.2) for the definitions). As was mentioned in Sec. 1.2, the dimensionless
combination abD is approximately equal to 1.6 for cluster-cluster aggregates.
The integrals on the r.h.s. of (1.62) are simple numbers, and can be evaluated
numerically given a specific form of the cutoff function f(x). If f(x) is given
by the generalized exponential formula with constants described in the caption
of Fig. 1.2, the integrals are approximately equal to 1.6 and 1.2, respectively.
As can be seen from (1.62), the coefficient B1 becomes purely real in the limit
λ→∞.

As was mentioned above, the calculation of higher coefficients Bk can not
be performed in the “dipole approximation”. In practice, this means that the
chain integrals of the kind

∫

Vi1

d3r1

∫

Vi2

d3r2 . . .

∫

Vin

d3rnĜR(r1 − r2)ĜR(r2 − r3) . . . ĜR(rn−1 − rn)

can not be represented as

vnĜR(ri1 − ri2)ĜR(ri2 − ri3) . . . ĜR(rin−1
− rin) .

Generally, this simple integration rule can be only applied to the “end of
chain” integration variables (r1 and rn in the above example). In the case of
the double scattering coefficient B1, both integration variables are, effectively,
“end of chain”, and the dipole approximation works. The integration variable
r2 in the above example is “middle of the chain”, in other words, it appears
in two Green’s functions instead of one. Therefore, the integration over r2

can not be so easily performed.

1.4.3 Non-perturbative methods

As we saw in the previous section, the dipole approximation is accurate up
to the second order of the Born expansion. This indicates that when the
interaction is weak, both the perturbation expansion and dipole approxima-
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tion become accurate. Of course, it is also possible to formulate the dipole
approximation non-perturbatively, which is done below.

In the dipole approximation, each monomer in a cluster is considered to be
a point dipole with polarizability α, located at the point ri (at the center of
the respective spherical monomer). The dipole moment of the ith monomer,
di =

∫

Vi
P(r)d3r, is proportional to the external electric field at the point

ri, which is a superposition of the incident field and all the secondary fields
scattered by other dipoles. Therefore, the dipole moments of the monomers
are coupled to the incident field and to each other as described by the coupled
dipole equation (CDE):

di = α



Einc(ri) +
N
∑

j 6=i

ĜR(ri − rj)dj



 , (1.63)

which is simply a discrete version of the integral equation (1.5). It was in-
troduced in the context of the discrete dipole approximation by Purcell and
Pennypacker [38], and for fractal clusters by Markel, Muratov, Stockman and
George. [30, 31] 4 The CDE is a system of 3N linear equations that can be
solved to find the dipole moments di. All the optical cross sections can be
found in complete analogy with (1.14)-(1.20):

f(k′) = k2
N
∑

i=1

[

di − (di · k′)k′/k2
]

exp(−ik′ · ri) , (1.64)

σe =
4πk

|E0|2
Im

N
∑

i=1

di ·E∗
inc(ri) , (1.65)

σa =
4πkya
|E0|2

N
∑

i=1

|di|2 , (1.66)

ya ≡ −Im
(

1

α

)

− 2k3

3
= δ/v ≥ 0 . (1.67)

The last formula needs an explanation. The definition of the absorption pa-
rameter ya in (1.66) follows from rigorous integration of the scattering ampli-
tude (1.64) [34]. It must be non-negatively defined for any physically reason-
able polarizability α [41]. However, if we use the usual relation between the
polarizability α and susceptibility χ, α = vχ, this condition (as well as the
second equality in (1.67) can be violated for purely real values of ε when χ
is also real. As was shown by Draine [39], the above relation between α and

4The discrete dipole approximation, although leading to similar equations, is used to solve
a problem essentially different from the one described in this chapter. For more references,
see [39, 40].
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χ should be modified to take into account radiative reaction. The corrected
formula is 1/α = 1/vχ − i2k3/3, which, taking into account δ = −Im[1/χ],
immediately leads to the second equality in (1.67). For strongly absorbing
carbon, the radiative corrections are negligibly small.

The advantage of the dipole approximation is simplicity: an integral equa-
tion is replaced by a finite system of linear equations. However, we al-
ready saw that the dipole approximation is not accurate in the third (and
all the higher) orders of the perturbation expansion. In fact, the general
non-aplicability of the dipole approximation was recognized and verified both
theoretically [42, 43] and experimentally [44]. A simple physical explanation of
why the dipole approximation fails was provided, for example, by Sansonetti
and Furdyna [44]. First, in the dipole approximation, the local field acting
on a certain dipole is evaluated at the center of the corresponding monomer.
However, the field produced by neighboring monomers is highly non-uniform
over the volume of the first monomer, and can not be replaced by a single
value. And second, the dipole approximation neglects higher multipole mo-
ments of the monomers, which is a good approximation for those monomers
which are far away from each other, but not for nearest neighbors. Effec-
tively, by replacing two touching spheres by two point dipoles located at their
centers, we underestimate the strength of their interaction.

To overcome the limitations of the dipole approximation, a rigorous numer-
ical approach has been developed by Gerardy and Ausloos [42] (in the long-
wavelength limit), Claro and co-authors [43, 45, 46, 47, 48], Mackowski [49,
50], Fuller [51, 52] and Xu [53]. The essence of this method is to expand the
EM field inside each sphere and the field scattered by each sphere in vector
spherical harmonics, and to match the boundary condition on all surfaces of
discontinuity. Generally, this method leads to an infinite-dimensional system
of linear equations with respect to the expansion coefficients. In order to
solve this system, one needs to truncate it by assuming that all the expansion
coefficients for spherical harmonics of the order larger than L are zero. Then
the total number of equation scales (for large values of L) as NL2.

Although a detailed description of the above methods is beyond the scope
of this chapter, in the next subsection, we will illustrate with a numerical
example an important trend: when the interaction of monomers in a cluster
becomes stronger and the perturbation expansion, correspondingly, less accu-
rate (or even diverges), the maximum number L required for attaining accu-
rate results tends to increase. This makes the “coupled multipoles” method
computationally applicable only for situations with either a small number of
monomers or weak interaction.

To overcome the inadequacy of the dipole approximation and the over-
whelming computational load of the “coupled multipole” method, we have
suggested a phenomenological procedure that can be referred to as the cluster
renormalization approach [54, 55]. This approach allows one to stay in the
frame of the dipole approximation, which is described in detail below. The
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following two factors are important for understanding the renormalization
approach.

First, we note that most calculations employ computer-generated samples.
The geometry of these samples does not coincide with that of experimental
soot exactly (which is, obviously, impossible), but rather reproduces certain
statistical geometrical properties of real soot. Among such properties are den-
sity correlation functions, total volume of the material and average radius of
gyration, Rg. However, such characteristics as the number of monomers in a
cluster, N , and monomer radius, Rm, might be considered as not essential.
It is known, for example, that the real carbon monomers are not actually
spherical, and nearest neighbors touch each other not just at one geometrical
point, so that the model of touching spheres is only an idealization. Second,
as was mentioned above, the dipole approximation in its pure form under-
estimates the interaction strength. In particular, it predicts the shift of the
resonance frequency in small clusters of spheres to be significantly less than
is experimentally measured [44]. In order to correct the interaction strength
of the dipole approximation, it is tempting to move the monomers closer to
each other (of course, this relates to computer-generated samples) by allowing
them to intersect geometrically. However, doing this will evidently reduce the
overall system size (Rg) which is an essential parameter of the problem. The
other possible way to introduce the intersections is to increase the radii of
the spheres (Rm) while keeping distance between nearest neighbors (l) un-
changed. This will however, lead to an increase of the total volume of the
material. Luckily, for fractal clusters, it is possible to introduce a simultane-
ous renormalization of the sphere radii (Rm), the total number of monomers
(N) and the distance between nearest neighbors (l) in such a way that the
overall volume (vtot) and the gyration radius (Rg) are unchanged, and to
introduce an arbitrary geometrical intersection of neighboring spheres. The
transformation is

R′
m = Rm

(

ξ

2

)D/(3−D)

, (1.68)

N ′ = N

(

2

ξ

)3D/(3−D)

, (1.69)

l′ = ξR′
m , (1.70)

where ξ is a phenomenological intersection parameter (1 < ξ < 2, ξ = 2 for
touching spheres and ξ < 2 for geometrically intersecting spheres).

Thus, the main idea of the renormalization approach is to model a real
cluster with experimental values of Rm and N (and l = 2Rm) by a computer-
generated “renormalized” cluster with corresponding parameters R′

m, N ′ and
with the geometrical intersection of neighboring spheres: l′ = ξR′

m < 2R′
m.

The intersection parameter ξ is phenomenological and must be adjusted. The
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initial value for ξ can be obtained from the following simple considerations,
which can be also used to justify the physical plausibility of the renormaliza-
tion method.

It can be shown [56] that a linear chain of intersecting spheres has the same
depolarization coefficients as an infinite cylinder for ξ = [4

∑∞
k=1 k

−3]1/3 ≈
1.688. It is important to note that two independent depolarization coefficients
can simultaneously be “tuned” to correct values by adjusting only one free
parameter ξ. As is well known, the depolarization coefficients in ellipsoids (an
infinite cylinder being a particular case) determine the spectral positions of
the resonances. Thus, the renormalization procedure gives the correct spectral
locations of the optical resonances for a one-dimensional chain. The lineshape
of each resonance can be still described incorrectly. However, in the situa-
tion of a large fractal cluster, typical absorption and extinction spectra are
superpositions of many collective resonances, and the lineshapes of individual
resonance are of little importance.

Another approach to estimating the parameter ξ is by analogy with the
discrete dipole approximation (see [38, 39, 40]) in which bulk non-spherical
particles are modeled by arrays of point dipoles located on a cubic lattice. In
the first approximation, the polarizability of the dipoles is taken to be equal
to that of an equivalent sphere with the radius Rm such that its volume is
equal to the volume of the lattice cell, i.e., (4π/3)R3

m = l3. From this equality
we find ξ = l/Rm = (4π/3)1/3 ≈ 1.612.

