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Two-point density correlation functions are studied numerically in computer-
generated three-dimensional lattice cluster-cluster aggregates with the number of
particles up to 20,000. The “pure” aggregation algorithm is used, where subclus-
ters of all possible sizes are allowed to collide. We find that large cluster-cluster
aggregates demonstrate pronounced multiscaling, i.e., the power-law exponents in
the pair-correlation function p(r) are not constants, but depend on r and the num-
ber of particles in a cluster. In particular, the fractal dimension determined from
the slope of the two-point correlation function at small distances differs from that
found from the dependence of the radius of gyration on the number of monomers
(1.8 and 2.0, respectively, according to our data). We also consider different func-
tional forms of p(r) and their general properties. We find that if the fractal di-
mension for the cluster-cluster aggregates can be defined as a continuous function
D = D(r/Rg), where Rg is the radius of gyration, it must have a maximum at
some value of r/Rg = xm, where D(xm) > 2.

1 Introduction

Computer algorithms play a very important role in understanding aggregation phe-
nomena and physical properties of aggregates. In many instances, computer simula-
tion is the only feasible theoretical approach to very complex stochastic aggregation
processes, when traditional techniques of statistical mechanics cannot be applied due
to strong fluctuations and absence of equilibrium. These algorithms have attracted
much attention since Witten and Sander 14, Meakin 1 and Kolb, Botet and Jullien 2

proposed realistic algorithms which simulate natural aggregation processes to much
detail.

One of the most extensively used applications of computer-generated clusters
is the study of density correlation functions. A direct experimental measurement
of these functions has also been carried out (see, for example, Ref.4), but such
experiments face considerable difficulties. First, it is hard to calculate inter-particle
distances from a two-dimensional electron micrograph images of three-dimensional
clusters 3, and, second, the process of taking the electron micrograph itself can
damage the cluster structure.

Density correlation functions provide important geometrical characteristics of
clusters, carrying valuable physical information. Correlation functions are especially
useful in optics 3,4,5,6,7. The two-point correlation function describes the average
intensity of light scattered by an ensemble of clusters 4, while the four-point corre-
lation function governs fluctuations in the scattered light 7.

In the present paper we study the two-point correlation function in aggre-
gates obtained by the numerical algorithm known as the cluster-cluster aggrega-
tion (CCA) 1,2,8,9,10. The CCA algorithm provides a very accurate simulation of
aggregation processes which occur in nature, under the conditions that there is no
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spatially fixed center of aggregation and the concentration of aggregating material
is sufficiently low. These conditions are well satisfied, for example, for formation of
fractal carbone soot 4 and metallic colloids 11.

In its most pure form, the CCA algorithm involves the following steps: First,
a set of N point-like particles are randomly placed on a simple cubic lattice of the
size L × L × L. The size of the lattice is chosen so that the average density of
particles, N/L3, is much smaller than unity. Those particles which are separated
by only one lattice unit are considered to be rigidly bound to each other and form
a subcluster. Then a subcluster is picked randomly out of the set and moved one
lattice unit in one of the six possible directions, chosen at random. If, after this
move, the subcluster contacts other cluster(s) (via nearest-neighbor occupancy),
these subclusters stick together to form a larger subcluster. The steps are repeated
until a single cluster of N particles is left.

A great number of modifications of the algorithm exists, among which are ran-
dom rotations of subclusters, prescribing “mobility” to each subcluster (which is,
typically, proportional to the inverse number of particles in this subcluster), hi-
erarchical models, off-lattice models and so on 12. Some of these modifications,
such as the hierarchical model, are intended to simplify the numerical procedure
and to make it possible to generate large clusters in a feasible time; the price of
these simplifications is sacrificing some essential features of real aggregation. The
other modifications, such as random rotations of subclusters, are, on the contrary,
intended to make the algorithm more realistic, while complicating the numerical
procedure.

In the present paper we use only the pure algorithm described above and gener-
ate three-dimensional clusters with N up to 20, 000. For comparison, the correlation
functions in Ref.14 are studied using computer generated CCA clusters with the
maximum value of N = 900. Clusters with the number of particles comparable to
20, 000 have been generated earlier 9,10, but with the use of the hierarchical model
8, which allows only subclusters of the same size to collide, and considers aggrega-
tion of only two subclusters at a time. Though this model was shown to produce
clusters very similar to those obtained by the direct calculation, it evidently lacks
some important features of the real aggregation process. In particular, this model
may be incapable of producing the multiscaling effect (which is established for the
Witten-Sander clusters 13).