Given a computer-generated renormalized cluster, we can build the CDE
(1.63) and solve it numerically to obtain all desirable optical constants. The
CDE (1.63) can be written in the operator form [30, 31], analogously to (1.24),
except that the Hilbert space now has a finite dimensionality 3N . We denote
by |d〉 the 3N -dimensional vector of dipole moments, and write

|d〉 = α (|Einc〉+Wm|d〉) . (1.71)

The operator Wm in (1.71) is a square 3N × 3N matrix rather than an
integral operator W in (1.24), which is being emphasized here by using the
subscript “m”. In a basis of vectors |iα〉, such that diα = 〈iα|d〉 (the Greek
indices denote the Cartesian components of the vectors), the matrix elements
of Wm are 〈iα|Wm|jβ〉 = k3[A(krij)δαβ +B(krij)rij,αrij,β/r

2
ij ].

The eigenvector expansion of the solution to (1.71) was proposed in [30, 31]
for the quasistatic case (Rg ¿ λ) and in [34] in the general case, and is similar
to (1.30):

|d〉 =
∑

n

|n〉〈n∗|Einc〉
〈n∗|n〉[1/α− wn]

, (1.72)

where |n〉 are now the eigenvectors of Wm.

Using (1.65) with
∑N

i=1 di · E∗
inc(ri) = 〈Einc|d〉, we can write for the ex-

tinction cross section:
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σe =
4πk

|E0|2
Im
∑

n

〈Einc|n〉〈n∗|Einc〉
〈n∗|n〉[1/α− wn]

. (1.73)

Now we recall that 1/α = 1/vχ − i2k3/3 and 1/χ = −(X + iδ), where the
spectral dependence of X and δ are illustrated in Fig. 1.4b, and write

σe = −
4πkv

|E0|2
Im
∑

n

〈Einc|n〉〈n∗|Einc〉
〈n∗|n〉[X + i(δ + 2k3v/3) + vwn]

. (1.74)

Equation (1.74) illustrates the importance of the parameters X and δ. The
interaction of the monomers is weak and can be neglected when the “normal-
ized” dimensionless eigenvalues vwn are small compared to X+ i(δ+2k3v/3).
By neglecting the eigenvalues in the denominator of (1.74), we immediately
recover the first Born approximation. There are two distinct cases when such
an approximation is valid. The first case is a non-resonant interaction, when
|X| À vRewn. But even if X + Rewn can turn exactly to zero (resonant
interaction), the absorption parameter δ can be still sufficiently large to make
the first Born approximation accurate.

Further, we can introduce the “weighted” density of states Γ(w′, w′′) ac-
cording to

Γ(w′, w′′) =
∑

n

〈Einc|n〉〈n∗|Einc〉
〈n∗|n〉 δ(w′ − Rewn)δ(w

′′ − Imwn) (1.75)

and rewrite (1.74) as

σe = −
4πkv

|E0|2
Im

∫

Γ(w′, w′′)dw′dw′′

X + i(δ + 2k3v/3) + v(w′ + iw′′)
. (1.76)

This formula is a convenient starting point for a family of analytical ap-
proximations. The familiar mean-field approximation can be obtained by
assuming that the eigenvalues of Wm all lie in a small bound region in the
complex plane, while the complex variable X + i(δ + 2k3v/3) is far from
this region. Then the density of states can be approximated as Γ(w′, w′′) =
N |E0|2δ(w′ − ReQ1)δ(w

′′ − ImQ1), and the integration in (1.76) results in
a formula similar to (1.45) without the self-energy term. The requirement
for applicability of the mean-field approximation is, obviously, different than
that for the first Born approximation. Namely, the eigenvalues do not need
to be small, but rather quasi-degenerate. Higher-order approximations can
be built by making the form of Γ(w′, w′′) more complicated. As the first
step, Γ(w′, w′′) can be assumed to be constant in a certain bound rectangular
area in the complex plane and zero outside, with the dispersion (first mo-
ments) determined from numerical diagonalization of a typical matrix Wm.
This functional form still allows one to integrate (1.76) analytically. At higher
levels of approximation, other moments of Γ(w′, w′′) can be also specified.
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It must be noted that for highly absorbing carbon material, the parameter δ
can be much larger than the imaginary parts of the eigenvalues vImwn (as well
as the factor 2k3v/3). In this case it is sufficient to consider a one-dimensional
function Γ(w′). This is a good approximation in the quasi-static limit λÀ Rg,
when the imaginary parts of eigenvalues are proportional to the small factor
2k3/3 [34] and can be neglected. The complex eigenvalues ofWm are discussed
in much more detail in the chapter by Rusek and Orlowski, for the case of
non-fractal, random and spherically symmetrical distribution of dipoles with
the average inter-particle distance ∼ λ. The results of Rusek and Orlowski
are indicative of the fact that the imaginary parts of the eigenvalues in this
case are still of the order of 2k3/3, and can be neglected for strongly absorbing
soot. However, a calculation of the imaginary parts of the eigenvalues for a
self-supporting fractal cluster, which is not small compared to λ has not been
performed to the best of our knowledge.

An important remark should be made regarding the influence of the renor-
malization procedure (1.68)-(1.70) on expressions of the form (1.74),(1.76).
The parameters X and δ do not depend on the geometry of the problem,
and therefore, are not affected by the renormalization. However, the nor-
malized eigenvalues vwn are changed as the result of renormalization. In
particular, it is easy to see from (1.68)-(1.70) that the renormalized volume
is v′ = v(ξ/2)3D/(3−D). In general, the eigenvalues of the interaction ma-
trix Wm do not scale with the parameter l, and it is impossible to write
a similar relation between wn and w′

n. However, this becomes possible in
the quasistatic limit λ À Rg, when the intermediate- and far-zone terms
in (1.10),(1.11) can be neglected and the exponential factor exp(ix) can be
set to unity. Then, from the form of the interaction matrix, it follows that
w′
n = wn(l/l

′)3 = wn(2/ξ)
9/(3−D). Combining these two expressions, we ob-

tain in the quasistatic limit: v′w′
n = vwn(2/ξ)

3. We recall that ξ is the
intersection parameter, and 1 < ξ ≤ 2. Thus, the intersection procedure effec-
tively increases the normalized eigenvalues and, consequently, the interaction
strength. The same tendency holds beyond the quasistatic limit, although the
ratio v′w′

n/vwn becomes different for different n in this case.
Due to the volume limitations, we have skipped the important question

of orientational averaging in the dipole approximation. This averaging is
trivial in the quasistatic case, and can be performed by averaging results for
three orthogonal polarizations of the incident wave. However, the averaging
becomes much more complicated in the case of finite k; see [57] for a further
reference.

1.4.4 Numerical examples

In this subsection we illustrate the methods described above with a few nu-
merical examples. We start with the perturbation expansion for the extinction
cross section.
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Fig. 1.5 Perturbative calculations of the extinction efficiency Qe for a cluster with

N = 2, 500, l = 2Rm = 0.02µm, and Rg ≈ 33l = 0.66µm.

In Fig. 1.5 we plot the results of perturbative calculations of the extinction
efficiency Qe defined as

Qe =
σe
kvtot

. (1.77)

The extinction efficiency is calculated for an ensemble of clusters with N =
2, 500, l = 2Rm = 0.02µm, and Rg ≈ 33l = 0.66µm. In this figure, we
compare the first Born approximation forQe obtained from (1.32) by retaining
only the k = 0 term in the summation, compared to the first-order mean-field
approximation (1.45) obtained by setting Σ = 0 in (1.45). We used the optical
constants for carbon described in Sec. 1.3. The constant Q1 = B1 that is used
in the mean-field approximation was calculated from the analytical formulas
for the “intermediate” wavelength regime (Rm ¿ λ ¿ Rg) (1.60),(1.61) and
for the long-wavelength regime (Rm ¿ Rg ¿ λ) (1.62). The corresponding
curves are plotted in the spectral regions where these regimes are valid. In
the intermediate region λ = Rg, both analytical expressions for B1 become
inaccurate and numerical integration according to (1.58) should be performed.
However, it is plausible to assume from the figure that the two curves will
smoothly connect to each other near λ = Rg. Note that in the limit kRm ¿ 1,
the first Born approximation gives also the “non-interacting” value of Qe, i.e.,
calculated for isolated spherical monomers.

While the mean-field approximation gives significantly different results
from the first Born approximation for λ¿ 1µm, the difference becomes small
for larger wavelengths. This might seem to be an indication of fast conver-
gence of the perturbation series for large λ′s. However, it is not the case.
In fact, the coefficient B1 becomes small in the long-wavelength limit (see
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Non-perturbative
Mean-field, long-wavelength
First Born approximationQe
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Fig. 1.6 Perturbative and non-perturbative calculations of the extinction efficiency

Qe for a cluster with N = 100, l = 2Rm = 0.02µm and Rg ≈ 10.6l = 0.2µm.

Eq.(1.3)) due to the special symmetry of the dipole-dipole interaction. How-
ever, as we saw above, the dipole approximation is not accurate in the higher
orders of the expansion, and the higher coefficients Bk can be not small.

The deficiency of the mean-field approximation in the long-wavelength limit
is most easily demonstrated with quasistatic calculations, in the limit λÀ Rg.
In Fig. 1.6 we compare the results of the first Born and the mean-field ap-
proximations (with the long-wavelength version of B1 calculated according to
(1.62)) to the numerical non-perturbative solution based on the expansion of
all scattered fields into spherical harmonics and considering boundary condi-
tions at each spherical surface (the Fortran codes are courtesy of D. Mackowski
- for more details see also Ref. [49]). The calculations are done for a small
cluster with the following parameters: N = 100, l = 2Rm = 0.02µm and
Rg ≈ 10.6l = 0.2µm, so that the condition λ À Rg is fulfilled everywhere in
the spectral region shown in Fig. 1.6

As can be seen from the figure, the perturbation expansion gives a decent
agreement with the non-perturbative results for λ ≤ 1µm. However, at λ =
1µm, the non-perturbative solution is approximately two times larger. In
general, the non-perturbative solution decreases much more slowly with λ.
It should be kept in mind that the spectral dependence of the extinction
cross section σe differs from that for the extinction efficiency Qe by the factor
k ∝ 1/λ.

As the discrepancy between the perturbative and non-perturbative solu-
tions increases in the long-wavelength spectral range, the number of spherical
harmonics required for obtaining an accurate non-perturbative solution also
grows. This tendency is illustrated in Fig. 1.7, where we plot the extinction
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Fig. 1.7 Extinction efficiencyQe as a function of the maximum order L of the spher-
ical harmonics involved in the non-perturbative calculation based on the expansion of

all scattered fields into spherical harmonics and considering boundary conditions at

each spherical surface (Fortran codes courtesy of D. Mackowski). The calculations were

performed in the quasistatic limit for a cluster with N = 100, l = 2Rm = 0.02µm
and Rg ≈ 10.6l = 0.2µm and for different values of λ, from 1µm to 10µm.

efficiency as a function of the maximum order of the spherical harmonics, L.
We see that near λ = 10µm, accurate results are obtained for L ∼ 10. This
value grows for larger lambda, as the optical properties of carbon become
more metallic. However, even a calculation with only N = 100 and L = 10
requires about 600Mb of memory in the quasistatic case and twice as much for
finite k’s. Since the memory requirement grows as ∼ N 2L4, calculations with
significantly larger L’s or N ’s seem to be problematic. This is especially true
for clusters of metallic particles. Our estimates show that for silver colloidal
clusters in the visible and near-infrared spectral ranges, the required L is on
the order of 100 (data not shown).

As an alternative method, we consider the dipole approximation coupled to
the geometrical renormalization of clusters described in Sec. 1.4.3. In Fig. 1.8
we plot the results of calculations of Qe in the dipole approximation for differ-
ent values of the intersection parameter ξ compared to the calculations based
on the multipole expansion (referred to as “exact” in the figure caption) and to
the first Born approximation. Since the latter can be obtained by considering
isolated monomers, it is also referred to as the “non-interacting” approxima-
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Non-interacting
Dipole approx., ξ = 1.70
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Fig. 1.8 Extinction efficiency Qe as a function of λ in the quasistatic limit. Solid
curve - fist Born approximation (non-interacting limit). The ξ = 2 curve is the dipole
approximation without geometrical renormalization of clusters. The centered symbols

are the “exact” solution based on the multipole expansion.

tion. The case ξ = 2 corresponds to the usual dipole approximation without
renormalization.

Even without renormalization, the dipole approximation gives more ac-
curate results than the first Born (non-interacting) approximation. But the
introduction of geometrical intersections allows one to achieve much better
accuracy. A good fit is obtained for ξ = 1.75. Note that, due to computa-
tional limitations, these results were obtained for single random realizations
of computer-generated (renormalized) fractal clusters. However, the renor-
malization approach is statistical in nature, and we believe that ensemble
averaging will increase of the quality of the fit for a properly adjusted inter-
section parameter ξ. Nevertheless, the maximum deviation of the ξ = 1.75
curve from the “exact” result is only 2%.

Now we turn our attention to the “weighted” density of states, Γ(w′, w′′)
defined by (1.75), and the analytical approximations that can be derived from
simplification of the form of Γ(w′, w′′). We restrict our consideration to the
quasistatic limit, when the imaginary parts of all eigenvalues are small, and
it is sufficient to consider a one-dimensional function Γ(w′). The quasistatic
analog of (1.76) is



xxxii SOME THEORETICAL AND NUMERICAL APPROACHES...

σe = −
4πkv

|E0|2
Im

∫

Γ(w′)dw′

X + iδ + vw′
, (1.78)

where we have also neglected the small term 2k3v/3. This can be rewritten
for the efficiency Qe as

Qe =
4πδ

N |E0|2
∫

Γ(w′)dw′

(X + vw′)2 + δ2
. (1.79)

A typical quasistatic density of states, calculated for an ensemble of clusters
with N = 1, 000, is illustrated in Fig. 1.9. It is normalized by the condition
∫

Γ(w′)dw′ = N |E0|2. The step-like function shown in Fig. 1.9 has the same
normalization, first and second moments as the numerical Γ(w′).

By comparing Figs. 1.4 and 1.9, we can conclude that the complex vari-
able −1/χ = X + iδ always lies far in the complex plane from the region on
the real axis occupied by the normalized eigenvalues vwn (the region where
Γ(w′) is not zero). This, in turn, leads to the idea that the fine structure of
Γ(w′) is not important. As we have mentioned in the previous subsection,
replacing Γ(w′) by a delta-function with the same normalization and first mo-
ment results in the mean-field approximation. However, it can be seen from
Fig. 1.9 that the first moment of Γ(w′) is equal to zero. This, indeed, follows
from the expression (1.62) for B1 = Q1 in the limit k → 0, and is a conse-
quence of the spherical symmetry of the clusters and the tensor properties of
the dipole-dipole interaction. Therefore, the mean-field approximation in the
quasi-static limit is, essentially, equivalent to the first Born (non-interacting)
approximation. This fact is also illustrated in Fig. 1.6.

To go beyond the mean-field approximation, we replace Γ(w′) by a step-like
function which preserves the second moment of Γ(w′) in addition to the first
moment and normalization, as shown in Fig. 1.9 (see the figure caption for
numerical values of the constants). Using the step-like function in (1.79), we
obtain

Qe =
πδ

w0

∫ w0

−w0

dw′

(X + vw′)2 + δ2
. (1.80)

The integral can be easily evaluated, and results in

Qe =
2π

vw0

[

arctan

(

X + vw0

δ

)

− arctan

(

X − vw0

δ

)]

. (1.81)

For clusters of touching spheres (without geometrical renormalization), vw0

is a constant. From our calculations for computer-generated cluster-cluster
aggregates, vw0 ≈ 2.29. Now we recall that the renormalization results in
v′w′

0 = (2/ξ)3vw0. Therefore, for a renormalized cluster, the extinction effi-
ciency can be approximately written as
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Fig. 1.9 “Weighted” density of states Γ(w′) in the quasistatic limit, and its ap-
proximation by a step function with the equivalent normalization, first and second mo-

ments. The numerical diagonalization is performed for an ensemble of 10 clusters with
N = 1, 000. The values of the constants are vw0 = 2.29 and Γ0 = N |E0|2/2w0.

Qe =
2π

2.29(2/ξ)3

[

arctan

(

X + 2.29(2/ξ)3

δ

)

− arctan

(

X − 2.29(2/ξ)3

δ

)]

.

(1.82)
The results of calculations according to formula (1.82) are shown in Fig 1.10.

First, in Fig 1.10a we compare the analytical expression (1.82) with the re-
sults of numerical calculations in the dipole approximation without the geo-
metrical renormalization (ξ = 2). The analytical and numerical data fit very
accurately. In Fig 1.10b, we plot Qe given by (1.82) for two different values
of ξ < 2 compared to the “exact” result (the one shown in Fig. 1.6 by cir-
cles). We see that the most close fit is achieved for ξ ∼ 1.73. The curve with
ξ = 1.7 gives a less accurate approximation of Qe, but better reproduces the
λ-dependence in the long-wavelength region (up to a multiplicative constant).
When comparing the results of the dipole approximation and the analytical
formula (1.82) with the exact calculations which are shown in Fig. 1.10b by
circles, it should be kept in mind that the latter were obtained by trunca-
tion of the maximum order of spherical harmonics, L. As can be seen in
Fig. 1.7, the calculated value of Qe still continues to grow for L ∼ 10 and
λ > 2µm. Our calculations were truncated at L = 9 due to computational
limitations. But it can be stated with a reasonable amount of confidence that
the “true” results for Qe are somewhat larger than those shown, for example,
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Fig. 1.10 (a) Analytical expression (1.82) compared to numerical calculations in

the dipole approximation without cluster renormalization (ξ = 2). (b) Analytical
expression (1.82) for two different values of ξ < 2 compared to the exact result.

in Fig. 1.10b. This follows from the monotonic growth of Qe as a function of
L illustrated in Fig. 1.7. Therefore, the curve with ξ = 1.7 might be actually
more accurate than the one with ξ = 1.73.

In conclusion of this section, we note that the value vw0 (or the second mo-
ment of Γ(w′)) can depend on the fractal dimension of the clusters. The fine
features of Γ(w′) can also depend on less essential properties of the clusters,
such as the type of lattice used in numerical calculations. For non-resonant
carbon, these fine details of the density of states are largely insignificant.
However, they become important in the resonance situation, when the de-
nominator in the formulas (1.76),(1.78) can become purely imaginary and
small. The resonance electromagnetic interaction in fractal clusters is consid-
ered theoretically by Stockman, and from the experimental point of view by
Safonov, Danilova, Drachev and Perminov in other chapters of this volume.
Danilova has discussed the phenomenological intersection parameter ξ for the
case of the resonance interaction and compared analytical and experimental
results in [58].

1.5 FLUCTUATIONS OF LIGHT SCATTERED BY RANDOM
SMOKE CLUSTERS

The well-known result (e.g., [14]) for the differential scattering cross section
of fractal clusters in the first Born approximation is
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dσs
dΩ
∝ q−D , if q À 1/Rg , (1.83)

where q = k − k′ is the transmitted wave vector. This result is obtained by
statistical averaging using the density-density correlation function (1.1), and
is statistical in nature. The intensity of light scattered from a single random
cluster can be different from (1.83). The statistical averaging implied in the
derivation of (1.83) can be understood in two different ways. The first is en-
semble averaging, over an ensemble of random realizations of clusters. One
can also hope that if a single cluster is large enough, it’s differential scatter-
ing cross section approaches the ensemble average value, and the deviations
decrease with the cluster size as 1/

√
N (self-averaging).

In this section we show that the self-averaging can occur for random non-
fractal clusters, but not for fractal aggregates with long-range correlations.
In fact, we will show numerically that the relative dispersion of the scattered
intensity in an ensemble of fractal cluster-cluster aggregates is always close to
unity. A more detailed account is published in [23].