Using the computer-generated CCA clusters with large N , we argue that the
pure CCA model produces clusters possessing multiscaling. A manifestation of
this effect is that the fractal dimension measured from the dependence of radius
of gyration on the number of particles differs from that measured from the pair
correlation function at small distances.

2 The correlation function and the fractal dimension

The CCA aggregates are known to be fractal clusters. The fractal dimension can
be defined either through the gyration radius or with the use of the two-point
correlation function. In the first method, we consider ensembles of clusters with
different numbers of particles N (a separate ensemble for each N), and calculate
the ensemble-average gyration radius Rg for each N according to

2



R2
g = 〈(ri −Rcm)

2〉 , (1)

where ri is the radius-vector of the ith particle in a cluster, Rcm is the the radius-
vector of the center of mass of the cluster, and 〈...〉 denotes ensemble averaging.
One can define the fractal dimension D2 from the dependence of Rg on N :

Rg(N) = R0N
1/D2 , N À 1 , (2)

where R0 is a constant of the order of the minimum separation between particles.
Another possible definition of the fractal dimension uses the pair density cor-

relation function. In this case we consider only one ensemble of clusters containing
N particles each and define the function p(r) as the probability density to find two
distinct particles belonging to the same cluster separated by the distance r. Then

p(r) = aN−1rD1−1 , R0 ¿ r ¿ Rg , (3)

where a is a constant.
If there is no multiscaling phenomena, both constants coincide: D2 = D1 = D.

Then the pair correlation function can be written in the form

p(r) = aN−1rD−1f(r/Rg) . (4)

The function f(x) describes the cut-off of the correlation function. As follows from
(3), f(x) is close to unity if R0/Rg ¿ x¿ 1. When R0 ¿ Rg, this can be expressed
as f(0) = 1. For large x, f(x) must decrease fast enough to allow normalization.
From normalization of p(r) and formula (2) for Rg it follows that

aRD
0

∫

∞

0

xD−1f(x)dx = 1 . (5)

Another relation for f can be obtained by calculating the root-mean square distance
between monomers, Rrms =

√
2Rg, by using R

2
rms =

∫

∞

0
r2p(r)dr. This relation is

aRD
0

∫

∞

0

xD+1f(x)dx = 2 . (6)

Given the rules (5,6), the possible choice of the cut-off function is still very
wide 3. The value of aRD

0 is fixed: it does not depend on the choice of the unit of
length, i.e., it is invariant with respect to any scale transformations.

Now let us turn to the case of multiscaling, when D2 6= D1. In this case the
functional form (4) for the correlation function does not provide correct normal-
ization for an arbitrary N . Therefore, we need to use a more general functional
form:

p(r) = aN−1rD1−1g(r/Rg, N) , (7)

where Rg is still defined by (2) with a constant D2 6= D1. The two rules for g(x,N),
analogous to (5,6), are
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aRD1

0

∫

∞

0

xD1−1g(x,N)dx = N1−D1/D2 , (8)

aRD1

0

∫

∞

0

xD1+1g(x,N)dx = 2N1−D1/D2 . (9)

As above, aRD1

0 is invariant with respect to any scale transformation; besides it
does not depend on N by the definitions of the constants a and R0. Therefore,
the only source of the dependence on N in the left-hand part of (8) is the function
g(x,N). We note that g(x,N)→ 1 when x→ 0 for any N , and it is impossible to
factorize g(x,N) as g(x,N) = g1(x)g2(N).

Another form for p(r) in the case of multiscaling was proposed in Ref.15:

p(r) = aN−1rD(r/Rg)−1R
D1−D(r/Rg)
0 h(r/Rg) . (10)

Here D(x) is a continuously changing fractal dimension. Since (10) must coincide
with (3) when r ¿ Rg, we require that D(0) = D1 and h(0) = 1. Note that there is
no general requirement that D(∞) = D2; at least it can not be deducted from the
definitions of D2 (2) and h (10). The functional dependence (10) is less general than
(7). The latter is, evidently, the most general form of a function of two variables,
r and N . In order for (7) and (10) to represent the same function, the following
relation must hold:

g(x,N) = xD(x)−D1N [D(x)−D1]/D2h(x) (11)

If the representation (10) describes the correlation function correctly, then g(x,N) ∼
N1−D1/D2 for xÀ 1.