1.5.1 General relations

The differential scattering cross section can be calculated using the general
definition (1.15) and the expression for the scattering amplitude f(k′) either
in the integral form (1.14) or the discretized version (1.64). In the first Born
approximation that will be used throughout this section, both formulas for f
lead to the same result. For simplicity, we start from the discretized expression
(1.64), and, substituting di = αEinc(ri) = αE0 exp(ik · ri), obtain

f(k′) = k2α

[

E0 −
(E0 · k′)k′

k2

] N
∑

i=1

exp(iq · ri) , (1.84)

where q = k − k′. The differential scattering cross section can be easily
obtained from the above expression

dσs
dΩ

= k4|α|2|E0|2 sin2[ψ(E0,k
′)]

∣

∣

∣

∣

∣

N
∑

i=1

exp(iq · ri)
∣

∣

∣

∣

∣

2

, (1.85)

where ψ(E0,k
′) denotes the angle between E0 and k′. The prefactor k4|α|2×

|E0|2 sin2[ψ(E0,k
′)] does not depend on a random realization of the set {ri}

and, therefore, is the same for all clusters. In the case of scattering of a depo-
larized wave, we must replace sin2[ψ(E0,k

′)] by 〈sin2 ψ〉 = 1/2, and the above

factor becomes simply a constant. In contrast, the factor
∣

∣

∣

∑N
i=1 exp(iq · ri)

∣

∣

∣

2

in (1.85) is random and can vary from cluster to cluster.
When considering fluctuations of scattered light by different random clus-

ters, we do not need to keep a factor which is common to all of them. There-
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fore, it is convenient to define the intensity of light scattered by some individ-
ual cluster as

I(θ, φ) = I(q) =
∣

∣

∣

N
∑

i=1

exp(iq · ri)
∣

∣

∣

2

, (1.86)

where θ is the angle between the direction of the incident wave vector k and
the direction of scattering, and φ is the azimuthal angle. The absolute value
of q depends on the scattering angle θ as

q = k
√

2(1− cos θ) . (1.87)

The intensity (1.86) coincides with the “real” intensity of the scattered light
up to some constant in the case of a depolarized incident wave, and up to the
ψ-dependent factor, sin2[ψ(E0,k

′)], for a polarized wave. The definition of
scattered intensity (1.86) is suitable for the calculation of relative fluctuations,
i.e., for the dispersion of scattered intensity divided by the average scattered
intensity. If we want to calculate absolute fluctuations, we need, of course, to
keep all the prefactors. In this section we will focus on relative fluctuations.
The absolute value of fluctuations can always be reconstructed, provided the
average scattered intensity is known.

Let us consider the intensity of light scattered by some number of frac-
tal clusters randomly distributed in a certain volume. The distance between
clusters is supposed to be large compared to the wavelength of the incident
radiation, λ, and the distribution of clusters in space to be random and un-
correlated. Then we can add the intensities of light scattered by each cluster,
rather than the amplitudes.

The average scattered intensity 〈I〉 is defined as

〈I〉 = 〈I(θ, φ)〉 = lim
M→∞

1

M

M
∑

k=1

Ik(θ, φ) , (1.88)

where Ik(θ, φ) is the intensity scattered by the k-th cluster and M is the total
number of clusters which scatter the light. With the use of (1.86), we can
rewrite (1.88) as

〈I〉 = lim
M→∞

1

M

M
∑

k=1

Nk
∑

i,j=1

exp[iq · (r(k)
i − r

(k)
j )] , (1.89)

where Nk is the number of monomers in the k-th cluster, and r
(k)
i is the

coordinate of the i-th monomer in k-th cluster.
For an ensemble of spherically symmetrical (on average) clusters, the de-

pendence of 〈I〉 on φ is weak (it vanishes for an infinite ensemble); therefore,
we will use the notation 〈I〉 = 〈I(θ)〉 = 〈I(q)〉, where q is defined by (1.87).
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If we detect the scattered light from just one cluster, it can be much dif-
ferent from 〈I〉. A convenient measure of these variations is the standard
deviation (dispersion), σI :

σ2
I = 〈I2〉 − 〈I〉2 . (1.90)

The value of σI characterizes possible deviations of Ik from 〈I〉 calculated
for an infinite ensemble of clusters and has a simple mathematical meaning:
The probability that an individual Ik lies within the interval 〈I〉 ± σI is ap-
proximately 2/3.

In the case of a finite M , one can be interested in a measure of fluctuations
of the average value (1.88) itself (the “lim” sign in this case should, of course,
be omitted in (1.88) and (1.89)). If we register the scattered light from dif-
ferent ensembles of clusters consisting of some finite number of clusters M ,
we will come up with different results. We can define the standard deviation

σ
(M)
I of these random values in the usual way. The relation between σ

(M)
I and

σI ≡ σ(1)
I is well-known from mathematical statistics:

σ
(M)
I =

σI√
M

. (1.91)

The actual value of M depends on the scheme of the experiment. In one
possible setting, the scattering volume is small enough (e.g., due to focusing
a laser beam) and contains only one cluster at a time. Because of the random
motion of clusters, it contains different clusters in different moments of time.
In this case, one can register scattered radiation for some large period of
time (excluding the periods when the volume contains no clusters at all and
the signal is zero) and calculate the time-averaged intensity and its standard
deviation, which coincides with σI . If the volume contains an average of M

clusters at a given time, the measured standard deviation would be σ
(M)
I .

As will be shown numerically below, this value is universal for cluster-cluster
aggregates over a wide range of scattering angles. The relation (1.91) can be
used to find the average number of clusters in the scattering volume (and,
hence, the number density of clusters).

1.5.2 Monodisperse clusters

First, we consider monodisperse ensembles of clusters consisting of N mono-
mers each. The task of calculating σI includes finding two average values: 〈I〉
and 〈I2〉. Apart from calculating the dispersion (Eq. 1.90), 〈I〉 is interesting
by itself and is experimentally measurable. It is well known that the pair
correlation function p(r) (1.1) can be used to calculate 〈I〉. Indeed, for a
monodisperse ensemble, (1.89) can be simplified to

〈I〉 = N +N(N − 1)〈exp(iq · rij)〉 , (1.92)
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where rij = ri−rj , and only distinct monomers belonging to the same cluster
are considered. Now we can use the function p(r) to calculate 〈exp(iq · rij)〉:

〈exp(iq · rij)〉 =
∫ ∞

0

p(r) exp(iq · rij)
dr sin θdθdφ

4π
. (1.93)

After performing the angular integration, (1.93) simplifies to

〈exp(iq · rij)〉 =
∫ ∞

0

p(r)
sin qr

qr
dr . (1.94)

In the case of D < 2 and q À R−1
g , we can calculate the integral (1.94)

without specifying the form of the cutoff function for p(r), similarly to the
calculation of the coefficient B1 in Sec. 1.4.2. Indeed, in this case the cutoff
function can be set to unity, and the result is

〈exp(iq · rij)〉 =
aΓ(D − 1) sin[π(D − 1)/2]

N(ql)D
. (1.95)

In the other limiting case, q ¿ R−1
g , sin(qr) in (1.94) can be expanded in a

power series, and the result of integration up to the lowest non-zero power of
q is

〈exp(iq · rij)〉 = 1− (qRg)
2/3 . (1.96)

As follows from (1.96) and (1.92), 〈I(θ = 0)〉 = N 2, which means that the
forward scattering is always coherent in the first Born approximation.

From (1.95) and (1.92), it can be concluded that the minimum possi-
ble value of 〈I〉 is N , which can be reached for large values of q. For the
backscattering, when the value of q is maximum, the expression for 〈I〉 be-
comes 〈I〉 ≈ N [1+ 5 · 10−2(λ/l)D], where we used the numerical values for all
the coefficients (assuming D = 1.8). The characteristic value of λ is λc ≈ 5.4l,
so that 〈I〉 approaches its lower bound for λ ¿ λc. However, the above in-
equality contradicts the fundamental assumption of this chapter that λ is
much larger than monomer size Rm (or lattice unit, l). Therefore, in the
spectral region where the monomers are optically small, kRm ¿ 1, the first
term in (1.92) can be neglected.

The theoretical asymptotes (1.95) and (1.96), along with the results of nu-
merical calculations for 〈I〉 for different values of λ, are illustrated in Fig. 1.11
(see the figure caption for details).

Whereas 〈I〉 is defined by p(r), one needs a higher-order correlation function
for the calculation of 〈I2〉. Indeed, the definition of 〈I2〉, analogous to (1.89),
contains a four-fold summation, which, after grouping together the terms with
different indices matching each other, turns to

〈I2〉 = N(2N − 1) + 4N(N − 1)2〈exp(iq · rij)〉+
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Theoretical asymptotes for q ¿ 1/Rg

Theoretical asymptotes for q À 1/Rg

Numerical calculations〈I(θ)〉/N2

λ = 10.5l

λ = 50.5l

θ

π0.1π0.01π0.001π

10

1

0.1

0.01

0.001

0.0001

Fig. 1.11 Average intensity of the scattered light as a function of the scattering

angle θ for λ = 10.5l and λ = 50.5l. Calculations were performed for a computer-
generated monodisperse ensemble of 40 random cluster-cluster aggregates consisting of

N = 10, 000 monomers each, similar to the one shown in Fig. 1.1. Non-integer values
of λ/l are chosen to avoid lattice effects. The definition of I is given in Eq. (1.86).

+ N(N − 1)(N2 − 3N + 3)〈exp(iq · rijkl)〉 , (1.97)

where rijkl = rij − rkl, i 6= j, k 6= l and any of the pair of indices (i, j) can
coincide with any of the pair (k, l). It is easy to show that 〈exp(iq · rijkl)〉
is expressed through the four-point correlation function, p4(r), which was
introduced in Sec. 1.2 (see also Fig. 1.3), exactly in the same form as in
Eq. (1.94) with rij being replaced by rijkl and p by p4.

We now turn to the numerical results for fluctuations which are presented
in Fig. 1.12. In this calculation, we allowed θ to change from 0 to 2π, so that
that the “observer” makes a whole revolution from the “forward” direction of
scattering to the “backward” direction and back to “forward”. In the usual
spherical system of coordinates, this corresponds to θ varying from 0 to π,
then changing φ to −φ and varying θ back from π to 0. Note that, for a finite
ensemble of random clusters, the result is not necessarily symmetrical with
respect to the point θ = π. However, it must be symmetrical for an infinite
ensemble of spherically symmetrical (on average) clusters; this follows from
the fact that neither σI nor 〈I〉 can depend on φ in this case.
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λ = 100.5l
λ = 50.5l
λ = 20.5l
λ = 10.5l

σI(θ)/〈I(θ)〉

θ

1

2π3π/2ππ/20

Fig. 1.12 Relative fluctuations σI(θ)/〈I(θ)〉 for different wavelengths as func-
tions of the scattering angle θ. For each curve, the horizontal line corresponds to
the level σI/〈I〉 = 1; the distance between the nearest horizontal lines is 1; and
σI(0)/〈I(0)〉 = σI(2π)/〈I(2π)〉 = 0. Calculations are performed for the same en-
semble of computer-generated clusters as in Fig. 1.11. Note that θ is allowed to change
from 0 to 2π (unlike the usual spherical system of coordinates where 0 ≤ θ ≤ π),
so that the “observer” makes a complete revolution from the “forward’ direction of

scattering to the “backward” direction and back to “forward”.
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First, we consider the domains of θ where the asymptote (1.95) is valid.
The characteristic values of θc (defined from the condition q(θc) = R−1

g ) are
5.4·10−3π for λ = 10.5l, 1.0·10−2π for λ = 20.5l, 2.6·10−2π for λ = 50.5l, and
0.16π for λ = 100.5l. One can easily see that the value of σI/〈I〉 fluctuates
near unity if θc ¿ θ ¿ 2π−θc.5 It should be noted that for a finite ensemble,
σI/〈I〉 is a random quantity itself. Since there is no noticeable systematic
dependence on θ in the domain defined above, we can perform additional
averaging of σI/〈I〉 over θ, The results for this averaging are (up to the third
significant figure): 0.98 for λ = 10.5l, 1.00 for λ = 20.5l, 0.96 for λ = 50.5l,
and 1.01 for λ = 100.5l.

The numerical data suggest that the value of the relative fluctuations of
the intensity of light scattered by cluster-cluster aggregates is very close to
unity and statistically independent of the scattering angle θ, as long as θ lies
in the domain defined above. This is true for a wide range of wavelengths λ.
However, for very large λ, the domain of θ shrinks and becomes essentially
empty when λ = 4πRg.

1.5.3 Polydisperse clusters

Now we consider a polydisperse ensemble of clusters, i.e., an ensemble con-
taining clusters with different N ’s. We first look at the case of large q, when
the condition q À R−1

g is fulfilled for almost every cluster in the ensemble.
We can calculate 〈I〉 by performing an additional averaging over N in Eq.

(1.92). In the case of large q, this averaging leads to

〈I〉 = 〈N〉
{

1 + aΓ(D − 1) sin[π(D − 1)/2]/(ql)D
}

. (1.98)

It is natural to assume that the intensity scattered by some individual cluster
Ik can be represented as

Ik = NkJk , (1.99)

where Nk and Jk are statistically independent random variables, and

〈J〉 = 1 + aΓ(D − 1) sin[π(D − 1)/2]/qD . (1.100)

Then ensemble averaging of (1.99) results in (1.98).
For a monodisperse ensemble, Jk coincide with Ik up to some constant,

common for each cluster. Therefore, the relative dispersion of J , σJ/〈J〉,
coincides with the relative dispersion of I in a monodisperse ensemble.

Further, we can use (1.99) to calculate the relative dispersion of scattered
intensity in a polydisperse ensemble in terms of that in a monodisperse en-
semble and the dispersion of the random variable N . Straightforward algebra
yields

5As can be seen from Figs. 1.11 and 1.12, there is no need for strong inequalities here.



xlii SOME THEORETICAL AND NUMERICAL APPROACHES...

σI
〈I〉 =

σJ
〈J〉

√

σ2
N

〈N〉2
(

1 +
〈J〉2
σ2
J

)

+ 1 . (1.101)

From the numerical results of the previous subsection, we know that σJ/〈J〉
is very close to unity. Substituting this value into (1.101), we obtain

σI
〈I〉 =

√

2
σ2
N

〈N〉2 + 1 . (1.102)

It follows from formula (1.102) that σI/〈I〉 is always close to unity, even
for very polydisperse ensembles. The value of σN/〈N〉 can not be much larger
than 1 for any physically reasonable distribution of N . For example, if N is
uniformly distributed from 0 to Nmax, this value is equal to 1/

√
3. If the

distribution has two sharp peaks of equal height near N1 and N2, it is equal
to |N1 −N2|/(N1 +N2).

In order to verify Eq. (1.101), we calculated σI/〈I〉 for a polydisperse en-
semble of 100 clusters. The number of particles in a particular cluster was
found from the Gaussian probability distribution with the average 〈N〉 = 5000
and the dispersion6 σN =

√

〈N2〉 − 〈N〉2 = 2000. The ratio σN/〈N〉 for this
ensemble is approximately equal to 0.37. The calculations were done for two
different values of λ. After additional averaging over angles (as described in
the previous subsection), the results obtained are as follows: σI/〈I〉 = 1.109
for λ = 10.5, and σI/〈I〉 = 1.087 for λ = 20.5. The results following from the
theoretical formula (1.101) and the corresponding results for a monodisperse
ensemble (σJ/〈J〉) are 1.109 and 1.120, respectively. As we see, the results
match closely. For the case of λ = 10.5, the difference is only in the fifth
figure.

1.5.4 Fluctuations of light scattered by trivial (non-fractal)
clusters

It is interesting to compare the fluctuations of light scattered by fractal and
by trivial (D = 3) clusters. In this subsection we discuss fluctuations in
light intensity scattered from such systems, restricting consideration to only
monodisperse ensembles.

To model random non-fractal clusters, we use the algorithm of randomly
close-packed hard spheres. In this algorithm, one chooses first a volume to
be occupied by a cluster. In our simulations it is a sphere of radius Rs (“s”
standing for “sphere”), since we intended to build clusters that are spherically
symmetrical. Then, monomers are randomly placed inside the volume. At

6These parameters characterize the probability distribution according to which the values
of N were picked for each cluster. The actual parameters of the ensemble were slightly
different: 〈N〉 = 5343, σN = 1953.
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each step, the intersection condition is checked: if the newly placed monomer
approaches any of the previously placed ones closer than the distance l, this
step is rejected and the next random position is tried. In this way, each
monomer can be thought of as a hard sphere of radius l/2. The procedure
stops when a large number of tries is consequently rejected. In our simulations
this number was chosen to be 2 · 107. This algorithm allows one to achieve
a fairly dense packaging. We have consequently packed in a spherical vol-
ume with radius Rs = 14.2l forty different clusters with an average of 9, 200
monomers per cluster. The volume fraction occupied by the particles was
≈ 0.40. For comparison, it is ≈ 0.52 in the case of a simple cubic lattice and
can be even lower for some other types of lattices. The minimum distance
from a given monomer to its nearest neighbor was very close to l; the maxi-
mum distance varied from 1.2l to 1.3l. Although this ensemble of clusters was
not completely monodisperse, the variation of N was very small: the ratio of
the standard deviation of N and the mean was equal to 2.4 · 10−3.

The results of numerical simulations of σI/〈I〉 for the ensemble of 40 clus-
ters described above are shown in Fig. 1.13a. As in the previous subsection,
the scattering angle θ varies from 0 to 2π. First, we notice the strong and
systematic dependence of σI/〈I〉 on θ. (For fractal clusters, this dependence
looks like statistical noise (cf. Fig. 1.12)). Second, for most angles the value
of σI/〈I〉 is significantly less than 1 and decreases when λ grows. This depen-
dence on λ is anticipated, because if there are many monomers in the volume
λ3, a cluster becomes optically similar to a dielectric sphere, and its random
structure is of no importance. But this is not the case for fractal clusters;
they are geometrically different and random on all scales up to the maximum
scale Rg. As seen from Fig. 1.12, σI/〈I〉 for fractal clusters is on the order of
1, even for λ = 100.5l. But for non-fractal clusters σI/〈I〉 is much smaller, on
the order of 10−2 for λ = 50.5l.

The second feature of Fig. 1.13a is the presence of sharp maxima in σI/〈I〉,
where it becomes on the order of 1. These maxima occur for the angles θ at
which 〈I(θ)〉 has minima (see Fig. 1.13b).

The problem of fluctuations can be solved exactly for spherically sym-
metrical random clusters, provided the positions of monomers in clusters are
absolutely uncorrelated. This is not the case for the close-packed clusters dis-
cussed above, because in this model monomers can not approach each other
closer than l, which brings about short-range correlations. It is clear that
the model of totally uncorrelated clusters (random gas) is not exact since
the monomers act like hard spheres during aggregation. However, theoreti-
cal results for uncorrelated clusters help explain the main features shown in
Fig. 1.13.

Consider a “random gas” of uncorrelated particles inside a spherical volume
of radius Rs. The ensemble-average quantities 〈exp(iq · ri)〉, 〈exp(iq · rij)〉,
and 〈exp(iq · rijkl)〉 can be obtained from straightforward integration and are
as follows:
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Fig. 1.13 (a): Relative fluctuations σI(θ)/〈I(θ)〉 for random close-packed non-

fractal clusters (D = 3) packed in a sphere of the radius Rs = 14.2l, for different
wavelengths. (b): Relative fluctuations, σI(θ)/〈I(θ)〉, compared to the average scat-
tered intensity 〈I〉 for the same ensemble of clusters and λ = 10.5l.

〈exp(iq · ri)〉 = ϕ(qRs) ≡
3

(qRs)3
[sin(qRs)− qRs cos(qRs)] , (1.103)

〈exp(iq · rij)〉 = ϕ2(qRs) , (1.104)

〈exp(iq · rijkl)〉 = ϕ4(qRs) . (1.105)

The values of 〈I〉 and 〈I2〉 can be found according to (1.92) and (1.97), with
the use of (1.103)-(1.105). The expression for 〈I〉 is

〈I〉 = N +N(N − 1)ϕ2(qRs), (1.106)

and the expression for σI/〈I〉 is (in the limit of large N)

σI
〈I〉 =

√

1− 4ϕ2 + 3ϕ4 + 2ϕ2(1− ϕ2)N

1 + ϕ2N
. (1.107)

If ϕ(qRs) turns to zero for some value of q, this means that σI/〈I〉 has a
maximum and is on the order of 1 for this q. At the same time, the average
scattered intensity (1.106) has a minimum.

The function ϕ(x) becomes exactly to zero if x is a solution to tan(x) = x.
The first root of this equation is x ≈ 1.43π. The corresponding scattering
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angle is defined by cos θ = 1−0.26(λ/Rs)
2. This equation has a solution only

if λ < 2.8Rs. In Fig. 1.13 we have sharp maxima in σI/〈I〉 for λ = 10.5l
and λ = 20.5l, but there are no sharp maxima for λ = 50.5l. For the clusters
considered, Rs = 14.2l, and the critical value of λ is 39.7l. We see that λ = 50l
exceeds the critical value and, therefore, the corresponding curve in Fig. 1.13
has no sharp maxima.