An interesting property of D(x) can be obtained by applying the normalization
rules (8) to the function g(x,N) written in the form (11). Substitution of (11) to
(8) yields

aRD1

0

∫

∞

0

xD(x)−1ND(x)/D2−1h(x)dx = 1 . (12)

By taking a derivative ∂/∂N of the equation (12), we find that the functionD(x)/D2−
1 must change its sign, since all the other values under the integral are positively
defined. In particular, if D2 > D1, the function D(x) can not be monotonously
decreasing, as was theoretically predicted 13 for Witten-Sander clusters. We will
return to this aspect of D(x) in more detail in section 5.

3 Numerical procedures

We have implemented the CCA algorithm on a simple cubic lattice with periodic
boundary conditions. We have built 40 random clusters for each value of the number
of particles in a clusterN , except forN=20,000, when we have built only 20 clusters.
The size of the lattice L varies depending on N . The following values of L were
selected: L = 200 for N = 5, 000; L = 260 for N = 7, 500; L = 300 for N = 10, 000;
L = 310 for N = 12, 500; L = 340 for N = 15, 000; and L = 350 for N = 20, 000.
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This ensured that the density of monomers was low enough (3.7 · 10−4 for N =
10, 000) and that the cluster size was smaller than the size of the lattice. For
example, the root-mean square (r.m.s.) distance between two particles in clusters
with N = 10, 000 was 99.4, which is substantially less than the corresponding lattice
size. This was true also for the largest clusters with N = 20, 000 with r.m.s distance
between particles equal to 141.7.

During the aggregation, each subcluster was moved with equal probability (in-
dependently of its size), and no rotations were allowed. Our simulations showed
that clusters of all sizes were colliding during the aggregation. At approximately
1/2 of the full aggregation time, a main subcluster was formed, which accounted for
about half of all aggregating mass, while the rest of the particles were aggregated
in subclusters of widely varying size, including single non-aggregated monomers.
Closer to the end of aggregation, one large subcluster and a number of small sub-
clusters were left. This aggregation pattern suggests that the hierarchical model 8,
which allows only clusters of the same size to collide, is, in principle, different from
the “pure” aggregation algorithm.

The correlation function p(r) is defined as the probability density to find a pair
of distinct monomers belonging to the same cluster separated by the distance r. For
finite lattice clusters it is, strictly speaking, a highly-singular function. However, if
the correlation function is used for calculation of some average values 〈F 〉 according
to

〈F 〉 =
∫

∞

0

F (r)p(r)dr , (13)

and the function F (r) changes slowly enough, we can replace the exact function
p(r) by some “smoothed” function according to

p(r)→ 1

δ

∫ r+δ/2

r−δ/2

p(r′)dr′ . (14)

Below, we will use the notation p(r) for the smoothed function.
For numerical calculation of p(r) the natural choice of the constant δ is the

lattice unit. If we choose δ to be less than the lattice unit, the resultant function
p(r) will fluctuate strongly at small distances, and if we choose δ to be larger than
the lattice unit we will lose precision at large distances.

We have set the lattice unit and the value of δ to be equal to unity and calculated
the function p(r) for integer values of r beginning with r = 1 (p(0) = 0 by definition)
by enumeration of all possible pairs of particles in each cluster.

Even after smoothing, the correlation function of a lattice cluster possesses
some random irregularities, which are more pronounced at small distances and may
seem to be random, but are, in essence, artifacts of the lattice on which the cluster
was built. The origin of these irregularities is that the density of sites of the lattice
itself (measured at a certain distance from the origin and averaged over angles) has
certain fluctuations, which disappear at large distances, when the discrete structure
of the lattice is no more of importance. To eliminate these irregularities in the
correlation function, we suggest using the following procedure: First, we define the
density of lattice sites ν(r) as
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ν(r) = ∆Nlatt(r)/V (r) , V (r) =
4π

3
[(r + 1/2)3 − (r − 1/2)3] , (15)

where the variable r takes the integer values beginning from r = 1, and ∆Nlatt(r)
is the number of lattice sites which lie in the spherical shell r − 1/2 < r′ < r + 1/2
with the center in the origin. Evidently, this function becomes close to unity as r
grows, but for small r it can significantly differ from unity (ν(1) ≈ 1.32). Then we
define the corrected correlation function as

ρ(r) = p(r)/ν(r) (16)

Since ν(r) looks much like a statistical noise, and is unity on average, we can
assume that

∫

∞

0
ρ(r)dr =

∫

∞

0
p(r)dr, which means that the normalization of p(r)

is conserved.
In Fig. 1 we compare the original function p(r) and the modified function ρ(r)

for an ensemble of 40 clusters with N = 10, 000.