Now we analyze the expression (1.107) in more detail. First, when N →∞,
this expression assumes the form

σI
〈I〉 =

√

2(1/ϕ2 − 1)

N
. (1.108)

As one would expect, the relative fluctuations are proportional to 1/
√
N . To

obtain (1.108), we took the limit Nϕ2 À 1. This condition can be expressed
in terms of the density ν of monomers in clusters (where N = 4πR3

sν/3). By
using (1.103), we find that, in order to obtain (1.108), the following inequalities
must hold:

ν À 1

12π
q3, if qRs ∼ 1 , (1.109)

ν À (qRs)

12π
q3, if qRs À 1 . (1.110)

The condition is always fulfilled if qRs ¿ 1, since ϕ(0) = 1. Note that in
order to derive (1.109) and (1.110), we assumed that tan(qRs) 6= qRs and
sin(qRs), cos(qRs) ∼ 1. As discussed above, if tan(qRs) = qRs, ϕ(qRs) turns
exactly to zero, the condition Nϕ2 À 1 cannot be fulfilled.

The above inequalities show that in order to observe the 1/
√
N dependence

for the fluctuations, one needs to have many monomers in the volume q−3.
This condition depends on the value of qRs and is stronger when qRs À
1. We emphasize that for fractal clusters we can never obtain the 1/

√
N

dependence for relative fluctuations (see, for example, the curve in Fig. 1.12
for λ = 100.5l). The reason is that the fractal clusters are disordered on all
scales up to the maximum scale Rg, whereas trivial random clusters become
homogeneous on scales larger than 1/ 3

√
ν.

Now we turn our attention to the nature of the sharp maxima in σI/〈I〉
which are seen in Fig. 1.13a. As mentioned above, these maxima coincide
with the diffraction minima of the average scattered intensity. The diffraction
minima occur because within the first Born approximation, and for certain
scattering angles, the EM fields produced by monomers in a cluster almost
exactly cancel each other due to destructive interference. As a result, the
scattered field for these scattering angles is produced, in fact, by a very few
monomers, rather than by the whole cluster. This results in the strong relative
fluctuations.
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1.6 ABSORPTION OF LIGHT BY SMOKE CLUSTERS
PLACED IN A WATER DROPLET

Soot clusters often form agglomerates with water microdroplets, especially
in the clouds [59, 60, 61, 62, 63]. Naturally, this might be expected to lead
to dramatic changes in the optical characteristics. In this section we obtain
qualitative results concerning the absorption cross section of such composite
microdroplets in the first Born approximation, with an account of the fractal
morphology of carbon soot clusters. Our consideration includes the non-
fractal homogeneous distribution of carbon inclusions as a limiting case. A
more detailed account can be found in Ref. [64].

The theoretical treatment in this section is somewhat different from the rest
of the chapter. The small parameter of the perturbation expansion will be
not χ, as above, but the volume fraction of carbon soot inside a water droplet.
The microdroplet radius will be denoted by Rd (“d” standing for “droplet”),
and its volume by vd = (4π/3)R3

d, so that the small parameter of the expan-
sion is vtot/vd, with vtot still being the total volume of carbon inclusions. It
is not assumed, however, that the carbon inclusions in a microdroplet form
one self-supporting cluster, or are built from spherical monomers. The only
important quantity entering the calculations will be the average density of in-
clusions, 〈ρ(r)〉, where the averaging is performed over an ensemble of droplets
of the same radius with random carbon inclusions inside. Correspondingly,
the results obtained below are of statistical a nature.

1.6.1 Introductory remarks and review

When soot particles are placed inside a water droplet, they are no longer
exited by a plane wave, but rather by internal modes of a high-quality optical
resonator. To complicate things further, the resonator modes can effectively
couple to the modes of clusters the themselves.

There have been a considerable number of experimental [65, 66, 67, 68,
69, 70] and theoretical [51, 71, 72, 73, 74, 75, 76, 77, 78] studies of scattering
and absorbing properties of inhomogeneous spheres. The simplest model for a
water droplet with an inclusion inside is a spherical dielectric particle with an
eccentric spherical inclusion. An exact formal solution to the problem of light
scattering and absorption by such composite spheres was obtained by Borgh-
ese et al. [72] and generalized for the case of multiple arbitrarily positioned
spherical inclusions by Borghese et al. [75] and Fuller [51, 52, 76, 79]. The
solutions were obtained by the vector spherical harmonic (VSH) expansion of
electrical fields inside the homogeneous spherical regions and satisfying the
boundary conditions at all the discontinuity surfaces. Even in the case of
one spherical inclusion, the solution must be obtained from an infinite-order
system of linear equations. As discussed in Sec. 1.4.3, the VSH expansion is
truncated at some maximum order L, and the system contains ∼ L2 equa-
tions [72]. When multiple inclusions are considered, the number of equations
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is further increased, which makes the problem very complicated numerically.
Also, the approach based on the consideration of the exact boundary condi-
tions requires a knowledge of the exact geometry of the problem before the
time-extensive calculations. This fact complicates the averaging of solutions
over a random distribution of inclusions inside water droplets.

An alternative approach based on perturbation theory was developed by
Kerker et al. [71] and Hill et al. [77]. According to their method, the dielectric
function of an inhomogeneous sphere is represented as a sum of a constant
(unperturbed) value and a small coordinate-dependent perturbation. In the
zeroth-order approximation, the field inside the droplet is calculated within
the assumption that the perturbation of the dielectric function is equal to
zero. This field is given by the Mie expansion in terms of the VSH. In the
next iteration, the field in the zeroth-order approximation induces some addi-
tional polarization (or, equivalently, current) in the volume, proportional to
the perturbation of the dielectric function. This additional polarization can
be used to calculate changes of scattering and absorbing characteristics of the
inhomogeneous sphere as compared to the homogeneous (unperturbed) one.
A big advantage of this method is that it allows one to perform averaging
over random perturbations. However, it has a drawback. As was pointed out
by Hill et al. [77], the internal field must be computed iteratively. That is,
the additional polarization calculated in the first iteration described above
should produce some additional internal electrical field, which, in turn, gives
rise to additional polarization (now proportional to the unperturbed dielec-
tric function), and so on. Physically, this means that the modes of a spherical
resonator are coupled to the modes of the perturbation of the dielectric func-
tion. In order for a finite-order approximation to be accurate, it is necessary
that the perturbation expansion of any physical quantity under consideration
converges. In the next subsection we show that, in general, this is not the
case. More specifically, this expansion always diverges for physical quantities
related to scattering (such as the differential scattering cross section). How-
ever, the perturbation expansion converges for the absorption cross section
when the imaginary part of the unperturbed dielectric function is zero (or
sufficiently small).

We will use the above fact to calculate absorption cross sections of car-
bon smoke particles inside spherical water droplets in the first order of the
perturbation theory. The perturbation expansion is mathematically similar
to that of Kerker et al. [71] and Hill et al. [77]. The water itself is assumed
to be non-absorbing. We perform calculations for a fractal distribution of
carbon inclusions with a power-law dependence of the density on the distance
from the center of a water droplet; the case of trivial (non-fractal) geometry
is considered as a limiting case when D = 3.

The approach developed below applies to any spherical highly transparent
microcavities doped with strongly absorbing inclusions with the fractal di-
mension from 1 to 3, not just to carbon soot inside water droplets. However,
the numerical results are strongly dependent on the refractive index of the
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host. The difference between microdroplets with the refractive index of water
(∼ 1.33) and of sulfate (∼ 1.52) was demonstrated by Fuller [52, 79].

1.6.2 Formulation of the model

Consider a plane monochromatic wave of the form (1.7) incident on a spheri-
cal water droplet of a radius Rd containing a carbon soot cluster inside. The
physical system under consideration can be characterized by a dielectric func-
tion of the form

ε(r) =
{

ε1 + (ε2 − ε1)ρ(r) , r ≤ Rd
1, r > Rd . (1.111)

Here ε1 and ε2 are the dielectric constants of water and carbon, respectively,
and ρ(r) is the density of carbon inclusions inside the droplet, normalized by
the condition

∫

Vd

ρ(r)d3r = vtot , (1.112)

where vtot is the total volume occupied by carbon and
∫

Vd
denotes integration

over the spatial area defined by r ≤ Rd (
∫

Vd
d3r = vd). We assume that the

volume fraction of carbon is small, so that the small parameter of the problem
is vtot/vd. We also assume that ρ(r) = 0 for r > Rd, i.e., the soot cluster is
completely covered by water.

In our notations, ρ(r) denotes the exact density of carbon inclusions for
some given random realization of a soot cluster. As such, ρ(r) = 1 if the radius
vector r lies in the area occupied by carbon, and ρ(r) = 0 otherwise. We will
see that for a calculation of some average physical characteristics, such as
absorption, one needs to average ρ(r) over random realizations of carbon soot
clusters. We denote the average density by 〈ρ(r)〉; it can be interpreted as the
probability to find some given point r inside a droplet occupied by carbon.
If 〈ρ(r)〉 is bound everywhere inside the sphere, the condition vtot/vd ¿ 1
implies that 〈ρ(r)〉 ¿ 1 ∀ r.

The integral equation for the electric field E(r) analogous to (1.5) has the
form

E(r) = Einc(r) +

∫

Vd

ĜR(r− r′)
ε(r′)− 1

4π
E(r′)d3r′ . (1.113)

The difference from (1.5) is that the coupling constant is now coordinate-
dependent and can not be moved out of the integral. Therefore, it is more
convenient to write it explicitly as a function of ε(r′). Note also that the
equation is written for the electric field rather than for polarization P(r) =
[(ε(r)− 1)/4π]E(r).

At the next step, we represent the electrical field inside the sphere as a sum
of two contributions:
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E(r) = Es(r) + Ec(r) , (1.114)

where Es(r) is the solution to Eq. (1.113) with ε2 = ε1, i.e.,

Es(r) = Einc(r) +
ε1 − 1

4π

∫

Vd

Ĝ(r− r′)Es(r
′)d3r′ , (1.115)

and Ec(r) is the additional term which appears because of the presence of
a carbon cluster. Es(r) is given by the Mie solution for a dielectric sphere
and we assume that it is known. Substituting E(r) in the form (1.114) into
(1.113), we find the equation for Ec(r):

Ec(r) =
ε2 − ε1
4π

∫

Vd

ρ(r′)Ĝ(r− r′)Es(r
′)d3r′ +

+

∫

Vd

ε1 − 1 + (ε2 − ε1)ρ(r′)
4π

Ĝ(r− r′)Ec(r
′)d3r′ . (1.116)

The first term in (1.116) with the known function Es(r) serves as a free term
for the integral equation (1.116).

For many practical problems, a knowledge of the ensemble-averaged inter-
nal field is sufficient. (Evidently, this class of problems does not include the
problems of nonlinear optics that require consideration of fluctuations of the
local field.) We cannot perform direct averaging of Eq. (1.116) over random
realizations of inclusions, because such averaging would add an additional
unknown term 〈ρ(r)Ec(r)〉. In the general case, we cannot factorize this cor-
relator as 〈ρ(r)Ec(r)〉 = 〈ρ(r)〉〈Ec(r)〉. However, in the linear (in vtot/vd)
approximation we can neglect the above term as a higher-order correction.
Then it becomes possible to write an equation for the ensemble-average value
〈Ec(r)〉:

〈Ec(r)〉 =
ε2 − ε1
4π

∫

Vd

〈ρ(r′)〉Ĝ(r− r′)Es(r
′)d3r′ +

ε1 − 1

4π

∫

Vd

Ĝ(r− r′)〈Ec(r
′)〉d3r′ . (1.117)

We can make two important conclusions from the general form of (1.117).
First, the ratio of |〈Ec〉|/|Es| is of the same order of magnitude as vtot/vd.
This can be seen by multiplying 〈ρ(r′)〉 in (1.117) by some arbitrary constant
α. The average field 〈Ec(r)〉 is also multiplied by the same factor α. This
means that |〈Ec(r)〉|/|Es(r)| ∼ 〈ρ(r)〉 ∼ vtot/vd. A similar result is readily
obtained for the exact field Ec(r) (before the averaging).

Second, it is generally impossible to apply the Born expansion or similar
perturbation expansion to a calculation of 〈Ec(r)〉. Indeed, both terms on the
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r.h.s. of (1.117) are of the same order of magnitude (proportional to vtot/vd).

Suppose, we start from the zeroth-order approximation 〈E(0)
c (r)〉 = 0, and

substitute it into (1.117) to obtain the first-order approximation, and so on.
It is easy to see that all the terms in the generated expansion will be of the
same order of magnitude, and thus convergence cannot be reached.

The above fact makes the general scattering problem for a water droplet
containing a cluster inside very complicated. Indeed, the only small parameter
of the problem, vtot/vd, cannot be used to generate a converging expansion for
Ec(r). However, as we show below, we can use the fact that |Ec(r)|/|Es(r)| ∼
vtot/vd to calculate the absorption cross section when water itself is weakly
absorbing.

The formula for the absorption cross section in terms of the polarization
function can be obtained from the optical theorem and direct integration of the
scattering amplitude [34, 35], and is analogous to (1.20), except the dielectric
function ε(r) now is not constant inside the integration volume:

σa =
16π2k

|E0|2
∫

Vd

Imε(r)

|ε(r)− 1|2 |P(r)|2 d3r =
k

|E0|2
∫

Vd

Im[ε(r)] |E(r)|2 d3r .

(1.118)
Using the formulas (1.111) for ε(r) and (1.114) for E(r), we can rewrite the
above expression for the absorption cross section as

σa =
kImε1
|E0|2

∫

Vd

|Es(r)|2 d3r +
kIm(ε2 − ε1)
|E0|2

∫

Vd

ρ(r) |Es(r)|2 d3r +

kImε1
|E0|2

∫

Vd

{

2Re [Es(r) ·E∗
c(r)] + |Ec(r)|2

}

d3r +

kIm(ε2 − ε1)
|E0|2

∫

Vd

ρ(r)
{

2Re [Es(r) ·E∗
c(r)] + |Ec(r)|2

}

d3r . (1.119)

Now we analyze the terms on the r.h.s. of (1.119). The first term gives the
absorption cross section by a water droplet without inclusions. It is given by
the well-known Mie solution and, consequently, is of no interest for us. Taking
into account that 〈ρ(r)〉 ∼ |Ec|/|Es| ∼ vtot/vd, we find that the second and
the third terms are of the same order of magnitude and give the first-order
correction to the absorption cross sections. Finally, the fourth term is of the
order of (vtot/vd)

2, and can be neglected in the first approximation.
Even in the first approximation, the expression for the absorption cross sec-

tion contains the unknown field Ec(r) in the third term of (1.119). However,
for the particular case of carbon and water, Imε2 À Imε1. This additional
factor allows one to neglect the third term in the expansion (1.119). In prin-
ciple, the first term can be still large or comparable to the second one due to
the large factor vd/vtot, but this fact does not complicate further derivations.
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Finally, we can represent the absorption cross section as σa = σa,water +
σa,carbon where σa,water is given by the first term in (1.119), and

σa,carbon =
kImε2
|E0|2

∫

Vd

ρ(r) |Es(r)|2 d3r . (1.120)

The above formula gives the absorption cross section associated with carbon
inclusions in the first order in vtot/vd; the higher corrections are of the order
of (vtot/vd)

2. In the ideal case of Imε1 = 0, this formula gives the total
absorption of a composite droplet. Below, we will assume for simplicity that
ε1 is a real number.

Since ρ and Es are statistically independent, we can perform direct aver-
aging of (1.120) over random realizations of carbon soot inclusions:

〈σa,carbon〉 =
kImε2
|E0|2

∫

Vd

〈ρ(r)〉 |Es(r)|2 d3r . (1.121)

Note that in the above averaging the radius of a water droplet is fixed.

1.6.3 Enhancement factor

We define the enhancement factorG as the ratio of the absorption cross section
of a carbon soot cluster in a water microdroplet, defined by (1.121) to that in
vacuum:

G =
〈σa,carbon〉
〈σ(0)

a,carbon〉
, (1.122)

where 〈σ(0)
a,carbon〉 is the average absorption cross section of carbon soot in

vacuum. The latter can be easily calculated using Eq. (1.118) and replacing
E(r) by Einc(r). Taking into account that |Einc(r)|2 = |E0|2 and ε(r) =

1+ (ε2 − 1)ρ(r) for carbon soot in vacuum, we find that 〈σ(0)
a,carbon〉 = kvImε2

and

G =
1

vtot|E0|2
∫

Vd

〈ρ(r)〉 |Es(r)|2 d3r . (1.123)

The average density of carbon inclusions 〈ρ(r)〉 must be spherically sym-
metrical: 〈ρ(r)〉 = 〈ρ(r)〉. Therefore, the angular integration in (1.123) can
be done in the most general form, without specifying 〈ρ〉:

G =
1

vtot|E0|2
∫ Rd

0

r2〈ρ(r)〉dr
∫

|Es(r)|2 dΩ . (1.124)

The internal field Es is given by the expansion in terms of the VSH’s,
Momn, Memn, Nomn and Nemn (for a detailed description of the VSH ex-
pansion, see Ref. [80] ). For a plane incident wave, only the VSH’s with m = 1
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are left in this expansion. Further, if the incident wave is polarized along the
x-axis, Me1n and No1n are not excited.

For linear absorption, it is sufficient to consider a linear polarization of the
incident wave. An elliptical polarization can be described as a superposition
of two linearly polarized waves; the absorbed power due to these two waves is
added arithmetically because of the linear nature of the interaction. Below,
we will adopt the linear polarization of the incident wave along the x-axis
(E0 = exE0), and will use the following simplified notations for the VSH’s
that can be excited in this particular case: Mn ≡ Mo1n and Nn ≡ Ne1n.
Then the expansion for the Es field takes the form

Es =

∞
∑

n=1

in
E0(2n+ 1)

n(n+ 1)
(cnMn − idnNn) . (1.125)

Here cn and dn are the internal field coefficients [80] defined by

cn =
jn(x)

[

xh
(1)
n (x)

]′

− h(1)
n (x) [xjn(x)]

′

jn(x1)
[

xh
(1)
n (x)

]′

− h(1)
n (x) [x1jn(x1)]

′
; (1.126)

dn =
jn(x)

[

xh
(1)
n (x)

]′

− h(1)
n (x) [xjn(x)]

′

(x1/x)jn(x1)
[

xh
(1)
n (x)

]′

− (x/x1)h
(1)
n (x) [x1jn(x1)]

′
; (1.127)

x = kRd ; x1 = k1Rd ; k1 =
√
ε1k , (1.128)

where jn(x) and h
(1)(x) are the spherical Bessel and Hankel functions of the

first kind, respectively, and the prime denotes differentiation with respect to
the argument in parenthesis.

Taking into account the mutual orthogonality of the VSH’s, the angular
integral in (1.124) can be written as

∫

|Es(r)|2 dΩ =
∞
∑

n=1

|E0|2(2n+ 1)2

n2(n+ 1)2

[

|cn|2
∫

M2
ndΩ+ |dn|2

∫

N2
ndΩ

]

.

(1.129)
Note that for a purely real dielectric constant ε1 the VSH’s are also real; this
is why |Mn|2 and |Nn|2 were replaced by M2

n and N2
n in (1.129).

Integration according to (1.129) can be performed directly using the nor-
malization formulas for the VSH’s (the details omitted), and the result is

∫

|Es(r)|2 dΩ = 2π|E0|2
∞
∑

n=1

(2n+ 1) ×
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{

|cn|2j2n(k1r) + |dn|2
[

n(n+ 1)

(

jn(k1r)

k1r

)2

+

(

jn(k1r)

k1r
+ j′n(k1r)

)2
]}

.

(1.130)

Further calculations require specifying the form of 〈ρ(r)〉. Below, we con-
sider two cases: fractal distribution of the inclusion density and homogeneous
distribution.

An important question is how the carbon inclusions are located inside the
microdroplets. This can be influenced by many factors such as the chemical
composition of soot particles, surface tension forces, temperature, etc. The
formation of agglomerates of soot clusters and water can change the geometri-
cal properties of the clusters due to the action of surface tension forces [81, 82].
The average density of inclusions must be spherically symmetrical if there is no
distinguished direction in space. We also assume that, in accordance with the
fractal density distribution, it obeys a power law with the scaling parameter
D according to

〈ρ(r)〉 = vtotD

4πRD
d

rD−3 if r < Rd . (1.131)

Here the radius of the microdroplet, Rd, serves as the cutoff, and the density
function (1.131) satisfies the normalization (1.112).