4 Results of numerical calculations

The asymptotic behavior (3) of the correlation function is illustrated in Fig. 2. We
plott the lattice modified correlation function ρ(r) (16) multiplied by the number
of particles in a cluster N for several values of N . As we can see, the asymptote
(3) is very accurate, and the interval of r where it is valid grows when N (and,
consequently, Rg) grows.

The coefficients for the theoretical asymptote plotted in Fig. 2 were found by
linear regression. We find that a = 3.89 ± 0.01 and D1 = 1.804 ± 0.001 from the
data for N = 15, 000 and 3 ≤ x ≤ 30, where the uncertainties are shown at the level
of one standard deviation. The use of the original correlation function p(r) gives
essentially the same results, but much lower precision. Namely, we obtain from
linear regression of p(r) for N = 15, 000 and in the same interval of r: a = 3.9± 0.2
and D1 = 1.8 ± 0.1. This example shows that the use of the corrected correlation
function ρ(r), as proposed in section 3, allows one to increase precision in calculating
the regression coefficients by one order of magnitude. Finally, the values of a and
D1 were calculated using the data for other values of N . The results are very close
to those for N = 15, 000.

From the above data we can conclude that the value of D1 for our clusters
is close to 1.8, which is the accepted value for the fractal dimension of the CCA
aggregates 12. However, the value of D2, calculated from the dependence of Rg on
N turns out to be much closer to 2 (see Fig. 3) a. We have calculated the values
of R0 and D2 defined by (2) and find that R0 = 0.68± 0.08 and D2 = 1.99± 0.05.
All errors, including the errorbars in Fig. 3, are shown at the level of one standard
deviation.

aA similar result was found for a three-dimensional off-lattice CCA model wherein subclus-
ters aggregated via linear trajectories 9. The authors generated clusters containing up to 32,000
particles and found that “...the limiting (N → ∞) dimensionality may be much closer to 2.0”,
concerning the dimensionality found from the slope of the radius of gyration.
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Figure 1: Comparison of the original p(r) and
the corrected ρ(r) correlation functions for N =
10, 000.
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Figure 2: Numerically calculated functions
Nρ(r) for different N and the theoretical
asymptote (3); a = 3.89, D1 = 1.804.
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Figure 3: Radius of gyration as a function of N ;
R0 = 0.68, D2 = 1.99.
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Figure 4: Function g(x,N) plotted as a function
of x for different N .
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Figure 5: Function D(x).

In Fig. 4 we show the function g(x,N) defined by (7) as a function of x for
different values of N . We have calculated g(x,N) by multiplying the modified
correlation function ρ(r) for clusters with different N by the factor N/arD1−1.
Note that for the calculation of x = r/Rg we took not the actual Rg(N) for the
ensemble with the corresponding N , but the theoretical value (2) with the constants
R0 = 0.68 and D2 = 1.99 found from the linear regression. The two values of
Rg are slightly different; we believe that the use of the theoretical value of Rg

with numerically calculated coefficients is more appropriate, since it utilizes all the
ensembles of clusters, instead of one finite ensemble for each N . In other words, the
experimental values of N and Rg(N) in finite ensembles do not satisfy (2) exactly
due to statistical errors; but the regression coefficients found from a number of
experimental point N , Rg(N) are expected to provide a closer fit to the theoretical
curve (2) which is presumably correct for infinite ensembles. A pronounced and
systematic dependence of g on N is apparent from Fig. 4. In accordance with the
fact that D2 > D1 and properties (8), g(x,N) grows when N grows and x = const.

From the above data we can conclude with high precision that for CCA clusters
D2 > D1 (the difference D2 −D1 is equal to four standard deviations of D2, while
the standard deviation ofD1 is very small and can be neglected). Let us consider the
case when the correlation function is correctly described by (10). As was discussed
at the end of section 2, D(0) = D1 and the function D(x)/D2−1 must change sign.
Together with the inequality D2 > D1, this means that for some regions of x of
nonzero measure, D(x) must be greater than D2.

Our numerical data are insufficient for an accurate calculation of the function
D(x) or even for verifying that the functional form (10) describes p(r) correctly.
However, we present our results for D(x) in Fig. 5. We calculated D(x) by fixing
the value r/Rg and calculating the slope of p(r) as a function of r (for clusters with
different N , different values of r correspond to a fixed value of r/Rg). The number
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of points on this kind of graph is equal to the number of different N used. Again,
we calculated Rg using formula (2) instead of taking the actual value of Rg for each
N .

It should be noted, that our results for D(x) in the region x > 1.5 are not
reliable since we did not have enough points on the graph to determine the slope,
and a strong noise maid it difficult to determine if the power-law dependence can
even be applied at all. As a result, the statistical errors of the regression coefficients
are huge in this region. On the other hand, the error-bars in Fig. 5 represent
only statistical errors associated with the linear regression procedure. An accurate
assessment of statistical errors should involve errors of Rg, errors associated with
“smoothing” of the correlation function, etc., and is a fairly complex procedure.

Nevertheless, the main trend ofD(x) can be seen from Fig. 5. It experience first
a slight increase, reaching a maximum at a level D(x) > D2, and then decreases.

5 Discussion

The fact that D2 6= D1 implies that the formulas (2) and (3) are correct and D2 and
D1 do not depend on r/Rg. As discussed in section 2, this is, in general, compatible
with the definition of the fractal dimension D(r/Rg) as a function continuously
depending on r/Rg with D(0) = D1 and Rg defined by (2). We emphasize that
there is no requirement that D(∞) = D2. Our numerical results confirm with good
precision that the asymptote (3) is correct and D1 is a constant for CCA clusters.
However, we cannot state with enough confidence the same for D2. Though in
our range of N we find that D2 is a constant close to 2.0, we have a considerable
statistical error of D2 (20 times larger than that of D1). Further, we can not rule
out a possible change in D2 if we go to larger cluster sizes.

Let us now turn to the dependence D(x). In Ref.15 the authors argued that
D(x) must be a non-increasing function of x for Witten-Sander clusters (known
also as diffusion-limited aggregation clusters). The authors considered the density
function at the distance r from the origin, which would be equal toNp(r)/4πr2 (with
p(r) being the density correlation function studied in this paper) after placing the
origin at all the monomers in the cluster and taking an average. However, the origin
is fixed and coincides with the first monomer in the Witten-Sander aggregation
process (the “seed”). The authors argued that due to irreversibility of the Witten-
Sander aggregation process, the density function measured at the distance r must be
greater in a cluster with greater number of particles (and greater radius of gyration).
Applied to (10), this means that

rD(x2)−D(x1)h(x2, R0)/h(x1, R0) ≥ 1 , if x2 < x1 . (17)

By fixing the values of x1 and x2 and taking large values of r, we can conclude from
(17) that D(x2) > D(x1). Numerically, a small bump in D(x) was found in two-
dimensional Witten-Sander clusters 13, in contrast with the theoretical predictions.
The authors proposed that the asymptotic regime has not been reached (Rg was
not large enough), which resulted in the above discrepancy. This means that the
functional form (10) becomes correct only for very large clusters. (According to
the estimates made in Ref.15, when N ∼ 1017 for two-dimensional Witten-Sander
clusters; in practice this number of particles is, of course, not very realistic.)

9



The above arguments cannot be directly applied to the correlation function
studied in this paper because we have considered all possible pairs of distinct
monomers for the calculation of p(r), which is equivalent to averaging the den-
sity function studied in Ref.15 over all possible positions of the origin; moreover,
a unique origin or a “seed” is not defined for CCA clusters. However, it is clear
from Fig. 2 that for a fixed value of r, the correlation function multiplied by N ,
i.e., Np(r), for an ensemble with a greater N is greater than or equal to that for an
ensemble with a smaller N (the equality takes place in the asymptotic region de-
fined in (3)). This brings about inequality (17) and the conclusion that D(x) must
be a monotonously decreasing function. Still, the numerically calculated D(x) has
a maximum (Fig. 5).

Apart from the reason that the asymptotic regime is not reached yet, and
the maximum will disappear for clusters with larger N , we can suggest that the
functional form (10) is incompatible with (2,3) with D2 > D1 for clusters which
aggregate via an irreversible aggregation process. The multiscaling function g(x,N)
is more general and complex in this case.
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