Note that, according to its physical meaning as the probability to find a
spot at the distance r from the droplet center occupied by carbon, 〈ρ(r)〉
cannot be greater than unity. In fact, the perturbation expansion used above
relies on the assumption that 〈ρ(r)〉 ¿ 1. The formula (1.131) may seem to
contradict this assumption when r → 0. However, the divergence of 〈ρ(r)〉
at small r is not significant since all the physically important radial integrals
converge fast enough in this limit (see below); thus the actual value of 〈ρ(0)〉
is not important. The small parameter of the perturbation expansion, vtot, is
obviously present in the definition (1.131).

The case D = 1 corresponds to inclusions in the form of long linear sticks,
while D = 3 corresponds to a homogeneous distribution of inclusions. If
D = 3 (trivial geometry), the problem becomes mathematically equivalent to
the Mie problem for a homogeneous dielectric sphere with some effective di-
electric constant εeff . A non-perturbative analytic solution can be obtained
in this case. However, this method has certain difficulties. First, the form
of εeff is not obvious. For carbon inclusions of spherical shape and small
concentration, one can use εeff = ε1 +(3vtot/vd)(ε2− ε1)/(ε2 +2ε1) [83]. But
this formula is not applicable when the inclusions are not of spherical shape
or form clusters of touching particles. An approach based on determining the
effective dielectric function was used by Chowdhury et al. [74, 78] who sug-
gested averaging of the ε with the weight that includes the local intensity of
the unperturbed electric field inside the sphere. Chowdhury et al. define two
different averaged dielectric constants, one of which is used for computation
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of the internal (or external) field coefficients and the other for the effective
absorption (or gain). This method is somewhat similar to the perturbative
approach used here in that it uses the unperturbed electric field to compute
the effective ε. Different effective medium approximations were also used by
Videen and Chylek [84]. The second difficulty is that the extinction and scat-
tering cross sections in the analytical Mie solution are expressed as infinite
series involving the scattering coefficient an, cn; the absorption cross section
must be calculated as the difference between these two values. When the ab-
sorption is small, such a calculation involves a numerical procedure of finding
a small difference between two large numbers, and the round-off errors be-
come very significant. Instead of finding an analytical solution based on some
definition of εeff , we will use the perturbative approach developed above for
the D = 3 case. This approach is also valid for D < 3 (fractal geometry),
when an analytical solution can not be obtained, thus allowing us to maintain
self-consistency of the results.

1.6.4 Numerical results

By using the average density function (1.131) and the result of the angular
integration of |Es(r)|2 (1.130), one can express the absorption enhancement
factor (1.124) in terms of simple radial integrals involving spherical Bessel
functions. Inserting the expressions (1.130),(1.131) into (1.124) and taking
the integrals containing derivatives of the spherical Bessel functions by parts,
we arrive, after some rearrangement of terms, at the following result:

G =
D

2(k1Rd)D

∞
∑

n=1

(2n+ 1)

{

|cn|2In(1) + |dn|2
[

5−D
2

xD−2
1 j2n(x1) +

xD−1
1 j′n(x1)jn(x1) + In(1) +

(4−D)(3−D)

2
In(3)

]}

, (1.132)

In(α) =

∫ x1

0

xD−αj2n(x)dx . (1.133)

The integrals In(α) converge for all physically interesting values of the pa-
rameters and must be evaluated numerically, except in the trivial case D = 3.

As was pointed out by Bohren and Huffmen [80], the diffraction parameter
x = kRd (or x1 =

√
εx) cannot be, in general, viewed as the only independent

variable of the problem, although it may seem so from the mathematical
form of Eqs. (1.123) and (1.132). Indeed, when ε1 depends on λ, x1/x 6=
const. Instead, there are two physically independent parameters that define
completely solution to the scattering problem: Rd and λ. However, when ε1
does not depend on λ, x1/x = ε1 = const, and the diffraction parameter x
becomes the only independent variable. In this case, we do not need to know
whether x changes due to a change in Rd or in λ.
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For the particular case of water, the assumption x1/x = const is a good
approximation in the spectral range from 0.3µm to 2.0µm [85]. We have set√
ε1 = 1.33 = const which allowed us to perform numerical calculation of the

enhancement factor G as a function of one independent variable, x = kRd.
We allowed x to change from 0 to 1000. This range of x includes most of the
practical values of Rd and λ. Thus, for λ = 0.4µm, Rd can vary from 0 to
≈ 60µm.

Now we turn to the calculation of the internal field coefficients, cn and dn.
We calculated the Bessel functions and their first derivatives that are used in
the definitions (1.126) and (1.127) of the internal field coefficients, using the
three-point recursion relation [86]. The maximum order n that gives signifi-
cant contribution to the optical cross sections can be roughly estimated [80]
as nmax ≈ x = kRd. The internal field coefficients |cn|2 and |dn|2 decrease
dramatically for n > nmax, as illustrated in Fig. 1.14. In Fig. 1.14a, we plot
the internal field coefficients for

√
ε1 = 1.33 and x = 259.664. The specific

value of x was chosen from the condition that the absorption cross section
has a resonance. In terms of the VSH’s, the resonance occurs for the order
n = 131, when |cn|2 reaches the value of ≈ 3.23 · 107; there is also a large
number of weaker resonances of |cn|2. (Note that |dn|2 has no strong reso-
nances.) Since the total number of VSH’s that contribute to the absorption
is of the order of 300, and |c131|2 is more than 5 orders of magnitude larger
than the average background, we can conclude that the resonant VSH gives
the prevailing input to the optical cross sections. For comparison, we plot in
Fig. 1.14b the internal field coefficients for the same refraction index, but for
an off-resonant value of x = 260.400. Both pictures look very similar, apart
from the resonance order n = 131 in Fig. 1.14a.

The numerical results for the absorption enhancement factor G(x) are
shown in Fig. 1.15 for D = 1.1 (Fig. 1.15a) and D = 3.0 (Fig. 1.15b). As can
be seen in Fig. 1.15, G(x) has a large number of quasi-random morphology-
dependent resonances (due to the presence of resonances in the internal field
coefficients illustrated in Fig. 1.14), but only a very slight systematic depen-
dence of G(x) on x can be seen in the interval 10 < x < 1000. The slight
systematic increase of G(x) can be attributed to an increase in the average
resonance quality with the size parameter x. It can be also seen from a com-
parison of Figs. 1.15a and 1.15b that the enhancement factor is larger, on
average, for D = 1.1 than for D = 3.0.

In a polydisperse ensemble of microdroplets with size parameters in the
wide range 10 < x < 1000 the individual resonances are smoothed out and the
average absorption enhancement factor, 〈G〉, which is practically important,
is given by the averaging of G(x) over x. We performed such averaging in
the interval of x specified above for different D (1 ≤ D ≤ 3) and the results
are shown in Fig. 1.16. The averaging was performed with the step size in x
equal to 0.1. This step size was small enough so that most resonances were
visually resolved. Averaging with a larger resolution resulted in a smaller value
of 〈G〉 because the resonances in G(x) are very narrow. It is important to
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Fig. 1.14 Internal field coefficients, |cn|2 and |dn|2, as functions of the VSH order,
n. (a): x = 259.664 (resonance order n = 131); (b): x = 260.400 (no pronounced
resonances).
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Fig. 1.15 Absorption enhancement factor G as a function of the diffraction param-
eter x = kRd for D = 1.1 (a) and D = 3.0 (b).
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Fig. 1.16 Average absorption enhancement factor 〈G〉 as a function of the fractal
dimension, D.

emphasize the significance of the averaging process. For a randomly chosen
x, G(x) is, with a large probability, smaller than 〈G〉 by a factor of 4 or
5. Thus the resonances of G(x) play an important role and should not be
ignored. It should be noted that the averaging was performed in the region of
10 < x < 1000 where there is no pronounced systematic dependence of G(x)
on x. For x < 10, the averaged G is considerably smaller.

As can be seen in Fig. 1.16, 〈G〉 is maximum for D = 1 and decreases
towards D = 3. For the practically important value D = 1.8, 〈G〉 ≈ 16, and
the maximum variation of 〈G〉 with D does not exceed ±6. The dependence
of 〈G〉 on D can be explained by an interference between the fractal density
function 〈ρ(r)〉 and the modes of a spherical resonator.

The averaging procedure involved in our calculations might explain why
our estimates of the enhancement factor are significantly larger than those
reported earlier [52, 79, 84, 87]. Fuller calculated the specific absorption cross
section for a single spherical carbon grain located near the surface of a water
droplet [52] and inside the water droplet [79] as a function of the grain’s
position. Although Fuller’s data are not averaged over the whole volume of the
microdroplet, they indicate that the volume-averaged absorption enhancement
factor is smaller than 14. Chylek et al. averaged the same quantity for the
carbon inclusion location distributed evenly within a spherical cone with the
axis collinear to the incident wave propagation direction [87] and over the
whole volume [84]. In the first case the authors estimate the enhancement
factor to be ≈ 4, and in the second ≈ 2. However, all of the above calculations
were performed for a fixed value of the diffraction parameter x. Because the
resonances are very narrow, it is unlikely that a randomly selected value of
x will lie within a resonance. Our calculations indicate that if x is chosen
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exactly in resonance, the volume-averaged enhancement factor can be as large
as 104. Our calculations indicate that the averaged absorption factor is larger
by a factor of ∼ 4 − 5 than that calculated for a randomly selected value of
x. For the trivial distribution of carbon inclusions (D = 3), we obtain the
averaged enhancement factor of 14, while for a randomly selected value of x
the typical (most probable) enhancement factor is from 2 to 4. This suggests
that, although the resonances in x are very narrow, they are not small in the
integral sense, and should be taken into account.

In conclusion, we note that within the framework of the first Born approx-
imation that was used throughout this section, the absorption cross section
of a free carbon soot cluster excited by a plane wave is proportional to the
total volume of carbon and does not depend on the cluster’s geometrical con-
figuration. However, this is not the case when the cluster is excited by the
inhomogeneous modes of a spherical resonator instead of plane waves. In this
case, the absorption is stronger, on average, if the inclusions tend to concen-
trate in the spatial regions where the intensity of local fields is higher.
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